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Abstract - Extension of a BIST design algorithm is proposed 
in this paper. The method is based on a synthesis of a 
combinational block - the decoder, transforming pseudo-random 
code words into deterministic test patterns pre-computed by an 
ATPG tool. The column-matching algorithm is used to design the 
decoder. Using this algorithm, maximum of decoder outputs is 
tried to be matched with the decoder inputs, yielding the outputs 
be implemented as wires, thus without any logic. 

The newly proposed enhancement consists in a major 
generalization of the method. The ATPG possibility of generating 
more than one test vectors for one fault is exploited, yielding 
smaller area overhead. The complexity of the resulting BIST logic 
reduction is evaluated for some of the ISCAS benchmarks. 

I. INTRODUCTION 
The complexity of present VLSI circuits rapidly grows. 

Their testing is becoming more and more important, together 
with the tests complexity and total costs. Using only external 
test equipment (ATE) is becoming impossible, mainly due to a 
huge amount of test vectors to be applied, long testing time 
and very expensive test equipment. Incorporating Built-in 
Self-Test (BIST) methods becomes inevitable. By now, many 
BIST methods were developed [1 - 5], all of them trying to 
find some trade-off between these four mutually antipodal 
aspects: the fault coverage, test time, the area overhead and 
the BIST design time. A high fault coverage means either 
a long test time (exhaustive test), or a high area overhead 
(deterministic ROM-based BIST). The pseudo-random testing 
established the simplest trade-off between all these three 
criteria. With an extremely low area overhead, the circuit can 
be tested usually up to more than 90% in a relatively small 
number of clock cycles (thousands).  

A combination of a pseudo-random and deterministic BIST 
is being referred to as a mixed-mode BIST. The easy-to-detect 
faults are tested by pseudo-random test patterns, and the 
deterministic patterns are generated to test the remaining, 
undetected faults. The popular bit-fixing [4] and 
bit-flipping [2] techniques belong to this category. 

Our column-matching method is based on a transformation 
of pseudo-random patterns into deterministic patterns 
pre-computed by an ATPG (Automatic Test Pattern 
Generator) tool. This transformation is being done 
by a combinational block called “Output decoder”. To reduce 
the decoder logic, we try to implement as many outputs 
as possible by wires, without any logic. 

To support the mixed-mode testing, the test is divided into 
two disjoint phases: the pseudo-random one and the 

deterministic one. This enables us to significantly reduce the 
decoder logic, together with the control logic as well. 

The BIST area overhead becomes an essential issue now. 
For ASIC designers the area becomes more important than the 
design time, since the overall chip design time significantly 
surpasses the BIST design time. Thus, any improvement of the 
BIST design methods, in terms of the area overhead, 
is beneficial. An enhancement of our BIST design method is 
proposed in this paper. A significant area overhead reduction 
is involved, for a cost of a longer design time. The 
improvement consists in a generalization of the basic method, 
to fully exploit capabilities of ATPGs. The ATPG generates 
more than one test vectors for each tested fault in our 
algorithm, thus the algorithm has more freedom in generating 
the test sequence. 

The paper is structured as follows: basic principles of the 
column-matching method are described in Section II, 
an overview of the test generation modes is presented 
in Section III and the newly proposed enhancement principles 
are described in Section IV. Experimental results are shown 
in Section V, Section VI concludes the paper. 

II. BASIC PRINCIPLES OF OUR METHOD 
The method is primarily intended for a test-per-clock BIST, 

thus the test patterns are applied to the primary inputs of the 
circuit-under-test (CUT) in parallel. However, the method can 
be modified for a test-per-scan as well [5]. 

The column-matching method is based on a transformation 
of pseudo-random patterns by a combinational block (Output 
Decoder), so that deterministic patterns are generated. Any set 
of deterministic patterns can be used, thus the fault coverage 
reached depends on these patterns only. 100% fault coverage 
is considered in the following text. However, the method can 
be modified so that smaller fault coverage is reached, with a 
benefit of smaller area overhead. 

The PRPG is mostly constructed as a linear feedback shift 
register (LFSR) with an appropriate generating polynomial, or 
as a cellular automaton. The basic structure of such 
a test-per-clock BIST is shown Fig. 1. 

