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Abstract 
We propose a novel two-level Boolean minimizer coming in succession to our previously 

developed minimizer BOOM, so we have named it BOOM-II. It is a combination of two minimizers, 
namely BOOM and FC-Min. Each of these two methods has its own area where it is most efficiently 
applicable. We have combined these two methods together to be able to solve all kinds of problems 
efficiently, independently on their size or nature. The tool is very scalable in terms of the required 
runtime and/or the quality of the solution. It is applicable to functions with an extremely large 
number of both input and output variables. 

1. Introduction 
The problem of two-level Boolean minimization is quite old, but surely not dead. It occurs in almost 

every area of the logic design, as is the design of control systems, design of build-in self-test (BIST) 
for VLSI circuits [1] and in the VLSI synthesis in general [2]. It has been studied for many decades 
and plenty of minimization methods and algorithmic minimizers were developed. In 50’s the classical 
Quine-McCluskey method [3, 4] was proposed, and laid the basis for subsequent Boolean 
minimization algorithms. MINI [5], ESPRESSO [6] and its modifications [7] were proposed, later 
Scherzo [8] with its improved CP solution algorithm was introduced. Lately we have developed a 
Boolean minimizer BOOM [9, 10], which is able to handle functions with an extremely large number 
of input variables. 

The major drawback of these algorithms is the limited size of the problems they can solve in a 
reasonable time. When the number of input variables grows to hundreds (such problems occur, e.g., in 
the BIST design), the minimization times are extremely long. This problem was partially solved by 
BOOM. However, the same problem can be encountered for functions with many outputs – the group 
minimization is quite a demanding process and the runtimes grow with the number of output variables 
rapidly as well. Lately we have developed an algorithm called FC-Min [11] solving this problem 
efficiently. The solution is being constructed from the necessary group implicants only, which makes 
the algorithm extremely fast and with low memory demands. On the other hand, FC-Min does not 
produce good results for function with a low number of output variables. 

In this paper we propose a method where the FC-Min and the original BOOM algorithms are 
combined together to achieve better results. Implicants are being produced both by BOOM and 
FC-Min and then they are put together into a common implicant pool. The final solution is then 
constructed by solving a covering problem using all the implicants. The ratio of runs of both 
algorithms can be freely adjusted, which makes the system a good minimizer for all kinds of problems. 
Since the system is a successor of BOOM to some extent, we have named it BOOM-II. 

The paper has the following structure: Section 2 defines the problem statement, the structure and 
major principles of BOOM-II will be described in Section 3. Section 4 describes the experiments with 
BOOM-II. Section 5 concludes the paper. 

2. Problem Statement 
Let us have a set of m Boolean functions of n input variables. The input variables will be denoted as 

xi, 0 ≤ i < n, the output variables as yj, 0 ≤ j < m. The functions will be referenced as F1(x1, x2, … xn), 
F2(x1, x2, … xn), … Fm(x1, x2, … xn). The output values of the care terms are defined by a truth table. 
Thus, each function is specified by its on-set and off-set. To the minterms that are not present in the 
truth table are implicitly assigned don’t care values. The part of a truth table representing the terms will 



be denoted as an input matrix I, the rows of the input matrix will be denoted as input vectors. The part 
defining the output values of the terms will be called an output matrix O; similarly, the rows of this 
matrix output vectors. Each row of the output matrix defines values of the output variables for the 
values of input variables specified by the corresponding row in the input matrix. The number of 
I matrix columns correspond to the number of input variables n, the number of O matrix columns is 
equal to the number of output variables m, the number of I and O matrix rows will be denoted as p 
(which means the number of care terms). 

Specifying a Boolean function by its on-set and off-set, rather by its on-set and don’t care set, is 
advantageous especially for highly unspecified functions, i.e., functions that have the defined values of 
only few terms, the rest are don’t cares. The typical example of the use of such a function can be 
found, e.g., in the build-in self-test (BIST) design [12, 13, 14]. 

Our task is to synthesize a two-level circuit implementing the multi-output Boolean function 
described by a truth table, whereas the implementation of the circuit should be as small as possible. 
Thus, we perform a group two-level Boolean minimization where a set of functions is given by their 
on-sets and off-sets. 

3. Principles of the Method 
As it was stated in the Introduction, BOOM-II is a composition of two previously published 

minimization algorithms - BOOM [9, 10] and FC-Min [11]. Both the algorithms have their advantages 
and drawbacks. BOOM is suitable for problems with a large number of input variables, but it is 
somewhat limited regarding the number of output variables; for a large number of outputs the runtime 
grows rapidly, and the algorithm begins to be less efficient as well. This is due to the demanding 
implicant reduction phase above all. BOOM is based on a generation of prime implicants (PIs), and 
thus it is strong for problems whose solution is consisted mostly of PIs.  Thus, BOOM is very 
efficiently applicable to problems with many input variables and a low number of outputs. 

