

Multiple-Vector Column-Matching BIST Design Method

Petr Fišer, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nám. 13, 121 35, Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract - Extension of a BIST design algorithm is proposed
in this paper. The method is based on a synthesis of a
combinational block - the decoder, transforming pseudo-random
code words into deterministic test patterns pre-computed by an
ATPG tool. The column-matching algorithm is used to design the
decoder. Using this algorithm, maximum of decoder outputs is
tried to be matched with the decoder inputs, yielding the outputs
be implemented as wires, thus without any logic.

The newly proposed enhancement consists in a major
generalization of the method. The ATPG possibility of generating
more than one test vectors for one fault is exploited, yielding
smaller area overhead. The complexity of the resulting BIST logic
reduction is evaluated for some of the ISCAS benchmarks.

I. INTRODUCTION
The complexity of present VLSI circuits rapidly grows.

Their testing is becoming more and more important, together
with the tests complexity and total costs. Using only external
test equipment (ATE) is becoming impossible, mainly due to a
huge amount of test vectors to be applied, long testing time
and very expensive test equipment. Incorporating Built-in
Self-Test (BIST) methods becomes inevitable. By now, many
BIST methods were developed [1 - 5], all of them trying to
find some trade-off between these four mutually antipodal
aspects: the fault coverage, test time, the area overhead and
the BIST design time. A high fault coverage means either
a long test time (exhaustive test), or a high area overhead
(deterministic ROM-based BIST). The pseudo-random testing
established the simplest trade-off between all these three
criteria. With an extremely low area overhead, the circuit can
be tested usually up to more than 90% in a relatively small
number of clock cycles (thousands).

A combination of a pseudo-random and deterministic BIST
is being referred to as a mixed-mode BIST. The easy-to-detect
faults are tested by pseudo-random test patterns, and the
deterministic patterns are generated to test the remaining,
undetected faults. The popular bit-fixing [4] and
bit-flipping [2] techniques belong to this category.

Our column-matching method is based on a transformation
of pseudo-random patterns into deterministic patterns
pre-computed by an ATPG (Automatic Test Pattern
Generator) tool. This transformation is being done
by a combinational block called “Output decoder”. To reduce
the decoder logic, we try to implement as many outputs
as possible by wires, without any logic.

To support the mixed-mode testing, the test is divided into
two disjoint phases: the pseudo-random one and the

deterministic one. This enables us to significantly reduce the
decoder logic, together with the control logic as well.

The BIST area overhead becomes an essential issue now.
For ASIC designers the area becomes more important than the
design time, since the overall chip design time significantly
surpasses the BIST design time. Thus, any improvement of the
BIST design methods, in terms of the area overhead,
is beneficial. An enhancement of our BIST design method is
proposed in this paper. A significant area overhead reduction
is involved, for a cost of a longer design time. The
improvement consists in a generalization of the basic method,
to fully exploit capabilities of ATPGs. The ATPG generates
more than one test vectors for each tested fault in our
algorithm, thus the algorithm has more freedom in generating
the test sequence.

The paper is structured as follows: basic principles of the
column-matching method are described in Section II,
an overview of the test generation modes is presented
in Section III and the newly proposed enhancement principles
are described in Section IV. Experimental results are shown
in Section V, Section VI concludes the paper.

II. BASIC PRINCIPLES OF OUR METHOD
The method is primarily intended for a test-per-clock BIST,

thus the test patterns are applied to the primary inputs of the
circuit-under-test (CUT) in parallel. However, the method can
be modified for a test-per-scan as well [5].

The column-matching method is based on a transformation
of pseudo-random patterns by a combinational block (Output
Decoder), so that deterministic patterns are generated. Any set
of deterministic patterns can be used, thus the fault coverage
reached depends on these patterns only. 100% fault coverage
is considered in the following text. However, the method can
be modified so that smaller fault coverage is reached, with a
benefit of smaller area overhead.

The PRPG is mostly constructed as a linear feedback shift
register (LFSR) with an appropriate generating polynomial, or
as a cellular automaton. The basic structure of such
a test-per-clock BIST is shown Fig. 1.

