
General Digit-Serial Normal Basis Multiplier with Distributed Overlap 
 

 

Martin Novotný, Jan Schmidt 

Department of Computer Science and Engineering, CTU FEE in Prague 
Karlovo nám. 13, 121 35 Praha 2, Czech Republic 

{novotnym, schmidt}@fel.cvut.cz 

 

 

Abstract 

 

We present the architecture of digit-serial normal 

basis multiplier over GF(2m). The multiplier was 

derived from the multiplier of Agnew et al. Proposed 
multiplier is scalable by the digit width of general 

value in difference of the multiplier of Agnew et al. 

that may be scaled only by digit width that divides the 
degree m. This helps designers to trade area for speed 

e.g. in public-key cryptographic systems based on 

elliptic-curves, where m should be a prime number. 
Functionality of multiplier has been tested by 

simulation and implemented in Xilinx Virtex 4 FPGA. 

 

1. Introduction 

 

Arithmetic operations over finite fields find many 

application areas including cryptography and error-

correcting codes. The finite fields are of the 

characteristic p (p is prime) and degree m, marked 

GF(pm). We focus on the subset GF(2m), where all field 

elements are expressed as m-bit vectors. While addition 

of two elements in GF(2m) is performed as a bit-wise 

XOR operation, multiplication of two elements is more 

complicated. An algorithm for multiplication depends 

on representation of field elements, which is given by 

chosen basis. The most common kinds are polynomial 

basis and normal basis [3].  

Normal basis [7] offers some advantages and has 

some disadvantages in comparison with the polynomial 

basis. On the minus side, field degrees m usable for 

cryptography are rare as they must be prime [8] and 

should have a so called optimal normal basis. On the 

plus side, multiplication and squaring are simpler even 

for general field degree. Thereby arithmetic units 

implementing operations over finite field in normal 

basis are smaller and faster, that leads to better 

performance/area ratio in comparison with systems that 

operate on polynomial basis [9]. Therefore, they attract 

continuous attention [4]. 

One of indicators of quality of the system is the 

ability to trade the area for speed, that we call 

scalability in this paper. This ability is important e.g. 

in cryptographic systems, where the multiplier is one of 

units repeatedly used during execution of cryptographic 

algorithm. As the multiplication is time-consuming 

operation, it may represent a bottle-neck of the 

algorithm. The scalability of multiplier allows the 

designer to improve the performance of cryptographic 

system by acceleration of multiplication. This 

acceleration is realized at the cost of larger area of 

multiplier, but, as the multiplier is a part of larger 

system, even the quality factor (performance/area ratio) 

of the whole system may increase. 

Finite field multipliers may be scaled by digit 

width. While the polynomial basis multiplier can be 

scaled by any digit width D, the normal basis multiplier 

developed by Agnew et al. [1] can be scaled well only 

by digit width D that divides the degree m. [8]. As m 

must be prime for cryptographic purposes, the standard 

normal basis multiplier cannot be scaled at all. This 

disqualifies normal basis multiplier in comparison with 

polynomial basis multiplier. 

Our aim was to adapt the architecture of a normal 

basis multiplier to be scalable by any digit width D 

independently of degree m. In this paper we introduce 

and compare two different architectures of general 

digit-serial normal basis multipliers that we developed. 

The paper is structured as follows: In the second 

chapter, we bring information about normal basis 

multiplication and describe the standard digit-serial 

normal basis multiplier. In the third chapter, we 

introduce new architecture of general digit-serial 

multiplier, where the digit width does not divide the 

degree m. In the fourth chapter, we discuss the area and 

performance of multiplier in terms of gate count and 

critical path length. Finally, in the fifth chapter, we 

present results of experiments comparing the new 

multiplier with the standard solution.  

 



2. Preliminaries 

 

2.1. Mathematical background 
 

Let a and b be elements of GF(2m) with normal basis. 

Multiplication of two elements in GF(2m) can be 

defined by multiplication matrix λ with entries 

λij ∈ GF(2) [3]. The coefficients of the product 

c = a × b are 
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where additions and multiplications are performed in 

GF(2). The indices of a and b are added modulo m.  

The volume of hardware in the multiplier is given 

by the number CN of non-zero entries in λ. A normal 

basis multiplier can be scaled by digit-serialization, 

that is, D bits (called a digit) are evaluated in one clock 
cycle. Pipelined multipliers evaluate D terms in every 

stage of the multiplier in one clock cycle. An overview 

of normal basis multipliers can be found e. g. in [2]. 

