
General Digit-Serial Normal Basis Multiplier with Distributed Overlap

Martin Novotný, Jan Schmidt

Department of Computer Science and Engineering, CTU FEE in Prague
Karlovo nám. 13, 121 35 Praha 2, Czech Republic

{novotnym, schmidt}@fel.cvut.cz

Abstract

We present the architecture of digit-serial normal

basis multiplier over GF(2m). The multiplier was

derived from the multiplier of Agnew et al. Proposed
multiplier is scalable by the digit width of general

value in difference of the multiplier of Agnew et al.

that may be scaled only by digit width that divides the
degree m. This helps designers to trade area for speed

e.g. in public-key cryptographic systems based on

elliptic-curves, where m should be a prime number.
Functionality of multiplier has been tested by

simulation and implemented in Xilinx Virtex 4 FPGA.

1. Introduction

Arithmetic operations over finite fields find many

application areas including cryptography and error-

correcting codes. The finite fields are of the

characteristic p (p is prime) and degree m, marked

GF(pm). We focus on the subset GF(2m), where all field

elements are expressed as m-bit vectors. While addition

of two elements in GF(2m) is performed as a bit-wise

XOR operation, multiplication of two elements is more

complicated. An algorithm for multiplication depends

on representation of field elements, which is given by

chosen basis. The most common kinds are polynomial

basis and normal basis [3].

Normal basis [7] offers some advantages and has

some disadvantages in comparison with the polynomial

basis. On the minus side, field degrees m usable for

cryptography are rare as they must be prime [8] and

should have a so called optimal normal basis. On the

plus side, multiplication and squaring are simpler even

for general field degree. Thereby arithmetic units

implementing operations over finite field in normal

basis are smaller and faster, that leads to better

performance/area ratio in comparison with systems that

operate on polynomial basis [9]. Therefore, they attract

continuous attention [4].

One of indicators of quality of the system is the

ability to trade the area for speed, that we call

scalability in this paper. This ability is important e.g.

in cryptographic systems, where the multiplier is one of

units repeatedly used during execution of cryptographic

algorithm. As the multiplication is time-consuming

operation, it may represent a bottle-neck of the

algorithm. The scalability of multiplier allows the

designer to improve the performance of cryptographic

system by acceleration of multiplication. This

acceleration is realized at the cost of larger area of

multiplier, but, as the multiplier is a part of larger

system, even the quality factor (performance/area ratio)

of the whole system may increase.

Finite field multipliers may be scaled by digit

width. While the polynomial basis multiplier can be

scaled by any digit width D, the normal basis multiplier

developed by Agnew et al. [1] can be scaled well only

by digit width D that divides the degree m. [8]. As m

must be prime for cryptographic purposes, the standard

normal basis multiplier cannot be scaled at all. This

disqualifies normal basis multiplier in comparison with

polynomial basis multiplier.

Our aim was to adapt the architecture of a normal

basis multiplier to be scalable by any digit width D

independently of degree m. In this paper we introduce

and compare two different architectures of general

digit-serial normal basis multipliers that we developed.

The paper is structured as follows: In the second

chapter, we bring information about normal basis

multiplication and describe the standard digit-serial

normal basis multiplier. In the third chapter, we

introduce new architecture of general digit-serial

multiplier, where the digit width does not divide the

degree m. In the fourth chapter, we discuss the area and

performance of multiplier in terms of gate count and

critical path length. Finally, in the fifth chapter, we

present results of experiments comparing the new

multiplier with the standard solution.

2. Preliminaries

2.1. Mathematical background

Let a and b be elements of GF(2m) with normal basis.

Multiplication of two elements in GF(2m) can be

defined by multiplication matrix λ with entries

λij ∈ GF(2) [3]. The coefficients of the product

c = a × b are

∑ ∑
−

=

−

=

++
=

1

0

1

0

m

j

m

l

jliliji bac λ , i = 0…m–1, (1)

where additions and multiplications are performed in

GF(2). The indices of a and b are added modulo m.

The volume of hardware in the multiplier is given

by the number CN of non-zero entries in λ. A normal

basis multiplier can be scaled by digit-serialization,

that is, D bits (called a digit) are evaluated in one clock
cycle. Pipelined multipliers evaluate D terms in every

stage of the multiplier in one clock cycle. An overview

of normal basis multipliers can be found e. g. in [2].