Figure 1: Test-per-clock BIST structure

A. Output Decoder Design

Let us have an n-bit PRPG running for p clock cycles. The
code words generated by this PRPG can be described by a
C matrix (code matrix) of dimensions (p, n). These code words
are to be transformed into test patterns pre-computed by an
ATPG tool. The patterns are defined by a T matrix (test
matrix). For an r-input CUT and the test consisting of s vectors
the T matrix has dimensions (s, r). The rows of the matrices
will be denoted as vectors. There is no relationship between n
and r, since the number of PRPG outputs can be even less than
the number of CUT inputs. However, we will consider n = r in
this paper, for simplicity.

The output decoder logic modifies the C matrix vectors
to obtain all the T matrix vectors. As the proposed method
is restricted to combinational circuits, the order of the test
patterns is insignificant. Finding a transformation from the
C matrix to the T matrix means finding a pairing of each
of the s rows of the T matrix with distinct rows of the C matrix
–finding a row assignment (Fig. 2).

The Output decoder is a combinational block converting
s n-dimensional vectors of the C matrix into s r-dimensional
vectors of the T matrix. The decoder is represented
by a Boolean function having n inputs and r outputs, where
only values of s terms are defined; the rest are don’t cares
implicitly. This Boolean function can be easily described by a
truth table, where the output part corresponds to the T matrix,
while the input part consists of s C matrix vectors assigned to
the T matrix rows. The set of such vectors will be denoted
as a pruned C matrix.

10001
00110
10111
00101
11111
10000
10011
11011
11001
10010

01001
10010
01111
11100
11001

10001
00110
00101
10000
11001

01001
10010
01111
11100
11001

⇒

C-Matrix

T-Matrix Pruned C-Matrix

PRPG Patterns

Test Patterns Output Decoder PLA

s

n

r

p

↓

Figure 2: Assignment of the rows

B. The Column-Matching Method

The task is now, how to assign the rows to each other
to reach maximum area overhead reduction. The aim of the
column-matching method is to assign all the T matrix rows
to some of the C matrix rows so that some columns of the
T matrix will be equal to some of the pruned C matrix
columns in the result. This involves no logic needed
to implement these T matrix columns (output variables of the
decoder); they are implemented as simple wired connections.
This idea can be extended to a negative matching. Since most
of the LFSR flip-flops are provided with the negated outputs
as well, columns with opposite values can be matched too.

An illustrative example is shown in Fig. 3. The matched
columns of the pruned C matrix and T matrix from Fig. 2 are
shown here. The T matrix column y1 is matched with the C

matrix column x3 (negatively), then y3 with x1 (negatively) and
y4 with x4 (positively).

Thus, the outputs y1, y3 and y4 are implemented without any
combinational logic, while the remaining outputs have to be
synthesized using some standard two-level Boolean
minimization tools, like ESPRESSO [9] or BOOM [10, 11].

1 0 0 0 1
0 0 1 1 0
0 0 1 0 1
1 0 0 0 0
1 1 0 0 1

0 1 0 0 1
1 0 0 1 0
0 1 1 1 1
1 1 1 0 0
1 1 0 0 1

Output Decoder PLA

x - x y - y40 0 4

y0 = x4’ + x1
y1 = x3’
y2 = x2 x3’ + x2’ x4’
y3 = x0’
y4 = x4

Figure 3: Column matching example

C. Finding the Columns to Be Matched

It is impossible to look for an optimum matching
of columns (so that maximum of columns is matched)
in practical examples, since the number of possible
combinations grows exponentially with the number
of columns. Hence, some kind of a heuristic has to be used.
In practice, the number of PRPG patterns to be transformed
is usually much higher than the number of test vectors
(p >> s). Then, almost any two columns can be matched
together at the beginning. Thus, we select the columns to be
matched purely at random, one by one, until there is no
possibility for any more matches.

Another difficult task is the very finding out if the column
match to be performed is valid, i.e., if it leads to any solution.
The only way how to solve this problem is to perform the row
assignment. An efficient heuristic based on a blocking
matrix B has been proposed in [6]. The blocking matrix is a
binary matrix (it contains only ‘0’ and ‘1’ values)
of dimensions (p, s). Thus, it has as many columns as there are
T matrix rows and as many rows as there are C matrix rows.
The value ‘1’ in the cell B[k, l] indicates that the k-th C matrix
row may be assigned to the l-th T matrix row, ‘0’ value
indicates the contrary. At the beginning of the algorithm all the
B matrix cells are filled with a ‘1’ value, since there are no
restrictions for row assignments. After the i-th C matrix
column is matched with the j-th T matrix column, the B matrix
cells [k, l] are set to ‘0’ when the k-th input row contains in an
i-th column an opposite value to the l-th output row in a j-th
column. Thus, rows containing opposite values in the matched
columns cannot be assigned to each other.