Here we deal with the pipelined Massey-Omura 

multiplier on which the general digit-width multipliers 

are based.  

 

2.2. Pipelined digit-serial Massey-Omura 

multiplier  
 

Agnew, et al. [1] modified the Massey-Omura 

multiplier [6] by pipelining and parallelization. The 

digit-serial version of this multiplier for digit width D 

that divides the degree m can be simply derived. It 

contains 3 registers. Registers A and B hold arguments 

a and b. The product c = a × b is successively evaluated 

in register C. All registers are rotated one bit right 
between cycles. 

From (1) it follows that the equation for each bit of 

result can be divided into m terms Ti,j: 
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The logic in front of each C register bit 

implements D of the terms Ti,j.. We shall call this logic 

together with the register bit a stage. 

 

Rule 1 (digit-serial multiplier): Let q = m/D be the 

number of clock cycles of one multiplication. Then in 

the k-th clock cycle (∀k ∈ 〈0, q – 1〉), the stage sr 

(∀r ∈ 〈0, m – 1〉) evaluates the set of terms 
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where u = rD mod m,  v = u + D – 1 
(3)

(The values of subscript indices are reduced modulo 

m.)  
 

The set of terms Sr,k is added to the partial result of 

the bit cr–k, which is, due to the rotation of register C, 
present in the stage sr during the k-th clock cycle. The 

result c0c1c2…cm–1 is available in stages sq–1sqsq+1…sm–

1s0…sq–2 after q clock cycles.� 

 

Let the block of q consecutive stages be denoted as 

a pipeline block. From (3) it follows that any pipeline 

block implements exactly m terms Ti,j. The whole 

multiplier implements exactly D⋅m terms Ti,j, hence, 

we may split it into D pipeline blocks. From (3) also 

follows that terms Ti,j evaluated in stages si and si+q 

have the same second indices j. 
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Figure 1. Evaluation of terms in register C in standard digit-serial multiplier, a) full notation, 

b) abbreviated notation 



3. General digit-serial multiplier 
 

Construction of the standard digit-serial multiplier is 

possible only for digit widths D that divide degree m. 

On the other hand, as stated before, m should be prime 

number for cryptographic purposes. Therefore, the 

standard digit-serial multipliers cannot be used in 

cryptographic systems. Our aim was to adapt the digit-

serial multiplier for such cases. We developed two 

architectures for digit-serial multiplier that can be 

scaled by any digit width. These two architectures we 

call circular multiplier with concentrated overlap 
(GCCONC) and (optimized) circular multiplier with 

distributed overlap (GCDIST and GCDO). The letter G 

stands for general, as the multipliers can be 

constructed for general value of digit width, in contrast 

to standard multiplier that can be constructed only if 

the digit width D divides the total number of bits m. 
 

 

3.1. Circular multiplier with concentrated 

overlap (GCCONC) 
 

In Figure 2 we describe a structure of a circular 

multiplier, concretely how the terms are evaluated in 

stages of register C. To get the correct result, stages 
s0…sq–2 must be able to evaluate two different groups of 

terms. When holding partial results of any of bits 

c0…cq–2, they must evaluate the first group (symbolized 

as 
1S), but when holding partial results of any of bits 

cm–q+1…cm–1, they must evaluate the second group (2S). 

The stages are step-by-step switched from the group 
1S 

to the group 
2
S during the computation as partial 

results of bits cm–q+1…cm–1 successively move to stages  

s0…sq–2. In the k-th clock cycle, stages sk…sq–2 evaluate 

groups 
1S, while stages s0…sk–1 are switched to 

evaluate groups 2S. Stages sq–1…sm–1 do not switch and 

evaluate groups 
1S during the whole computation. 

A shift register can be used to control successive 

switching of groups. The shift register is initially 

cleared; during computation series of ‘1’s is step-by-

step shifted in it. Evaluation of the result takes 

q = m/D clock cycles. 
 

Rule 2 (circular digit-serial multiplier with 

concentrated overlap GCCONC): 

Let q = m/D be the number of clock cycles of one 

multiplication. Then in the k-th clock cycle  

(∀k ∈ 〈0, q – 1〉) the stage sr (∀r ∈ 〈0, m – 1〉) 
evaluates the set of terms Sr,k: 

a)  if r ≥ k: 
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 where  

u = rD mod qD, 
v = min{u + D – 1; m–1} 

(4)
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Figure 2a. Evaluation of terms in stages of register C in circular digit-serial multiplier GCCONC 
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Figure 2b. Evaluation of terms in stages of circular digit-serial multiplier GCCONC for m = 11 and D = 2. 