 

 

Figure 1: Test-per-clock BIST structure 



 

A. Output Decoder Design 

Let us have an n-bit PRPG running for p clock cycles. The 
code words generated by this PRPG can be described by a 
C matrix (code matrix) of dimensions (p, n). These code words 
are to be transformed into test patterns pre-computed by an 
ATPG tool. The patterns are defined by a T matrix (test 
matrix). For an r-input CUT and the test consisting of s vectors 
the T matrix has dimensions (s, r). The rows of the matrices 
will be denoted as vectors. There is no relationship between n 
and r, since the number of PRPG outputs can be even less than 
the number of CUT inputs. However, we will consider n = r in 
this paper, for simplicity. 

The output decoder logic modifies the C matrix vectors 
to obtain all the T matrix vectors. As the proposed method 
is restricted to combinational circuits, the order of the test 
patterns is insignificant. Finding a transformation from the 
C matrix to the T matrix means finding a pairing of each 
of the s rows of the T matrix with distinct rows of the C matrix 
–finding a row assignment (Fig. 2). 

The Output decoder is a combinational block converting 
s n-dimensional vectors of the C matrix into s r-dimensional 
vectors of the T matrix. The decoder is represented 
by a Boolean function having n inputs and r outputs, where 
only values of s terms are defined; the rest are don’t cares 
implicitly. This Boolean function can be easily described by a 
truth table, where the output part corresponds to the T matrix, 
while the input part consists of s C matrix vectors assigned to 
the T matrix rows. The set of such vectors will be denoted 
as a pruned C matrix. 
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Figure 2: Assignment of the rows 

B. The Column-Matching Method 

The task is now, how to assign the rows to each other 
to reach maximum area overhead reduction. The aim of the 
column-matching method is to assign all the T matrix rows 
to some of the C matrix rows so that some columns of the 
T matrix will be equal to some of the pruned C matrix 
columns in the result. This involves no logic needed 
to implement these T matrix columns (output variables of the 
decoder); they are implemented as simple wired connections. 
This idea can be extended to a negative matching. Since most 
of the LFSR flip-flops are provided with the negated outputs 
as well, columns with opposite values can be matched too. 

An illustrative example is shown in Fig. 3. The matched 
columns of the pruned C matrix and T matrix from Fig. 2 are 
shown here. The T matrix column y1 is matched with the C 

matrix column x3 (negatively), then y3 with x1 (negatively) and 
y4 with x4 (positively). 

Thus, the outputs y1, y3 and y4 are implemented without any 
combinational logic, while the remaining outputs have to be 
synthesized using some standard two-level Boolean 
minimization tools, like ESPRESSO [9] or BOOM [10, 11]. 
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Figure 3: Column matching example 

C. Finding the Columns to Be Matched 

It is impossible to look for an optimum matching 
of columns (so that maximum of columns is matched) 
in practical examples, since the number of possible 
combinations grows exponentially with the number 
of columns. Hence, some kind of a heuristic has to be used. 
In practice, the number of PRPG patterns to be transformed 
is usually much higher than the number of test vectors 
(p >> s). Then, almost any two columns can be matched 
together at the beginning. Thus, we select the columns to be 
matched purely at random, one by one, until there is no 
possibility for any more matches. 

Another difficult task is the very finding out if the column 
match to be performed is valid, i.e., if it leads to any solution. 
The only way how to solve this problem is to perform the row 
assignment. An efficient heuristic based on a blocking 
matrix B has been proposed in [6]. The blocking matrix is a 
binary matrix (it contains only ‘0’ and ‘1’ values) 
of dimensions (p, s). Thus, it has as many columns as there are 
T matrix rows and as many rows as there are C matrix rows. 
The value ‘1’ in the cell B[k, l] indicates that the k-th C matrix 
row may be assigned to the l-th T matrix row, ‘0’ value 
indicates the contrary. At the beginning of the algorithm all the 
B matrix cells are filled with a ‘1’ value, since there are no 
restrictions for row assignments. After the i-th C matrix 
column is matched with the j-th T matrix column, the B matrix 
cells [k, l] are set to ‘0’ when the k-th input row contains in an 
i-th column an opposite value to the l-th output row in a j-th 
column. Thus, rows containing opposite values in the matched 
columns cannot be assigned to each other.  

B[k, l] := ‘0’ when (C[k, i] ≠ T[l, j] ∧ T[l, j] ≠ don’t care)

If the negative column match is to be performed, the 
B matrix cells are set to ‘0’ when equal values are present 
in the respective positions. 