B[k, l] := ‘0’ when (C[k, i] ≠ T[l, j] ∧ T[l, j] ≠ don’t care)

If the negative column match is to be performed, the
B matrix cells are set to ‘0’ when equal values are present
in the respective positions.

The final row assignment involves only a selection of one
row from the possible ones for each of the columns.

D. Mixed-Mode Column-Matching BIST

The basic column-matching algorithm was later extended to
a mixed-mode BIST [7]. A general structure of our
mixed-mode BIST design is shown in Fig. 4. The test
is divided into two disjoint phases. In the first, pseudo-random
phase the pseudo-random code words are produced by a LFSR
and fed to the CUT unmodified. The subsequent patterns are
transformed into deterministic vectors by the Output Decoder
in the deterministic phase. The switching logic selects the
patterns that are to be applied to the CUT. The switching logic
then consists of multiplexers, in general. The area overhead
caused by the switching logic needs not be too big, since the
structure of the BIST controller can be very efficiently
exploited here. The circuit’s response is evaluated, usually in
the multi-input shift register (MISR).

LFSR

Output Decoder

Switch

CUT

MISR

TPG

mode

Figure 4: Mixed-mode BIST structure

E. The BIST Design Process

The whole BIST design process is divided into four
consecutive phases:

1. Simulation of several (PR) pseudo-random
patterns for the CUT and determination
of undetected faults (by a fault simulation).

2. Computation of deterministic test patterns
for these faults by an ATPG tool.

3. Performing the column-matching for the following
Det pseudo-random PRPG patterns and the
deterministic tests.

4. Synthesis of the decoder for the unmatched
outputs.

The lengths of the two phases essentially influence the
design time and area overhead. For more details see [15].

An artificial illustrative example is shown in Fig. 5.
The BIST logic for a 5-input circuit is to be synthesized here.
A 5-bit LFSR is run for 5 cycles first where the easily testable
faults are detected. Then we run the fault simulation to find the
undetected faults, for which the test vectors are generated by
an ATPG. At the end the decoder logic is synthesized for these
tests and the subsequent LFSR patterns. The resulting circuitry
is shown in Fig. 6.

10100
01010
00101
10110
01011
10001
11100
01110
00111
10111

Pseudo-random
sequence } Simulate Non-covered

faul ts
ATPG Test

Vectors

1X000
1010X
11011
0001X

10100
11011
01011
00001
10000

(non-det)
Deterministic
sequence

} }

x -x0 4 y -y0 4

LFSR

10100
01010
00101
10110
01011
10100
11011
01011
00001
10000

Final test sequence

Figure 5: Test sequence generation

LFSR

CUT

1

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

Deterministic
mode

y = x0 0

y = x
y = x
y = x
y = x +x

1 1

2 2

3 1

4 0 1

’

’+

Figure 6: Resulting BIST circuitry

III. TEST PATTERN GENERATION
A. Influence of an ATPG

As it was said before, the column-matching method is so
universal, that any test vectors set can be used. This implies
that the method can be adjusted to any fault model, as long as
basic requirements for the test vectors are held. For example,
delay faults cannot be tested using simple column-matching,
since the test vector pairs have to stay together here. However,
after a slight algorithm modification even this could be
possible. On the other hand, IDDQ testing is supported
without any modification. We will use the stuck-at fault model
in this paper, since the ATPG tool used [8] supports this
model.

Most of available non-commercial ATPGs can
be influenced, so that they produce various sets of test vectors.
Our only and necessary requirement for the ATPG tool used
is the capability to produce test vectors for a specified set
of faults.

In the most general case, possible obtained test sets can
be divided as follows:

1. Non-compacted test without don’t cares. Such a test
set is usually obtained by a random-pattern simulation
and a subsequent deterministic test generation. The
test is usually long and far from optimum.