Values of second indices j of terms Ti,j are introduced. Multiplication takes q = 6 clock cycles. 
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Figure 2c. Evaluation of terms in stages of circular digit-serial multiplier GCCONC for m = 11 and D = 3. 

Values of second indices j of terms Ti,j are introduced. Multiplication takes q = 4 clock cycles. 



 

b)  if r < k: 
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 where 

u = (r+m)D mod qD, 
v = min{u + D – 1; m–1} 

(The values of subscript indices are reduced mod m) 

 

The set of terms Sr,k is added to the partial result of 

the bit cr-k, which is, due to the rotation of register C, 

present in the stage sr during the k-th clock cycle. The 
result c0c1c2…cm–1 is available in stages  

sq–1sqsq+1…sm-1s0…sq–2 after q clock cycles. � 

 

Example 1: 

Let m = 11. It is shown in Figures 2b and 2c how the 

terms are evaluated in stages of register C in circular 
digit-serial multiplier. Indices in parentheses belong to 

sets of terms 
2S. 

The circular multiplier drawback lies in fact that  

q–1 pipeline stages must evaluate two different sets of 

logic. In other words, the circular multiplier contains 

almost D+1 pipeline blocks (instead of D pipeline 
blocks in case of standard multiplier) that overlap in  

q–1 stages (hence we call it the multiplier with 

concentrated overlap). The multiplier must implement 

almost (D+1)⋅m terms Ti,j. Moreover, we need q–1 

multiplexers that also consume relatively large amount 

of area and may lie on critical path. Also, the necessity 

of successive switching of groups may slightly 

complicate the control.  

 

3.2. Circular multiplier with distributed overlap 

(GCDIST and GCDO) 
 

The main idea of this multiplier is to distribute the 

overlap, make it smaller and simplify the control. The 

number of terms evaluated in this multiplier is the 

same like in the standard one, i.e. D⋅m terms Ti,j. The 

area overhead insists in less than m/2 AND gates in 

comparison with the standard multiplier.  

As stated before, in case of standard multiplier we 

may split the multiplier into D pipeline blocks, each 

containing q consecutive stages. All D pipeline blocks 

together create the whole multiplier, as D × q = m. This 
rule can be satisfied only if D divides m. For such D 

that do not divide m the value q = m/D  and for these 
cases D × q > m.  

To divide the multiplier into D pipeline blocks as 
equally as possible, some of pipeline blocks must 

contain q pipeline stages, while some other must 

contain q–1 stages only. Exactly, (m mod D) pipeline 

blocks will contain q stages (mentioned later as long 

pipeline blocks), while the remaining (D – (m mod D)) 
pipeline blocks will contain q–1 stages (mentioned 

later as short pipeline blocks). 

The idea of this multiplier is to compute all m 
terms Ti,j not in q stages, but only in q–1 stages of each 

pipeline block. If the pipeline block is q stages long, 

then one of the stages will be empty (nothing will be 

computed in this stage). If the block is only q–1 stages 

long (short pipeline block), then first q–1 stages of the 

following block will be switched-off in the last clock 

cycle (or, equivalently, the last q–1 stages of previous 

pipeline block will be switched-off in the first clock 

cycle) to compute the empty stage. Switching-off some 

stages is less hardware complex than multiplexing 

between two different sets of logic. While the 

multiplexer is relatively complex, the AND gate used 

for switching-off is relatively simple. Evaluation of the 

result takes again q = m/D clock cycles and cannot be 
shortened – the empty stage appears at different clock 

cycles for different partial results ci.  

There are plenty of possible definitions of this 

multiplier. One of them may assume that the first 

(m mod D) pipeline blocks are q stages long (long 

blocks), succeeded by (D – (m mod D)) pipeline blocks 

being q–1 stages long (short blocks). For such 

assumption we bring the following description. 