The final row assignment involves only a selection of one 
row from the possible ones for each of the columns. 



 

D. Mixed-Mode Column-Matching BIST 

The basic column-matching algorithm was later extended to 
a mixed-mode BIST [7]. A general structure of our 
mixed-mode BIST design is shown in Fig. 4. The test 
is divided into two disjoint phases. In the first, pseudo-random 
phase the pseudo-random code words are produced by a LFSR 
and fed to the CUT unmodified. The subsequent patterns are 
transformed into deterministic vectors by the Output Decoder 
in the deterministic phase. The switching logic selects the 
patterns that are to be applied to the CUT. The switching logic 
then consists of multiplexers, in general. The area overhead 
caused by the switching logic needs not be too big, since the 
structure of the BIST controller can be very efficiently 
exploited here. The circuit’s response is evaluated, usually in 
the multi-input shift register (MISR). 
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Figure 4: Mixed-mode BIST structure 

E. The BIST Design Process 

The whole BIST design process is divided into four 
consecutive phases: 

1. Simulation of several (PR) pseudo-random 
patterns for the CUT and determination 
of undetected faults (by a fault simulation). 

2. Computation of deterministic test patterns 
for these faults by an ATPG tool. 

3. Performing the column-matching for the following 
Det pseudo-random PRPG patterns and the 
deterministic tests. 

4. Synthesis of the decoder for the unmatched 
outputs. 

The lengths of the two phases essentially influence the 
design time and area overhead. For more details see [15]. 

An artificial illustrative example is shown in Fig. 5. 
The BIST logic for a 5-input circuit is to be synthesized here. 
A 5-bit LFSR is run for 5 cycles first where the easily testable 
faults are detected. Then we run the fault simulation to find the 
undetected faults, for which the test vectors are generated by 
an ATPG. At the end the decoder logic is synthesized for these 
tests and the subsequent LFSR patterns. The resulting circuitry 
is shown in Fig. 6. 
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Figure 5: Test sequence generation 
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Figure 6: Resulting BIST circuitry 

III. TEST PATTERN GENERATION 
A. Influence of an ATPG 

As it was said before, the column-matching method is so 
universal, that any test vectors set can be used. This implies 
that the method can be adjusted to any fault model, as long as 
basic requirements for the test vectors are held. For example, 
delay faults cannot be tested using simple column-matching, 
since the test vector pairs have to stay together here. However, 
after a slight algorithm modification even this could be 
possible. On the other hand, IDDQ testing is supported 
without any modification. We will use the stuck-at fault model 
in this paper, since the ATPG tool used [8] supports this 
model. 

Most of available non-commercial ATPGs can 
be influenced, so that they produce various sets of test vectors. 
Our only and necessary requirement for the ATPG tool used 
is the capability to produce test vectors for a specified set 
of faults. 

In the most general case, possible obtained test sets can 
be divided as follows: 

1. Non-compacted test without don’t cares. Such a test 
set is usually obtained by a random-pattern simulation 
and a subsequent deterministic test generation. The 
test is usually long and far from optimum. 

2. Compacted test set without don’t care values. Here 
the test comprises of minimum of test vectors (in the 
optimum case), obtained after deterministic test set 
generation and compaction, followed by the don’t 
care substitution. 

3. Compacted test set with don’t cares. The test 
comprises of minimum of test vectors (in the 
optimum case), obtained after deterministic test set 
generation followed by a compaction. The don’t care 
values are retained. However, their number is usually 
negligible. 

4. Non-compacted test with don’t cares. The test set is 
produced by a deterministic test set generator. No test 
compaction is executed. 

5. One test vector for each fault. The test pattern 
generation is usually accompanied by a fault 
simulation. Thus, after one test vector is produced 
during the test generation process, fault simulation is 
executed for this vector and faults detected by it are 
removed from the processed fault list. This was the 
case assumed in the preceding cases. The ATPG may 
proceed in the simplest way, by generating one 
deterministic vector for each fault. No fault 
simulation or test compaction is involved. Test 



 

vectors with many don’t care values are usually 
obtained. The test set is often large, comparing 
to previous cases, however many don’t care values 
are present in the test, which is usually beneficial. 

6. More than one test vector for each fault. As a 
generalization of the previous item, more test vectors 
for each fault can be produced, if possible. The test is 
then even longer, but offers much greater flexibility. 