2. Compacted test set without don’t care values. Here
the test comprises of minimum of test vectors (in the
optimum case), obtained after deterministic test set
generation and compaction, followed by the don’t
care substitution.

3. Compacted test set with don’t cares. The test
comprises of minimum of test vectors (in the
optimum case), obtained after deterministic test set
generation followed by a compaction. The don’t care
values are retained. However, their number is usually
negligible.

4. Non-compacted test with don’t cares. The test set is
produced by a deterministic test set generator. No test
compaction is executed.

5. One test vector for each fault. The test pattern
generation is usually accompanied by a fault
simulation. Thus, after one test vector is produced
during the test generation process, fault simulation is
executed for this vector and faults detected by it are
removed from the processed fault list. This was the
case assumed in the preceding cases. The ATPG may
proceed in the simplest way, by generating one
deterministic vector for each fault. No fault
simulation or test compaction is involved. Test

vectors with many don’t care values are usually
obtained. The test set is often large, comparing
to previous cases, however many don’t care values
are present in the test, which is usually beneficial.

6. More than one test vector for each fault. As a
generalization of the previous item, more test vectors
for each fault can be produced, if possible. The test is
then even longer, but offers much greater flexibility.

7. All the possible test vectors for each fault. This is the
most general case. Some ATPGs are able to produce
all the possible test vectors for each fault. However,
the test set size is then prohibitively large, thus such a
case usually cannot be used in practice.

We use the Atalanta ATPG tool [8] to generate test vectors.

All the above mentioned test sets can be obtained by it.
According the paper proposed in [6], don’t cares present

in the test set (T matrix) are beneficial, since they bring more
freedom to the column matches choosing, and consequently
reduce the BIST area overhead. Thus, is more advantageous to
choose the test generation alternatives 3-7. We have found that
the test set compaction method, which is used in the Atalanta
tool, does not perform well for our purposes, thus we have
introduced our static compaction method based on joining test
vectors. Then, we have enhanced the column-matching
algorithm to be able to handle test sets having more than one
test vectors for each fault, to improve the results.

B. Simple Test Set Compaction

Due to the fact that the test set compaction performed by an
ATPG is often lacking in quality and is insufficient for our
method, we had to introduce a static compaction method to our
algorithm. Maximum of the don’t care values in the test set
should be retained after the compaction. An exact test
compaction algorithm is usually not applicable, since its time
complexity is prohibitively large (it is an NP-hard problem).
Thus, a heuristic method has to be used.

The algorithm we use is simple but effective. It is based
on joining pairs of test vectors. Two test vectors can be joined,
when they have a non-empty intersection. The result of their
joining will be that intersection. Considering that a test vector
t1 detects a fault set F1

 and a test vector t2 detects a fault set F2,
their intersection t1 ∩ t2 detects faults F1 ∪ F2.

Let us have a test set comprising of v vectors. Each vector
is compared with each other and the size (dimensionality)
of their intersection is computed. Two vectors having the
“biggest” intersection will be joined. In other words, two
vectors differing in at least one bit cannot be joined (since they
have an empty intersection); two vectors having minimum
collisions with a don’t care on one side and a ‘0’ or ‘1’ value
on the other side are joined. Test vectors loosing a minimum
number of don’t cares by their joining are joined. This is being
repetitively performed until there is no chance to join any
more vectors. The complexity of such an algorithm is O(v3),
which sometimes means a significant computational time
increase. The number of test vectors can be significantly
reduced by this method, see Table 1.

IV. MULTIPLE-VECTOR COLUMN-MATCHING

A. Basic Principles

The more “freedom” has the column-matching algorithm
in selection of the matches, the better it performs. Particularly,
more don’t care values in the test set induce more column
matches and thus less area overhead [6]. Let us consider an
example where two test vector sets are to be mapped onto
PRPG patterns, one set generated by the 3-rd APTG mode
(compacted test set with don’t cares), the second one as the
5-th one (one test vector for each fault, with don’t cares). The
second test set will be much larger than the first one. On the
other hand, more don’t care values will be present in the
second one (in general). Practical examples have shown that
even when there are more test vectors to be generated by the
Output decoder, the BIST area overhead is less if the test
vectors have many don’t care values. Thus, the second case
will perform better, in terms of the area overhead.