The second minimizer FC-Min was developed to handle problems with many output variables. It is 
extremely fast - the runtime grows almost linearly with growing number of both the input and output 
variables. The solution is being constructed of group implicants only (particularly it does not 
distinguish between PIs and group implicants). Hence, FC-Min is good for problems whose solution is 
constructed of many group implicants, thus problems with many output variables. On the other hand, it 
is not suitable for functions with only few outputs, since the cover of the on-set is being generated 
purely at random in this case. 

Both the algorithms were developed in their iterative versions. The iterative minimization is based 
on the fact that some minimization phases are driven by random events. Hence, two runs of the same 
algorithm on the same problem need not produce equal results. Moreover, a better solution can 
sometimes be achieved by combining implicants from two or more different solutions. In practice, the 
algorithm is run several times, while all the different implicants obtained are put together into a 
common implicant buffer. Then the covering problem (CP) is solved using all of them. 

A typical growth of the size of implicant set as a function of the number of iterations is shown in 
Fig. 1 (thin line). This curve plots the values obtained during the solution of a single-output problem 
with 20 input variables and 200 minterms, using BOOM only (FC-Min and BOOM-II differs only in 
the amount of implicants produced; the shape of the curve is the same). Theoretically, the more 
implicants we have, the better the solution that can be found after solving the covering problem. In 
reality, the quality of the final solution, measured by the number of literals in the resulting SOP form, 
improves rapidly during first few iterations and then remains unchanged, even though the number of 
PIs grows further. This fact can be observed in Fig. 1 (thick line). 

 

Figure 1: Growth of PI number and decrease of SOP length during iterative minimization 



 
 

Figure 2: Flowchart BOOM-II 

The idea of combining implicants from different minimization runs gave rise to BOOM-II. Same 
problem is solved both by BOOM and FC-Min (repeatedly), all the implicants are put together and the 
covering problem is solved at the end. The solution will be some combination of the implicants 
obtained from the two algorithms. Intuitively, prime implicants are more likely being picked up from 
the implicants obtained by BOOM, while the group implicants are produced by FC-Min. The ratio of 
the two algorithms can be adjusted manually by a FC-Min:BOOM factor. For example, when this 
factor is set to 1:1, half of the iterations will be conducted by BOOM and half by FC-Min in average. 
The problem of the distribution of implicants produced by BOOM and FC-Min is studied more 
thoroughly in Subsection 4.3. The flowchart of the BOOM-II system is shown in Fig. 2. 

In order to enlighten the principles of BOOM-II and especially the differences of the two 
algorithms, we will briefly describe the major notions of the algorithms used. 

3.1. Brief Summary of BOOM 

Like most other Boolean minimization algorithms, BOOM consists of two major phases: generation 
of implicants and the subsequent solution of the covering problem. At the beginning the m-output 
function is split into m single-output functions and a set of PIs is computed for each. The most 
important part of the algorithm, the Coverage-Directed Search (CD-Search), generates a sufficient set 
of implicants needed for covering the on-set. The implicants are then passed to the Implicant 
Expansion (IE) phase, which converts them into PIs. The PIs are then being reduced in the Implicant 
Reduction (IR) phase to obtain group implicants. Then the covering problem is solved to obtain the 
final solution. 

The principle of the Coverage-Directed Search consists in selecting most suitable literals that should 
be added to some previously constructed term. Thus, instead of increasing the dimension of an 
implicant starting from a minterm, we reduce an n-dimensional hypercube by adding literals to the 
term, until it becomes an implicant of Fi. This happens at the moment when the resulting hypercube 
does not intersect any 0-term. The search for suitable literals that should be added to a term is directed 
towards finding an implicant that covers as many 1-terms as possible. To do this, we start implicant 
generation by selecting the most frequent input literal from the given on-set, because the (n-1) 
dimensional hypercube covering the most 1-minterms is described by the most frequent literal 
appearing in the on-set. The (n-1) dimensional hypercube found in this way is an implicant, if it does 
not intersect any 0-term. If there are some 0-minterms covered, we add another literal (the second most 
frequent one) and verify whether the new term already corresponds to an implicant by comparing it 
with 0-terms that might intersect with this term. We continue adding literals until an implicant is 
generated, then we record it, remove 1-terms that are covered by this term, and start searching for other 
implicants. This algorithm is greedy and thus the obtained implicants need not be prime, so they have 
to be further expanded. 

More thorough description of CD-Search and the remaining phases of BOOM can be found, e.g., in 
[9, 10]. 