7. All the possible test vectors for each fault. This is the 
most general case. Some ATPGs are able to produce 
all the possible test vectors for each fault. However, 
the test set size is then prohibitively large, thus such a 
case usually cannot be used in practice. 

 
We use the Atalanta ATPG tool [8] to generate test vectors. 

All the above mentioned test sets can be obtained by it. 
According the paper proposed in [6], don’t cares present 

in the test set (T matrix) are beneficial, since they bring more 
freedom to the column matches choosing, and consequently 
reduce the BIST area overhead. Thus, is more advantageous to 
choose the test generation alternatives 3-7. We have found that 
the test set compaction method, which is used in the Atalanta 
tool, does not perform well for our purposes, thus we have 
introduced our static compaction method based on joining test 
vectors. Then, we have enhanced the column-matching 
algorithm to be able to handle test sets having more than one 
test vectors for each fault, to improve the results. 

B. Simple Test Set Compaction 

Due to the fact that the test set compaction performed by an 
ATPG is often lacking in quality and is insufficient for our 
method, we had to introduce a static compaction method to our 
algorithm. Maximum of the don’t care values in the test set 
should be retained after the compaction. An exact test 
compaction algorithm is usually not applicable, since its time 
complexity is prohibitively large (it is an NP-hard problem). 
Thus, a heuristic method has to be used. 

The algorithm we use is simple but effective. It is based 
on joining pairs of test vectors. Two test vectors can be joined, 
when they have a non-empty intersection. The result of their 
joining will be that intersection. Considering that a test vector 
t1 detects a fault set F1

 and a test vector t2 detects a fault set F2, 
their intersection t1 ∩ t2 detects faults F1 ∪ F2. 

Let us have a test set comprising of v vectors. Each vector 
is compared with each other and the size (dimensionality) 
of their intersection is computed. Two vectors having the 
“biggest” intersection will be joined. In other words, two 
vectors differing in at least one bit cannot be joined (since they 
have an empty intersection); two vectors having minimum 
collisions with a don’t care on one side and a ‘0’ or ‘1’ value 
on the other side are joined. Test vectors loosing a minimum 
number of don’t cares by their joining are joined. This is being 
repetitively performed until there is no chance to join any 
more vectors. The complexity of such an algorithm is O(v3), 
which sometimes means a significant computational time 
increase. The number of test vectors can be significantly 
reduced by this method, see Table 1. 

IV. MULTIPLE-VECTOR COLUMN-MATCHING 

A. Basic Principles 

The more “freedom” has the column-matching algorithm 
in selection of the matches, the better it performs. Particularly, 
more don’t care values in the test set induce more column 
matches and thus less area overhead [6]. Let us consider an 
example where two test vector sets are to be mapped onto 
PRPG patterns, one set generated by the 3-rd APTG mode 
(compacted test set with don’t cares), the second one as the 
5-th one (one test vector for each fault, with don’t cares). The 
second test set will be much larger than the first one. On the 
other hand, more don’t care values will be present in the 
second one (in general). Practical examples have shown that 
even when there are more test vectors to be generated by the 
Output decoder, the BIST area overhead is less if the test 
vectors have many don’t care values. Thus, the second case 
will perform better, in terms of the area overhead. 

The above-mentioned notion can be extended, so that there 
will be many test vectors available to choose from. The aim 
of the column-matching algorithm wouldn’t be to synthesize 
all the test vectors then; the aim would be to synthesize vectors 
that cover all faults (from the given fault set), regardless by 
what vectors. Thus, even more freedom will be given to the 
matching algorithm, which yields better results. This is the 
main idea of the multiple-vector column-matching. 

In order to adapt basic column-matching principles to be 
able to exploit more test vectors for each fault, several 
modifications had to be done. First of all, each test vector has 
to be accompanied by a fault mask. The fault mask is a binary 
vector identifying faults that are detected by the test vector. 
First, the fault list for the tested circuit is determined. The size 
of the fault mask is then equal to the number of faults, each 
position in the fault list corresponding to one fault. A ‘1’ value 
indicates that the respective fault is detected by the test vector, 
‘0’ the contrary. The fault mask is obtained by a fault 
simulation of the respective test vector. After the fault masks 
are generated, all the test vectors are put together; there is no 
need to distinguish between them. Information on what vector 
was generated for what fault may be lost. 