The above-mentioned notion can be extended, so that there
will be many test vectors available to choose from. The aim
of the column-matching algorithm wouldn’t be to synthesize
all the test vectors then; the aim would be to synthesize vectors
that cover all faults (from the given fault set), regardless by
what vectors. Thus, even more freedom will be given to the
matching algorithm, which yields better results. This is the
main idea of the multiple-vector column-matching.

In order to adapt basic column-matching principles to be
able to exploit more test vectors for each fault, several
modifications had to be done. First of all, each test vector has
to be accompanied by a fault mask. The fault mask is a binary
vector identifying faults that are detected by the test vector.
First, the fault list for the tested circuit is determined. The size
of the fault mask is then equal to the number of faults, each
position in the fault list corresponding to one fault. A ‘1’ value
indicates that the respective fault is detected by the test vector,
‘0’ the contrary. The fault mask is obtained by a fault
simulation of the respective test vector. After the fault masks
are generated, all the test vectors are put together; there is no
need to distinguish between them. Information on what vector
was generated for what fault may be lost.

B. Multiple-Vector Test Set Compaction

Since the number of test vectors generated by an ATPG is
often large, static test compaction should be performed. The
algorithm described in Subsection 3.2 is used. The only
modification is that after joining the test vectors their fault
masks have to be joined too. The resulting fault mask is
obtained by OR-ing the two fault masks, since faults detected
by both joined vectors are detected by the resulting vector.

Even when the test set compaction reduces the freedom
given to the column-matching, we have found experimentally
that it is advantageous to perform it. When the test set
compaction is not performed, the column-matching runtime is
prohibitively long and usually there is no improvement in the
quality of the result.

Example
Let us consider a 5-input CUT having 10 faults. The two

example test vectors together with their fault masks will be
joined as follows:

10-0- 1100101001
1-10- 0100100100
1010- 1100101101

C. Modified Row Assignment

The basic column-matching algorithm remains unchanged
but the row assignment. Since there are many test vectors for
each fault, the test set is redundant. Thus, not all test vectors
have to be synthesized by the Output decoder; the aim is to
detect all faults now, regardless by what vectors. Not all the
B matrix columns have to be assigned then.

Making a row assignment is an NP-hard problem, similar to
a binate covering problem. Thus, solving it exactly becomes
impossible. We use a heuristic, where the heuristic function
for a selection of a B matrix column (test vector) is the number
of yet undetected faults it detects. At the beginning of the
algorithm, the B matrix column detecting most of faults (i.e.,
test vector having most ‘1’s in the fault mask) is selected. For
this column a row having a ‘1’ value in the respective position
in the B matrix is found, so that this row has a minimum
number of ‘1’s in other positions. It is the row (C matrix
vector), that may be transformed into the required test vector
and simultaneously may be transformed into a minimum of
others. The selected column and row are assigned to each
other, removed from the B matrix and the detected faults are
removed from the fault list. The column selection is repeated,
until the fault list is empty or an undetectable fault is
encountered (which means an invalid assignment). When an
invalid assignment is returned, the last column match is taken
back and another column matches are tried.

Basic principles of the row assignment are outlined by the
following pseudo-code:

Assign {
set(fl); // create a complete fault list
do {

c = FindBestColumn(B, faultmasks, fl);
 // find column detecting most faults from fl

r = FindBestRow(B, c);
// find a row, so that B[r, c] = 1 and has a

minimum of 1’s
if (r != NULL) { // a row B[r, c]=1 was found

MakeMatch(c, r);
RemoveFaults(fl, c);

// remove faults detected by c from fl
RemoveColumn(B, c);

// remove c from B matrix
} else return(FAIL);

} while(!empty(fl));
return(SUCCEED);

}
Algorithm 1: Row Assignment

D. Modified BIST Design Process

Summarizing all the modifications needed to be done
to extend the BIST design method to support multiple-vector
column-matching, the whole process consists of these phases:

1. Simulation of several (PR) pseudo-random patterns
for the CUT and determination of undetected faults.

2. Computation of the deterministic test patterns
for these faults by an ATPG tool, generating more
than one test pattern for each fault.

3. Fault simulation for each of the test vectors, i.e.,
computing fault masks.

4. Test set compaction.
5. Performing the multiple-vector column-matching.
6. Synthesis of the decoder for the unmatched outputs.