 

Rule 3 (circular digit-serial multiplier with 

distributed overlap (GCDIST)): 

Let q = m/D be the number of clock cycles of one 

multiplication. Let Dx = m/(q–1) be the maximum 

number of terms being evaluated in one stage. Let 

F = ((m mod D) × q) be the number of stages of all 

long pipeline blocks. Then in the k-th clock cycle  

(∀k ∈ 〈0, q – 1〉) the stage sr (∀r ∈ 〈0, m – 1〉) 
evaluates the set of terms Sr,k: 
 

(long pipeline blocks): 

a) if  ( ) ( )( )0mod =∧< qrFr : 

Sr,k = ∅ 

 

b) if  ( ) ( )( )0mod ≠∧< qrFr : 

∑
=

−
=

v

uj

jkrkr TS
,,

, 

 where  

u = (r–1 mod q) × Dx, 

v = min{u + Dx – 1; m–1} 

(5)



(short pipeline blocks): 

c) if  ( ) ( )( )1−=∧≥ qkFr : 

Sr,k = ∅ 

 

d) if  ( ) ( )( )1−≠∧≥ qkFr : 
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u = ( ) ( )( )
x

DqFr ×−− 1mod , 

v = min{u + Dx – 1; m–1} 

� 
 

This multiplier evaluates the same amount of terms 

like the standard multiplier. The area overhead lies in 

the number of AND gates that are necessary to switch-

off some stages in the last clock cycle. In the worst 

case, the number of the necessary AND gates could be 

almost m. 

But, yet another area improvement is possible. As 

mentioned above, to implement the “empty stage” in 

short pipeline blocks, we can either switch-off the first  

q–1 stages of the following block in the last clock cycle 
or switch-off the last q–1 stages of the previous block 

in the first clock cycle. Fortunately, we can join these 

two approaches together. We do not need to switch-off 

all short blocks in the last (or first) clock cycle. Instead 

of that we can switch-off only all odd short blocks in 

the first and the last clock cycle, while even blocks will 
not be switched at all. This approach minimizes 

hardware resources even more. The number of 

additional AND gates is consequently less than m/2. 
 

Rule 4 (optimized circular digit-serial multiplier 

with distributed overlap (GCDO)): 

Let q = m/D be the number of clock cycles of one 

multiplication. Let Dx = m/(q–1) be the maximum 

number of terms being evaluated in one stage. Let 

F = ((m mod D) × q) be the number of stages of all 
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Figure 3a. Evaluation of terms in stages of circular digit-serial multiplier with distributed overlap 

(GCDIST as well as GCDO) for m = 11 and D = 3. Values of second indices j of terms Ti,j are introduced. 

Multiplication logic is switched-off in stages s8 through s10 in the last clock cycle (denoted by ∅). 

Multiplication takes q = 4 clock cycles. 
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Figure 3b. Evaluation of terms in stages of circular digit-serial multiplier with distributed overlap 

(GCDIST) for m = 13 and D = 3. Values of second indices j of terms Ti,j are introduced. Multiplication logic 

is switched-off in stages s5 through s12 in the last clock cycle (denoted by ∅). Multiplication takes q = 5 

clock cycles. 
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Figure 3c. Evaluation of terms in stages of optimized circular digit-serial multiplier with distributed 

overlap (GCDO) for m = 13 and D = 3. Values of second indices j of terms Ti,j are introduced. 

Multiplication logic is switched-off in stages s5 through s8 in the first and last clock cycle (denoted by ∅). 

Multiplication takes q = 5 clock cycles. 



long pipeline blocks. Then in the k-th clock cycle 

(∀k ∈ 〈0, q – 1〉) the stage sr (∀r ∈ 〈0, m – 1〉) 
evaluates the set of terms Sr,k: 

(long pipeline blocks): 

a) if ( ) ( )0mod =∧< qrFr : 

Sr,k = ∅ 

 

b) if ( ) ( )0mod ≠∧< qrFr : 
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 where 

u = (r–1 mod q) × Dx, 

v = min{u + Dx – 1; m–1} 

 

(short pipeline blocks): 
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 where  

u = (r–F mod (q–1)) × Dx, 

v = min{u + Dx – 1; m–1} 

(6)

� 
 

Example 2: 

Let m = 11 and D = 3. It is shown in Figure 3a how the 
terms are evaluated in stages of register C in GCDIST 

and GCDO multipliers. Coincidently, in this case, the 

multipliers contain only one short pipeline block and 

hence the structure of both multipliers is the same. 