B. Multiple-Vector Test Set Compaction 

Since the number of test vectors generated by an ATPG is 
often large, static test compaction should be performed. The 
algorithm described in Subsection 3.2 is used. The only 
modification is that after joining the test vectors their fault 
masks have to be joined too. The resulting fault mask is 
obtained by OR-ing the two fault masks, since faults detected 
by both joined vectors are detected by the resulting vector. 

Even when the test set compaction reduces the freedom 
given to the column-matching, we have found experimentally 
that it is advantageous to perform it. When the test set 
compaction is not performed, the column-matching runtime is 
prohibitively long and usually there is no improvement in the 
quality of the result. 

 



 

Example 
Let us consider a 5-input CUT having 10 faults. The two 

example test vectors together with their fault masks will be 
joined as follows: 

 
10-0-  1100101001 
1-10-  0100100100 
1010-  1100101101 

C. Modified Row Assignment 

The basic column-matching algorithm remains unchanged 
but the row assignment. Since there are many test vectors for 
each fault, the test set is redundant. Thus, not all test vectors 
have to be synthesized by the Output decoder; the aim is to 
detect all faults now, regardless by what vectors. Not all the 
B matrix columns have to be assigned then. 

Making a row assignment is an NP-hard problem, similar to 
a binate covering problem. Thus, solving it exactly becomes 
impossible. We use a heuristic, where the heuristic function 
for a selection of a B matrix column (test vector) is the number 
of yet undetected faults it detects. At the beginning of the 
algorithm, the B matrix column detecting most of faults (i.e., 
test vector having most ‘1’s in the fault mask) is selected. For 
this column a row having a ‘1’ value in the respective position 
in the B matrix is found, so that this row has a minimum 
number of ‘1’s in other positions. It is the row (C matrix 
vector), that may be transformed into the required test vector 
and simultaneously may be transformed into a minimum of 
others.  The selected column and row are assigned to each 
other, removed from the B matrix and the detected faults are 
removed from the fault list. The column selection is repeated, 
until the fault list is empty or an undetectable fault is 
encountered (which means an invalid assignment). When an 
invalid assignment is returned, the last column match is taken 
back and another column matches are tried. 

Basic principles of the row assignment are outlined by the 
following pseudo-code: 

 
 

Assign { 
set(fl); // create a complete fault list 
do { 

c = FindBestColumn(B, faultmasks, fl); 
 // find column detecting most faults from fl 

r = FindBestRow(B, c); 
// find a row, so that B[r, c] = 1 and has a 

minimum of 1’s 
if (r != NULL) { // a row B[r, c]=1 was found 

MakeMatch(c, r); 
RemoveFaults(fl, c); 

// remove faults detected by c from fl 
RemoveColumn(B, c); 

// remove c from B matrix 
} else return(FAIL); 

} while(!empty(fl)); 
return(SUCCEED); 

} 
Algorithm 1: Row Assignment 

D. Modified BIST Design Process 

Summarizing all the modifications needed to be done 
to extend the BIST design method to support multiple-vector 
column-matching, the whole process consists of these phases: 

 

1. Simulation of several (PR) pseudo-random patterns 
for the CUT and determination of undetected faults. 

2. Computation of the deterministic test patterns 
for these faults by an ATPG tool, generating more 
than one test pattern for each fault. 

3. Fault simulation for each of the test vectors, i.e., 
computing fault masks. 

4. Test set compaction. 
5. Performing the multiple-vector column-matching. 
6. Synthesis of the decoder for the unmatched outputs. 

V. EXPERIMENTAL RESULTS 
A. Test Set Compaction Results 

The test set compaction results are shown here. The number 
of test vectors processed is essential to the column-matching 
phase. Its runtime rapidly grows with an increasing number of 
test vectors [15]. On the other hand, the number of don’t care 
values in the test significantly increases the performance of the 
column-matching algorithm. The compaction algorithm should 
thus reduce the number of test vectors, while keeping a 
sufficient number of don’t cares. The algorithm described in 
Subsection III.B fully satisfies these requirements. 

Experimental results performed on some of the ISCAS 
benchmarks [12, 13] are shown in Table 1. First, “PR” pseudo-
random patterns were simulated using HOPE fault simulator 
[14]. Test sets for the undetected faults were computed by 
Atalanta ATPG [8]. The ATPG was set to generate “vct/vlt” 
vectors for each fault. The total number of test vectors is 
shown in the “ATPG” column. After the compaction, their 
number was reduced to “compact”. The amount of don’t care 
values in the final compacted test set is shown in the last 
column. It can be well observed that with an increasing 
number of test vectors the number of don’t cares decreases. 
This is due to the fact that the compaction algorithm preferably 
selects vectors having many don’t cares to be joined. 
However, this “disadvantage” is compensated by the freedom 
offered by the number of vectors more than enough. 