Here we deal with the pipelined Massey-Omura

multiplier on which the general digit-width multipliers

are based.

2.2. Pipelined digit-serial Massey-Omura

multiplier

Agnew, et al. [1] modified the Massey-Omura

multiplier [6] by pipelining and parallelization. The

digit-serial version of this multiplier for digit width D

that divides the degree m can be simply derived. It

contains 3 registers. Registers A and B hold arguments

a and b. The product c = a × b is successively evaluated

in register C. All registers are rotated one bit right
between cycles.

From (1) it follows that the equation for each bit of

result can be divided into m terms Ti,j:

1,2,1,0,
...

−−

++++=
mimiiii

TTTTc , (2)

where

jl

m

l

ilijji baT λ∑
−

=

++
=

1

0

,

The logic in front of each C register bit

implements D of the terms Ti,j.. We shall call this logic

together with the register bit a stage.

Rule 1 (digit-serial multiplier): Let q = m/D be the

number of clock cycles of one multiplication. Then in

the k-th clock cycle (∀k ∈ 〈0, q – 1〉), the stage sr

(∀r ∈ 〈0, m – 1〉) evaluates the set of terms

∑
=

−
=

v

uj

jkrkr TS
,,

 ,

where u = rD mod m, v = u + D – 1
(3)

(The values of subscript indices are reduced modulo

m.)

The set of terms Sr,k is added to the partial result of

the bit cr–k, which is, due to the rotation of register C,
present in the stage sr during the k-th clock cycle. The

result c0c1c2…cm–1 is available in stages sq–1sqsq+1…sm–

1s0…sq–2 after q clock cycles.�

Let the block of q consecutive stages be denoted as

a pipeline block. From (3) it follows that any pipeline

block implements exactly m terms Ti,j. The whole

multiplier implements exactly D⋅m terms Ti,j, hence,

we may split it into D pipeline blocks. From (3) also

follows that terms Ti,j evaluated in stages si and si+q

have the same second indices j.

s0 s1 sq–1 sq sm–1

∑
−

=

−

1

0

,0

D

j

jkT ∑
−

=

−

12

,1

D

Dj

jkT ∑
−

−=

−−

1

)1(

,1

qD

Dqj

jkqT ∑
−

=

−

1

0

,

D

j

jkqT ∑
−

−=

−−

1

)1(

,1

qD

Dqj

jkmT

s0 s1 sq–1 sq sm–1

S0,k S1,k Sq-1,k Sq,k Sm–1,k

Figure 1. Evaluation of terms in register C in standard digit-serial multiplier, a) full notation,

b) abbreviated notation

3. General digit-serial multiplier

Construction of the standard digit-serial multiplier is

possible only for digit widths D that divide degree m.

On the other hand, as stated before, m should be prime

number for cryptographic purposes. Therefore, the

standard digit-serial multipliers cannot be used in

cryptographic systems. Our aim was to adapt the digit-

serial multiplier for such cases. We developed two

architectures for digit-serial multiplier that can be

scaled by any digit width. These two architectures we

call circular multiplier with concentrated overlap
(GCCONC) and (optimized) circular multiplier with

distributed overlap (GCDIST and GCDO). The letter G

stands for general, as the multipliers can be

constructed for general value of digit width, in contrast

to standard multiplier that can be constructed only if

the digit width D divides the total number of bits m.

3.1. Circular multiplier with concentrated

overlap (GCCONC)

In Figure 2 we describe a structure of a circular

multiplier, concretely how the terms are evaluated in

stages of register C. To get the correct result, stages
s0…sq–2 must be able to evaluate two different groups of

terms. When holding partial results of any of bits

c0…cq–2, they must evaluate the first group (symbolized

as
1S), but when holding partial results of any of bits

cm–q+1…cm–1, they must evaluate the second group (2S).

The stages are step-by-step switched from the group
1S

to the group
2
S during the computation as partial

results of bits cm–q+1…cm–1 successively move to stages

s0…sq–2. In the k-th clock cycle, stages sk…sq–2 evaluate

groups
1S, while stages s0…sk–1 are switched to

evaluate groups 2S. Stages sq–1…sm–1 do not switch and

evaluate groups
1S during the whole computation.

A shift register can be used to control successive

switching of groups. The shift register is initially

cleared; during computation series of ‘1’s is step-by-

step shifted in it. Evaluation of the result takes

q = m/D clock cycles.