 

Table 1. Hardware resources 
 AND gates XOR gates MUX 

standard mD ≤ CND 0 

GCCONC < mD + m < CND+CN q–2 

GCDO < mD+m/2 ≤ CND 0 

 

Table 2. Critical path length 
 AND XOR MUX

standard 1 ≤ log2CN/m+log2D 0 

GCCONC 1 ≤ log2CN/m+log2D ≤ 1 

GCDO 1-2 ≤ log2CN/m+log2D + 1 0 

The difference between GCDIST and GCDO 

multipliers is illustrated in Figures 3b and 3c. The 

multipliers are constructed for m = 13 and D = 3. The 

multipliers contain two short pipeline blocks. While 

both short pipeline blocks are equipped with switching-

off AND gates in the GCDIST multiplier, only one 

short pipeline block is equipped with AND gates in 

GCDO multiplier. 

 

4. Area and critical path length 
 

In the standard digit-serial multiplier (D divides m), 

every stage evaluates exactly D terms; consequently, 

the entire logic of the multiplier evaluates mD terms. 

Every term is implemented by one AND gate and at 

most CN/m XOR gates, which form a tree with depth 

≤ log2CN/m. Terms evaluated in one stage are 

summed up by another tree of XOR gates with depth 

log2D.  
The circular multiplier with concentrated overlap 

(GCCONC) contains additional logic that in the first  

q–1 stages evaluates alternative set of terms. Each set 

contains at most D terms. First q–1 stages contain 

multiplexers that may lie on critical path. Moreover, 

we need also additional control logic for successive 

switching the first q–1 stages. This control logic may 

be implemented either by shift register or by the 

counter with decoder.  

In circular multiplier with distributed overlap 

(GCDIST and GCDO) each stage may evaluate up to 

2D terms. But, we must note that this is a marginal 

case. Some stages contain one AND gate to switch-off 

all logic in a stage. This AND gate may lie on the 

critical path. The total number of additional AND gates 

is less than m in case of GCDIST or less than m/2 in 

case of GCDO. 

In Table 1 we compare hardware resources 

necessary for the standard digit-serial multiplier, the 

circular multiplier with concentrated overlap 

GCCONC and optimized circular multiplier with 

distributed overlap GCDO. The comparison of critical 

path lengths is in Table 2. 

 

5. Implementation results 
 

We implemented the above multipliers in Xilinx 

Virtex 4 VLX25 FPGA with Leonardo Spectrum 2005 

and ISE 7.1i. We measured the area of the design as 

the number of slices used and observed the minimum 

clock period. The time of multiplication is a product of 

the minimum clock period and the number of clock 

cycles. The quality factor is a reciprocal of the 

time-area product.  



To retrieve the knowledge of the overhead of the 

GCCONC and GCDO multipliers against the standard 

multiplier we performed one set of experiments with 

composite degree m. For these experiments we have 

chosen m = 180, that has rich set of divisors. Hence we 

can construct the standard multiplier for relatively 

large amount of digit widths D. For such Ds that do not 
divide m the theoretical (but unreachable) results of the 

standard multiplier can be interpolated. Since the 

structure of the GCCONC multiplier is the same as the 

structure of the standard multiplier when the digit 

widths D divides the degree m (no switching between 

two sets of logic is necessary in this case), we executed 

another set of experiments for a prime number 

m = 173. In this set, we compared the architectures of 

GCCONC and GCDO multipliers only. 

Implementation results for the first twenty values 

of D are summarized in Tables 3 and 4. The 

dependencies of multiplication time on digit width D 
for composite degree m = 180 and for prime degree 

m = 173 are available in Figure 4. Recall that results 

for the standard multiplier and Ds not dividing the 
degree m are not available since standard multiplier 

cannot be constructed for such cases. 

The dependencies of quality factor on digit width 

D are available in Figure 5. The quality factor here is 

evaluated as performance/area ratio of multiplier alone. 

It decreases with growing D as the achievable clock 
frequency decreases for larger Ds. But, when using 

multiplier e.g. in cryptographic system, the critical 

path may lay in other units outside the multiplier. For 

such cases, the quality factor of the whole system may 

increase with growing D unless the critical path 

transfers to the multiplier. 

The implementation results correspond to 

theoretical values introduced in Tables 1 and 2. They 

confirm that the general digit-serial multipliers are of 

the same quality as the standard one. In other words, 

we do not pay much for the added flexibility. 