V. EXPERIMENTAL RESULTS
A. Test Set Compaction Results

The test set compaction results are shown here. The number
of test vectors processed is essential to the column-matching
phase. Its runtime rapidly grows with an increasing number of
test vectors [15]. On the other hand, the number of don’t care
values in the test significantly increases the performance of the
column-matching algorithm. The compaction algorithm should
thus reduce the number of test vectors, while keeping a
sufficient number of don’t cares. The algorithm described in
Subsection III.B fully satisfies these requirements.

Experimental results performed on some of the ISCAS
benchmarks [12, 13] are shown in Table 1. First, “PR” pseudo-
random patterns were simulated using HOPE fault simulator
[14]. Test sets for the undetected faults were computed by
Atalanta ATPG [8]. The ATPG was set to generate “vct/vlt”
vectors for each fault. The total number of test vectors is
shown in the “ATPG” column. After the compaction, their
number was reduced to “compact”. The amount of don’t care
values in the final compacted test set is shown in the last
column. It can be well observed that with an increasing
number of test vectors the number of don’t cares decreases.
This is due to the fact that the compaction algorithm preferably
selects vectors having many don’t cares to be joined.
However, this “disadvantage” is compensated by the freedom
offered by the number of vectors more than enough.

TABLE 1.
TEST COMPACTION RESULTS

bench PR vct/flt ATPG compact DC
c1908 1000 1 42 36 50 %
 10 382 340 25 %
c2670 10 K 1 201 74 83 %
 10 1824 825 77 %
c3540 1000 1 31 25 72 %
 10 117 101 65 %
 100 663 555 56 %
c7552 10 K 1 215 106 69 %
 10 2141 1206 68 %
s1196 1000 1 93 55 59 %
 100 392 259 56 %
s1238 3000 1 45 33 57 %
 100 140 95 52 %
s5378 10 K 1 23 19 92 %
 100 289 258 92 %

bench PR vct/flt ATPG compact DC
s9234.1 50 K 1 321 99 82 %
 10 2899 1003 81 %
s13207.1 10 K 1 466 74 96 %
 10 1538 362 96 %

B. Comparison with Unmodified Column-Matching

Reduction of the BIST area overhead with respect to the
original column-matching algorithm is demonstrated in this
Subsection. We have run the whole BIST synthesis process
using the original column-matching algorithm (using one test
vector per one fault) and the column-matching algorithm
exploiting multiple vectors, for each of the presented
benchmark circuit. The results are shown in Table 2. Some
of the table column labels are retained from Table 1. The
“PR/det” column indicates the length of the pseudo-random
and deterministic phase, respectively. The “M” column
indicates the number of column matches obtained, from the
maximum possible (number of CUT inputs). The
column-matching algorithm runtime in seconds is indicated
in the next column. Then the area overhead of the synthesized
BIST (i.e., the output decoder and switch), with respect to the
size of the original circuit is shown. The improvement reached
by the proposed method, with respect to the simple method,
is shown in the last column. It can be seen that the
improvement is quite significant in many cases, sometimes
almost halving the area overhead (c1908).

VI. CONCLUSIONS
An extension of the column-matching mixed-mode BIST

method has been proposed. Pseudorandom PRPG code words
are being transformed into deterministic test patterns
computed by some ATPG tool. The influence of the ATPG
test pattern generation mode on the column-matching
is studied in this paper. A new method, where more than one
vectors per one fault are exploited, is proposed. This gives the
algorithm more freedom in the column matches choice, which
yields smaller BIST area overhead. This area reduction
sometimes reaches 50% of the original circuit.

A heuristic static test set compaction method is proposed. It
is based on joining test vectors, together with their fault masks.
A significant reduction in the number of test vectors is
obtained, whereas many test don’t cares are retained.

Our BIST method can be used for any fault model, if a
proper fault simulator and ATPG tool are provided. The fault
coverage reached depends only on the ATPG tool as well.