Rule 2 (circular digit-serial multiplier with

concentrated overlap GCCONC):

Let q = m/D be the number of clock cycles of one

multiplication. Then in the k-th clock cycle

(∀k ∈ 〈0, q – 1〉) the stage sr (∀r ∈ 〈0, m – 1〉)
evaluates the set of terms Sr,k:

a) if r ≥ k:

∑
=

−
==

v

uj

jkrkrkr TSS
,,

1

,
,

 where

u = rD mod qD,
v = min{u + D – 1; m–1}

(4)

s0 s1 sq–2 sq–1 sq sm–1

1S0,k

(
2S0,k)

1S1,k

(
2S1,k)

1Sq–2,k

(
2Sq–2,k)

1Sq–1,k
1Sq,k 1Sm–1,k

Figure 2a. Evaluation of terms in stages of register C in circular digit-serial multiplier GCCONC

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0,1

(10)

2,3

(0,1)

4,5

(2,3)

6,7

(4,5)

8,9

(6,7)
10 0,1 2,3 4,5 6,7 8,9

Figure 2b. Evaluation of terms in stages of circular digit-serial multiplier GCCONC for m = 11 and D = 2.

Values of second indices j of terms Ti,j are introduced. Multiplication takes q = 6 clock cycles.

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0,1,2

(9,10)

3,4,5

(0,1,2)

6,7,8

(3,4,5)
9,10 0,1,2 3,4,5 6,7,8 9,10 0,1,2 3,4,5 6,7,8

Figure 2c. Evaluation of terms in stages of circular digit-serial multiplier GCCONC for m = 11 and D = 3.

Values of second indices j of terms Ti,j are introduced. Multiplication takes q = 4 clock cycles.

b) if r < k:

∑
=

−
==

v

uj

jkrkrkr TSS
,,

2

,
,

 where

u = (r+m)D mod qD,
v = min{u + D – 1; m–1}

(The values of subscript indices are reduced mod m)

The set of terms Sr,k is added to the partial result of

the bit cr-k, which is, due to the rotation of register C,

present in the stage sr during the k-th clock cycle. The
result c0c1c2…cm–1 is available in stages

sq–1sqsq+1…sm-1s0…sq–2 after q clock cycles. �

Example 1:

Let m = 11. It is shown in Figures 2b and 2c how the

terms are evaluated in stages of register C in circular
digit-serial multiplier. Indices in parentheses belong to

sets of terms
2S.

The circular multiplier drawback lies in fact that

q–1 pipeline stages must evaluate two different sets of

logic. In other words, the circular multiplier contains

almost D+1 pipeline blocks (instead of D pipeline
blocks in case of standard multiplier) that overlap in

q–1 stages (hence we call it the multiplier with

concentrated overlap). The multiplier must implement

almost (D+1)⋅m terms Ti,j. Moreover, we need q–1

multiplexers that also consume relatively large amount

of area and may lie on critical path. Also, the necessity

of successive switching of groups may slightly

complicate the control.

3.2. Circular multiplier with distributed overlap

(GCDIST and GCDO)

The main idea of this multiplier is to distribute the

overlap, make it smaller and simplify the control. The

number of terms evaluated in this multiplier is the

same like in the standard one, i.e. D⋅m terms Ti,j. The

area overhead insists in less than m/2 AND gates in

comparison with the standard multiplier.

As stated before, in case of standard multiplier we

may split the multiplier into D pipeline blocks, each

containing q consecutive stages. All D pipeline blocks

together create the whole multiplier, as D × q = m. This
rule can be satisfied only if D divides m. For such D

that do not divide m the value q = m/D and for these
cases D × q > m.

To divide the multiplier into D pipeline blocks as
equally as possible, some of pipeline blocks must

contain q pipeline stages, while some other must

contain q–1 stages only. Exactly, (m mod D) pipeline

blocks will contain q stages (mentioned later as long

pipeline blocks), while the remaining (D – (m mod D))
pipeline blocks will contain q–1 stages (mentioned

later as short pipeline blocks).