The standard multiplier still remains the best 

solution whenever D divides m. If the digit width D 

does not divide degree m, e.g. when m is prime 

number, the GCCONC or GCDO multiplier may be 

chosen. As we expected, GCDO provides better results 

in both multiplication time and area, hence leading to 

better quality factor. 

 

6. Conclusions 
 

We have presented two architectures of general digit-

serial normal basis multipliers. The multipliers are 

useful in applications where the acceleration of normal 

basis multiplication is required and the digit-width D 
generally does not divide the field degree m. Such 

applications primarily include cryptographic 

algorithms where m should be a prime number. 

Our implementation shows that, in practical 

circumstances, the overhead of the proposed multipliers 

over standard multiplier of Agnew et. al. is small and 

the units are suitable for general use. The strategy 

presented here is applicable also to other types of 

pipelined normal basis multipliers, e.g. [4] and [5]. 

 

Table 3. Implementation results for m = 180 

 

Mult. Time 

[µs] 

Area 

[slices] 

Quality 

factor 

D std CONC GCDO std CONC GCDO stdCONC GCDO

1 0.80 0.82 0.90 365 365 455 3.44 3.35 2.43

2 0.49 0.49 0.57 455 455 508 4.45 4.48 3.46

3 0.45 0.44 0.44 640 643 643 3.44 3.53 3.51

4 0.34 0.38 0.40 736 735 757 3.95 3.57 3.29

5 0.34 0.32 0.36 912 910 912 3.19 3.44 3.05

6 0.31 0.29 0.33 997 1013 1045 3.24 3.37 2.86

7  0.30 0.30   1223 1113   2.77 3.03

8  0.27 0.27   1370 1272   2.71 2.89

9 0.25 0.23 0.25 1361 1368 1411 2.98 3.17 2.82

10 0.22 0.21 0.23 1451 1458 1494 3.10 3.32 2.89

11   0.22 0.21   1699 1634   2.62 2.91

12 0.18 0.19 0.21 1725 1731 1768 3.14 3.10 2.68

13   0.18 0.18   1921 1863   2.84 3.02

14   0.17 0.17   2088 1967   2.75 2.94

15 0.16 0.16 0.16 2079 2081 2128 3.02 3.02 2.97

16   0.16 0.16   2054 2216   3.07 2.80

17   0.16 0.16   2379 2343   2.69 2.71

18 0.13 0.14 0.15 2442 2442 2485 3.06 3.01 2.70

19   0.15 0.17   2419 2589   2.75 2.33

20 0.13 0.15 0.13 2713 2712 2712 2.85 2.54 2.74

 

Table 4. Implementation results for m = 173 

 

Period 

[ns] 
Mul. time [µs] 

Area 

[slices] 

Quality 

factor 

D CONC GCDO CONC GCDO CONC GCDO CONC GCDO

1 4.86 4.93 0.84 0.85 352 438 3.38 2.67

2 7.41 6.13 0.64 0.53 619 487 2.51 3.85

3 10.86 8.23 0.63 0.48 725 615 2.19 3.41

4 13.15 8.23 0.58 0.36 815 724 2.12 3.81

5 9.83 8.98 0.34 0.31 989 872 2.94 3.65

6 12.19 11.07 0.35 0.32 1100 969 2.57 3.21

7 12.05 11.03 0.30 0.28 1173 1068 2.83 3.40

8 12.61 11.61 0.28 0.26 1319 1215 2.73 3.22

9 14.02 12.23 0.28 0.24 1396 1340 2.56 3.05

10 14.15 12.53 0.25 0.23 1475 1432 2.66 3.10

11 14.24 12.73 0.23 0.20 1661 1557 2.64 3.15

12 14.41 13.02 0.22 0.20 1729 1669 2.68 3.07

13 14.02 13.56 0.20 0.19 1781 1778 2.86 2.96

14 13.16 14.39 0.17 0.19 1946 1914 3.00 2.79

15 13.36 15.09 0.16 0.18 2058 2003 3.03 2.76

16 14.86 13.99 0.16 0.15 2176 2135 2.81 3.04

17 16.71 15.19 0.18 0.17 2219 2260 2.45 2.65

18 14.42 14.61 0.14 0.15 2382 2342 2.91 2.92

19 14.99 14.05 0.15 0.14 2345 2474 2.84 2.88

20 17.51 16.15 0.16 0.15 2614 2576 2.43 2.67
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Figure 4. Time spent for calculation of one product for variable digit widths 
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Figure 5. Quality factor as a function of digit width 