TABLE 1. 
TEST COMPACTION RESULTS 

bench PR vct/flt ATPG compact DC 
c1908 1000 1 42 36 50 % 
  10 382 340 25 % 
c2670 10 K 1 201 74 83 % 
  10 1824 825 77 % 
c3540 1000 1 31 25 72 % 
  10 117 101 65 % 
  100 663 555 56 % 
c7552 10 K 1 215 106 69 % 
  10 2141 1206 68 % 
s1196 1000 1 93 55 59 % 
  100 392 259 56 % 
s1238 3000 1 45 33 57 % 
  100 140 95 52 % 
s5378 10 K 1 23 19 92 % 
  100 289 258 92 % 



 

bench PR vct/flt ATPG compact DC 
s9234.1 50 K 1 321 99 82 % 
  10 2899 1003 81 % 
s13207.1 10 K 1 466 74 96 % 
  10 1538 362 96 % 

B. Comparison with Unmodified Column-Matching 

Reduction of the BIST area overhead with respect to the 
original column-matching algorithm is demonstrated in this 
Subsection. We have run the whole BIST synthesis process 
using the original column-matching algorithm (using one test 
vector per one fault) and the column-matching algorithm 
exploiting multiple vectors, for each of the presented 
benchmark circuit. The results are shown in Table 2. Some 
of the table column labels are retained from Table 1. The 
“PR/det” column indicates the length of the pseudo-random 
and deterministic phase, respectively. The “M” column 
indicates the number of column matches obtained, from the 
maximum possible (number of CUT inputs). The 
column-matching algorithm runtime in seconds is indicated 
in the next column. Then the area overhead of the synthesized 
BIST (i.e., the output decoder and switch), with respect to the 
size of the original circuit is shown. The improvement reached 
by the proposed method, with respect to the simple method, 
is shown in the last column. It can be seen that the 
improvement is quite significant in many cases, sometimes 
almost halving the area overhead (c1908). 

VI. CONCLUSIONS 
An extension of the column-matching mixed-mode BIST 

method has been proposed. Pseudorandom PRPG code words 
are being transformed into deterministic test patterns 
computed by some ATPG tool. The influence of the ATPG 
test pattern generation mode on the column-matching 
is studied in this paper. A new method, where more than one 
vectors per one fault are exploited, is proposed. This gives the 
algorithm more freedom in the column matches choice, which 
yields smaller BIST area overhead. This area reduction 
sometimes reaches 50% of the original circuit. 

A heuristic static test set compaction method is proposed. It 
is based on joining test vectors, together with their fault masks. 
A significant reduction in the number of test vectors is 
obtained, whereas many test don’t cares are retained. 

Our BIST method can be used for any fault model, if a 
proper fault simulator and ATPG tool are provided. The fault 
coverage reached depends only on the ATPG tool as well. 
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TABLE 2. 
COMPARISON WITH SIMPLE COLUMN-MATCHING 

 
bench PR/det vct/flt compact M time [s] overhead improvement 

c1908 1 K / 1 K 1 36 28/33 6.7 5.7 %  
  10 340 30/33 55.9 3.0 % 48 % 
c3540 1 K / 1K 1 31 48/50 3.9 2.2 %  
  10 101 48/50 19.1 1.6 % 27 % 
  100 555 49/50 90.0 1.3 % 42 % 
c7552 10 K / 1K 1 106 152/207 1104.8 17.0 %  
  10 1206 159/207 16124.7 14.8 % 13 % 
s1196 1 K / 1 K 1 55 27/32 5.5 11.1 %  
  10 259 28/32 109.0 7.8 % 30 % 
s1238 3 K / 1 K 1 33 27/32 2.9 6.7 %  
  100 95 28/32 16.7 4.6 % 31 % 
s5378 10 K / 1 K 1 19 214/214 7.7 1.5 %  
  100 258 213/214 181.5 0.9 % 40 % 
s9241.1 200 K / 1 K 1 52 224/247 160.7 5.3 %  
  10 564 225/247 3508.6 4.9 % 10 % 

 