The idea of this multiplier is to compute all m
terms Ti,j not in q stages, but only in q–1 stages of each

pipeline block. If the pipeline block is q stages long,

then one of the stages will be empty (nothing will be

computed in this stage). If the block is only q–1 stages

long (short pipeline block), then first q–1 stages of the

following block will be switched-off in the last clock

cycle (or, equivalently, the last q–1 stages of previous

pipeline block will be switched-off in the first clock

cycle) to compute the empty stage. Switching-off some

stages is less hardware complex than multiplexing

between two different sets of logic. While the

multiplexer is relatively complex, the AND gate used

for switching-off is relatively simple. Evaluation of the

result takes again q = m/D clock cycles and cannot be
shortened – the empty stage appears at different clock

cycles for different partial results ci.

There are plenty of possible definitions of this

multiplier. One of them may assume that the first

(m mod D) pipeline blocks are q stages long (long

blocks), succeeded by (D – (m mod D)) pipeline blocks

being q–1 stages long (short blocks). For such

assumption we bring the following description.

Rule 3 (circular digit-serial multiplier with

distributed overlap (GCDIST)):

Let q = m/D be the number of clock cycles of one

multiplication. Let Dx = m/(q–1) be the maximum

number of terms being evaluated in one stage. Let

F = ((m mod D) × q) be the number of stages of all

long pipeline blocks. Then in the k-th clock cycle

(∀k ∈ 〈0, q – 1〉) the stage sr (∀r ∈ 〈0, m – 1〉)
evaluates the set of terms Sr,k:

(long pipeline blocks):

a) if () ()()0mod =∧< qrFr :

Sr,k = ∅

b) if () ()()0mod ≠∧< qrFr :

∑
=

−
=

v

uj

jkrkr TS
,,

,

 where

u = (r–1 mod q) × Dx,

v = min{u + Dx – 1; m–1}

(5)

(short pipeline blocks):

c) if () ()()1−=∧≥ qkFr :

Sr,k = ∅

d) if () ()()1−≠∧≥ qkFr :

∑
=

−
=

v

uj

jkrkr TS
,,

,

 where

u = () ()()
x

DqFr ×−− 1mod ,

v = min{u + Dx – 1; m–1}

�

This multiplier evaluates the same amount of terms

like the standard multiplier. The area overhead lies in

the number of AND gates that are necessary to switch-

off some stages in the last clock cycle. In the worst

case, the number of the necessary AND gates could be

almost m.

But, yet another area improvement is possible. As

mentioned above, to implement the “empty stage” in

short pipeline blocks, we can either switch-off the first

q–1 stages of the following block in the last clock cycle
or switch-off the last q–1 stages of the previous block

in the first clock cycle. Fortunately, we can join these

two approaches together. We do not need to switch-off

all short blocks in the last (or first) clock cycle. Instead

of that we can switch-off only all odd short blocks in

the first and the last clock cycle, while even blocks will
not be switched at all. This approach minimizes

hardware resources even more. The number of

additional AND gates is consequently less than m/2.

Rule 4 (optimized circular digit-serial multiplier

with distributed overlap (GCDO)):

Let q = m/D be the number of clock cycles of one

multiplication. Let Dx = m/(q–1) be the maximum

number of terms being evaluated in one stage. Let

F = ((m mod D) × q) be the number of stages of all

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

∅ 0,1,2,3 4,5,6,7 8,9,10 ∅ 0,1,2,3 4,5,6,7 8,9,10
0,1,2,3

(∅)

4,5,6,7

(∅)

8,9,10

(∅)

Figure 3a. Evaluation of terms in stages of circular digit-serial multiplier with distributed overlap

(GCDIST as well as GCDO) for m = 11 and D = 3. Values of second indices j of terms Ti,j are introduced.

Multiplication logic is switched-off in stages s8 through s10 in the last clock cycle (denoted by ∅).

Multiplication takes q = 4 clock cycles.

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

∅ 0,1,2,3 4,5,6,7 8,9,10,11 12
0,1,2,3

(∅)

4,5,6,7

(∅)

8,9,10,11

(∅)

12

(∅)

0,1,2,3

(∅)

4,5,6,7

(∅)

8,9,10,11

(∅)

12

(∅)

Figure 3b. Evaluation of terms in stages of circular digit-serial multiplier with distributed overlap

(GCDIST) for m = 13 and D = 3. Values of second indices j of terms Ti,j are introduced. Multiplication logic

is switched-off in stages s5 through s12 in the last clock cycle (denoted by ∅). Multiplication takes q = 5

clock cycles.