ACKNOWLEDGEMENT
This research was supported by a grant GA 102/04/2137

and MSM6840770014.
REFERENCES

[1] V.K. Agrawal, C.R. Kime and K.K. Saluja. A tutorial on BIST, part 1:
Principles, IEEE Design & Test of Computers, vol. 10, No.1 March 1993,
pp.73-83, part 2: Applications, No.2 June 1993, pp. 69-77

[2] H.J. Wunderlich and G. Keifer. Bit-Flipping BIST, Proc. ACM/IEEE
International Conference on CAD-96 (ICCAD96), San Jose, California,
November 1996, pp. 337-343

[3] N.A. Touba and E.J. McCluskey. Altering a Pseudo-Random Bit Sequence
for Scan-Based BIST, Proc. of ITC’96, pp. 167-175

[4] N.A. Touba and E.J. McCluskey. Bit-Fixing in Pseudorandom Sequences
for Scan BIST, IEEE TCAD, Vol. 20, No. 4, April 2001, pp. 545-555

[5] M. Chatterjee and D.K. Pradhan. A BIST Pattern Generator Design for
Near-Perfect Fault Coverage, IEEE Transactions on Computers, vol. 52,
no. 12, December 2003, pp. 1543-1558

[6] P. Fišer, J. Hlavička and H. Kubátová. Column-Matching BIST Exploiting
Test Don't-Cares. Proc. 8th IEEE Europian Test Workshop (ETW'03),
Maastricht (The Netherlands), 25.-28.5.2003, pp. 215-216

[7] P. Fišer and H. Kubátová, „An Efficient Mixed-Mode BIST Technique“,
Proc. 7th IEEE Design and Diagnostics of Electronic Circuits and
Systems Workshop 2004 (DDECS'04), SK, 18.-21.4.2004, pp. 227-230

[8] H.K. Lee and D.S. Ha. Atalanta: an Efficient ATPG for Combinational
Circuits. Technical Report, 93-12, Dep't of Electrical Eng., Virginia
Polytechnic Institute and State University, Blacksburg, Virginia, 1993

[9] R. K. Brayton, et al, „Logic Minimization Algorithms for VLSI
Synthesis“, Boston, MA, Kluwer Academic Publishers, 1984

[10] J. Hlavička and P. Fišer, „BOOM - a Heuristic Boolean Minimizer“.
Proc. International Conference on Computer-Aided Design ICCAD 2001,
San Jose, California (USA), 4.-8.11.2001, pp. 439-442

[11] P. Fišer and J. Hlavička, „BOOM - A Heuristic Boolean Minimizer“,
Computers and Informatics, Vol. 22, 2003, No. 1, pp. 19-51

[12] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan, Proc. of
International Symposium on Circuits and Systems, pp. 663-698, 1985

[13] F. Brglez, D. Bryan and K. Kozminski. Combinational Profiles of
Sequential Benchmark Circuits, Proc. of International Symposium of
Circuits and Systems, pp. 1929-1934, 1989

[14] H.K. Lee and D.S. Ha. An Efficient Forward Fault Simulation Algorithm
Based on the Paralel Pattern Single Fault Propagation, Proc. of the 1991
International Test Conference, pp. 946-955, Oct. 1991

[15] P. Fišer and H. Kubátová, „Influence of the Test Lengths on Area
Overhead in Mixed-Mode BIST“, Proc. 9th Biennial Baltic Electronics
Conference (BEC'04), Tallinn (Estonia), 3.-6.10.2004, pp. 201-204

TABLE 2.
COMPARISON WITH SIMPLE COLUMN-MATCHING

bench PR/det vct/flt compact M time [s] overhead improvement

c1908 1 K / 1 K 1 36 28/33 6.7 5.7 %
 10 340 30/33 55.9 3.0 % 48 %
c3540 1 K / 1K 1 31 48/50 3.9 2.2 %
 10 101 48/50 19.1 1.6 % 27 %
 100 555 49/50 90.0 1.3 % 42 %
c7552 10 K / 1K 1 106 152/207 1104.8 17.0 %
 10 1206 159/207 16124.7 14.8 % 13 %
s1196 1 K / 1 K 1 55 27/32 5.5 11.1 %
 10 259 28/32 109.0 7.8 % 30 %
s1238 3 K / 1 K 1 33 27/32 2.9 6.7 %
 100 95 28/32 16.7 4.6 % 31 %
s5378 10 K / 1 K 1 19 214/214 7.7 1.5 %
 100 258 213/214 181.5 0.9 % 40 %
s9241.1 200 K / 1 K 1 52 224/247 160.7 5.3 %
 10 564 225/247 3508.6 4.9 % 10 %