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

∅ 0,1,2,3 4,5,6,7 8,9,10,11 12
0,1,2,3

(∅)

4,5,6,7

(∅)

8,9,10,11

(∅)

12

(∅)
0,1,2,3 4,5,6,7 8,9,10,11 12

Figure 3c. Evaluation of terms in stages of optimized circular digit-serial multiplier with distributed

overlap (GCDO) for m = 13 and D = 3. Values of second indices j of terms Ti,j are introduced.

Multiplication logic is switched-off in stages s5 through s8 in the first and last clock cycle (denoted by ∅).

Multiplication takes q = 5 clock cycles.

long pipeline blocks. Then in the k-th clock cycle

(∀k ∈ 〈0, q – 1〉) the stage sr (∀r ∈ 〈0, m – 1〉)
evaluates the set of terms Sr,k:

(long pipeline blocks):

a) if () ()0mod =∧< qrFr :

Sr,k = ∅

b) if () ()0mod ≠∧< qrFr :

∑
=

−
=

v

uj

jkrkr TS
,,

,

 where

u = (r–1 mod q) × Dx,

v = min{u + Dx – 1; m–1}

(short pipeline blocks):

c) if () () ()()













−=∨=∧










=









−

−
∧≥ 1002mod

1
qkk

q

Fr
Fr

Sr,k = ∅

d) if () () ()()













−=∨=∧










=









−

−
∧≥ 1002mod

1
qkk

q

Fr
notFr

∑
=

−
=

v

uj

jkrkr TS
,,

,

 where

u = (r–F mod (q–1)) × Dx,

v = min{u + Dx – 1; m–1}

(6)

�

Example 2:

Let m = 11 and D = 3. It is shown in Figure 3a how the
terms are evaluated in stages of register C in GCDIST

and GCDO multipliers. Coincidently, in this case, the

multipliers contain only one short pipeline block and

hence the structure of both multipliers is the same.

Table 1. Hardware resources
 AND gates XOR gates MUX

standard mD ≤ CND 0

GCCONC < mD + m < CND+CN q–2

GCDO < mD+m/2 ≤ CND 0

Table 2. Critical path length
 AND XOR MUX

standard 1 ≤ log2CN/m+log2D 0

GCCONC 1 ≤ log2CN/m+log2D ≤ 1

GCDO 1-2 ≤ log2CN/m+log2D + 1 0

The difference between GCDIST and GCDO

multipliers is illustrated in Figures 3b and 3c. The

multipliers are constructed for m = 13 and D = 3. The

multipliers contain two short pipeline blocks. While

both short pipeline blocks are equipped with switching-

off AND gates in the GCDIST multiplier, only one

short pipeline block is equipped with AND gates in

GCDO multiplier.

4. Area and critical path length

In the standard digit-serial multiplier (D divides m),

every stage evaluates exactly D terms; consequently,

the entire logic of the multiplier evaluates mD terms.

Every term is implemented by one AND gate and at

most CN/m XOR gates, which form a tree with depth

≤ log2CN/m. Terms evaluated in one stage are

summed up by another tree of XOR gates with depth

log2D.
The circular multiplier with concentrated overlap

(GCCONC) contains additional logic that in the first

q–1 stages evaluates alternative set of terms. Each set

contains at most D terms. First q–1 stages contain

multiplexers that may lie on critical path. Moreover,

we need also additional control logic for successive

switching the first q–1 stages. This control logic may

be implemented either by shift register or by the

counter with decoder.

In circular multiplier with distributed overlap

(GCDIST and GCDO) each stage may evaluate up to

2D terms. But, we must note that this is a marginal

case. Some stages contain one AND gate to switch-off

all logic in a stage. This AND gate may lie on the

critical path. The total number of additional AND gates

is less than m in case of GCDIST or less than m/2 in

case of GCDO.

In Table 1 we compare hardware resources

necessary for the standard digit-serial multiplier, the

circular multiplier with concentrated overlap

GCCONC and optimized circular multiplier with

distributed overlap GCDO. The comparison of critical

path lengths is in Table 2.

5. Implementation results

We implemented the above multipliers in Xilinx

Virtex 4 VLX25 FPGA with Leonardo Spectrum 2005

and ISE 7.1i. We measured the area of the design as

the number of slices used and observed the minimum

clock period. The time of multiplication is a product of

the minimum clock period and the number of clock

cycles. The quality factor is a reciprocal of the

time-area product.

To retrieve the knowledge of the overhead of the

GCCONC and GCDO multipliers against the standard

multiplier we performed one set of experiments with

composite degree m. For these experiments we have

chosen m = 180, that has rich set of divisors. Hence we

can construct the standard multiplier for relatively

large amount of digit widths D. For such Ds that do not
divide m the theoretical (but unreachable) results of the

standard multiplier can be interpolated. Since the

structure of the GCCONC multiplier is the same as the

structure of the standard multiplier when the digit

widths D divides the degree m (no switching between

two sets of logic is necessary in this case), we executed

another set of experiments for a prime number

m = 173. In this set, we compared the architectures of

GCCONC and GCDO multipliers only.

Implementation results for the first twenty values

of D are summarized in Tables 3 and 4. The

dependencies of multiplication time on digit width D
for composite degree m = 180 and for prime degree

m = 173 are available in Figure 4. Recall that results

for the standard multiplier and Ds not dividing the
degree m are not available since standard multiplier

cannot be constructed for such cases.

The dependencies of quality factor on digit width

D are available in Figure 5. The quality factor here is

evaluated as performance/area ratio of multiplier alone.

It decreases with growing D as the achievable clock
frequency decreases for larger Ds. But, when using

multiplier e.g. in cryptographic system, the critical

path may lay in other units outside the multiplier. For

such cases, the quality factor of the whole system may

increase with growing D unless the critical path

transfers to the multiplier.

The implementation results correspond to

theoretical values introduced in Tables 1 and 2. They

confirm that the general digit-serial multipliers are of

the same quality as the standard one. In other words,

we do not pay much for the added flexibility.

The standard multiplier still remains the best

solution whenever D divides m. If the digit width D

does not divide degree m, e.g. when m is prime

number, the GCCONC or GCDO multiplier may be

chosen. As we expected, GCDO provides better results

in both multiplication time and area, hence leading to

better quality factor.

6. Conclusions

We have presented two architectures of general digit-

serial normal basis multipliers. The multipliers are

useful in applications where the acceleration of normal

basis multiplication is required and the digit-width D
generally does not divide the field degree m. Such

applications primarily include cryptographic

algorithms where m should be a prime number.

Our implementation shows that, in practical

circumstances, the overhead of the proposed multipliers

over standard multiplier of Agnew et. al. is small and

the units are suitable for general use. The strategy

presented here is applicable also to other types of

pipelined normal basis multipliers, e.g. [4] and [5].

Table 3. Implementation results for m = 180

Mult. Time

[µs]

Area

[slices]

Quality

factor

D std CONC GCDO std CONC GCDO stdCONC GCDO

1 0.80 0.82 0.90 365 365 455 3.44 3.35 2.43

2 0.49 0.49 0.57 455 455 508 4.45 4.48 3.46

3 0.45 0.44 0.44 640 643 643 3.44 3.53 3.51

4 0.34 0.38 0.40 736 735 757 3.95 3.57 3.29

5 0.34 0.32 0.36 912 910 912 3.19 3.44 3.05

6 0.31 0.29 0.33 997 1013 1045 3.24 3.37 2.86

7 0.30 0.30 1223 1113 2.77 3.03

8 0.27 0.27 1370 1272 2.71 2.89

9 0.25 0.23 0.25 1361 1368 1411 2.98 3.17 2.82

10 0.22 0.21 0.23 1451 1458 1494 3.10 3.32 2.89

11 0.22 0.21 1699 1634 2.62 2.91

12 0.18 0.19 0.21 1725 1731 1768 3.14 3.10 2.68

13 0.18 0.18 1921 1863 2.84 3.02

14 0.17 0.17 2088 1967 2.75 2.94

15 0.16 0.16 0.16 2079 2081 2128 3.02 3.02 2.97

16 0.16 0.16 2054 2216 3.07 2.80

17 0.16 0.16 2379 2343 2.69 2.71

18 0.13 0.14 0.15 2442 2442 2485 3.06 3.01 2.70

19 0.15 0.17 2419 2589 2.75 2.33

20 0.13 0.15 0.13 2713 2712 2712 2.85 2.54 2.74

Table 4. Implementation results for m = 173

Period

[ns]
Mul. time [µs]

Area

[slices]

Quality

factor

D CONC GCDO CONC GCDO CONC GCDO CONC GCDO

1 4.86 4.93 0.84 0.85 352 438 3.38 2.67

2 7.41 6.13 0.64 0.53 619 487 2.51 3.85

3 10.86 8.23 0.63 0.48 725 615 2.19 3.41

4 13.15 8.23 0.58 0.36 815 724 2.12 3.81

5 9.83 8.98 0.34 0.31 989 872 2.94 3.65

6 12.19 11.07 0.35 0.32 1100 969 2.57 3.21

7 12.05 11.03 0.30 0.28 1173 1068 2.83 3.40

8 12.61 11.61 0.28 0.26 1319 1215 2.73 3.22

9 14.02 12.23 0.28 0.24 1396 1340 2.56 3.05

10 14.15 12.53 0.25 0.23 1475 1432 2.66 3.10

11 14.24 12.73 0.23 0.20 1661 1557 2.64 3.15

12 14.41 13.02 0.22 0.20 1729 1669 2.68 3.07

13 14.02 13.56 0.20 0.19 1781 1778 2.86 2.96

14 13.16 14.39 0.17 0.19 1946 1914 3.00 2.79

15 13.36 15.09 0.16 0.18 2058 2003 3.03 2.76

16 14.86 13.99 0.16 0.15 2176 2135 2.81 3.04

17 16.71 15.19 0.18 0.17 2219 2260 2.45 2.65

18 14.42 14.61 0.14 0.15 2382 2342 2.91 2.92

19 14.99 14.05 0.15 0.14 2345 2474 2.84 2.88

20 17.51 16.15 0.16 0.15 2614 2576 2.43 2.67

7. References

[1] Agnew, G.B, Mullin. R.C., Onyszchuk, I.M. and

Vanstone, S.A.: An Implementation for a Fast Public-Key

Cryptosystem. Journal of Cryptology vol. 3, pp.63-79, 1991

[2] Ahlquist, G. C., Nelson, B., Rice, M. : Optimal Finite

Field Multipliers for FPGAs. In: Proceedings of the 9th

International Workshop on Field Programmable Logic and

Applications (FPL'1999), Springer-Verlag, LNCS 1673, pp

51-60, 1999.

[3] IEEE 1363 Standard for Public-key Cryptography, 2000

[4] Kwon, S., Gaj, K., Kim, C. H. and Hong, P.C.: Efficient

Linear Array for Multiplication in GF(2m) Using a Normal

Basis for Elliptic Curve Cryptography, In: CHES 2004,

Springer-Verlag, LNCS 3156, pp. 76-91, 2004

[5] Reyhani-Masoleh, A., Hasan, M.A.: Low Complexity

Sequential Normal Basis Multipliers over GF(2m), In: 16th

IEEE Symposium on Computer Arithmetic (ARITH-16 '03),

pp. 188-195, IEEE 2003

[6] Massey, J. and Omura, J.: Computational Method and

Apparatus for Finite Field Arithmetic. U.S. patent number

4,587,627, 1986

[7] Mullin, R., Onyszchuk, I., Vanstone, S., Wilson, R.:

Optimal Normal Bases in GF(pn). Discrete Applied

Mathematics, vol. 22, pp. 149-161, 1989

[8] NIST, “Digital Signature Standard,” FIPS Publication,

186-2, 2000

[9] Schmidt, J., Novotný, M., Jäger, M., Bečvář, M., Jáchim,

M.: Exploration of Design Space in ECDSA, In: Proceedings

of FPL 2002 (LNCS2438), pp. 1072-1075, Springer-Verlag,

2002

Acknowledgement

This work has been supported by the MSM6840770014

research program (Research in the Area of the

Prospective Information and Navigation Technologies)

m =180

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30
digit width D

m
u
lt
ip
lic
a
ti
o
n
 t
im
e
 [
u
s
]

standard

GCCONC

GCDO

m =173

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 5 10 15 20 25 30
digit width D

m
u
lt
ip
lic
a
ti
o
n
 t
im
e
 [
u
s
]

GCCONC

GCDO

Figure 4. Time spent for calculation of one product for variable digit widths

m =180

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 5 10 15 20 25 30

digit width D

q
u
a
lit
y
 f
a
c
to
r

standard

GCCONC

GCDO

m =173

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0 5 10 15 20 25 30

digit width D

q
u
a
lit
y
fa
c
to
r

GCCONC

GCDO

Figure 5. Quality factor as a function of digit width