3.2. Principles of FC-Min 

The FC-Min minimizer generates a solution in a completely different way. As it was said before, 
classical minimization methods consist of two major phases: the generation of implicants and the 
subsequent covering problem solution, where the necessary irredundant set of implicants is found in 
order to cover the on-sets of all the functions. Such an approach might be very demanding (in time and 
space) for functions with a large number of input and output variables, since the number of both the 
prime and group implicants is often extremely large. 

In FC-Min, the process of generating implicants is conducted in a reverse way. Firstly the cover of 
the on-sets that is independent on the source terms is found, and then the implicants corresponding to 
this cover are looked for. This reverse approach allowed us to make a fast Boolean minimizer with 
extremely low memory demands. FC-Min does not produce any PIs, since the necessary group 
implicants are directly generated. As the group implicants are highly important especially for problems 
with many outputs, this makes FC-Min superior to the others for such problems. 

On the other hand, FC-Min is not suitable for problems with a small number of output variables. It 
is because the cover of the on-set is being generated partially ad-hoc and thus proper implicants often 
cannot be found. For such functions our algorithm mostly cannot outperform the others (ESPRESSO, 
BOOM). 

The FC-Min algorithm consists of two major phases: the Find Coverage phase, in which the 
rectangle cover [2] of the on-set is found, and the Implicant Generation phase producing the very 
implicants from this cover. 

An example problem is shown in Fig. 3. Both the input and output matrices are shown here. The 
5-input and 5-output function is defined by 10 care terms. An example of a rectangle cover of the 
O matrix is shown in Figure 4. Here all the “1”s are covered by six implicants t1 - t6. 

 
 
 

0 11010 10000 
1 10000 11100 
2 01001 01100 
3 01111 01010 
4 00110 00111 
5 01110 00000 
6 10110 00011 
7 00001 01101 
8 10101 10111 
9 11100 10100 

Figure 3: The input and output matrices 
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Figure 4: Rectangle cover of the output matrix 

The potential t1 – t6 terms cover all the “1” values in the output matrix and cover no zero. For 
example the group term (implicant) t1 covers the ones of the fourth and fifth output variable in the 
vectors 4, 6 and 8. Let us note that the structure of the terms is not known yet; only the set of covered 
“1”s is known. However, now it is apparent, that if we succeed in finding implicants having the 
properties of t1 – t6 (i.e., the terms cover the appropriate “1”s), the solution will consist of six 
implicants. 

Obviously, when a term (cube) should cover a particular output vector, the corresponding input 
vector must be contained in this cube, since the input vector implies the output. From this results that 
the minimum term satisfying the particular cover can be constructed as a minimum supercube of all the 
input vectors corresponding to the rows of the cover of ti. Moreover, this supercube must not intersect 
any I matrix term that is not included in the particular cover, since it would cover some zeros then. Let 
us assume our example. The term t1 covers vectors 4, 6 and 8. Thus, the minimum term that can be a 
candidate for t1 must be constructed as a minimum supercube of the terms 4, 6 and 8 in the input 
matrix, thus: 

 
 

00110 
10110 
10101 
-01-- 

Figure 5: The implicant t1 

t1: -01-- 00011 
t2: --00- 01100 
t3: 1-10- 10100 
t4: 01111 01010 
t5: 1-0-0 10000 
t6: 00--- 00101 

Figure 6: The final solution 



The term (-01--) has been found as a candidate for an implicant t1. Similarly, we will obtain the 
minimum implicants t1 - t6. Figure 6 shows all the minimum implicants obtained by finding the 
corresponding supercubes of the source terms, together with the output part of the resulting PLA 
matrix. 

3.3. Covering Problem Solution 

We saw in Fig. 1 that even a small subset of PIs may give the minimum solution. However, the 
quality of the final solution strongly depends on the CP solution algorithm. With a large number of 
implicants it is impossible to obtain an exact solution, since it is an NP-hard problem, thus some 
heuristic must be used. Here a large number of implicants may misguide the CP solution algorithm and 
thereby lead to a non-minimal solution. 

After an extensive testing we have decided for a greedy additive heuristic method based 
on computing the contributions (scoring functions) of terms as a criterion for their inclusion into the 
solution [15]. We construct a covering matrix A, its dimension will be denoted as (r, s). The columns 
correspond to the implicants, rows to the individual on-set terms that have to be covered. A[i, j]  = 1 if 
the implicant j covers the on-set term i, A[i, j]  = 0 otherwise. For each row its strength of coverage is 
computed as 
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After that the implicant (column) with the maximum contribution value is selected into the solution, 
the contribution values are recomputed and the process is repeated until the whole on-set is covered. 

4. BOOM-II Experimental Results 

4.1. Standard MCNC Benchmarks 

We have conducted a vast number of experiments to evaluate the performance and scalability of the 
BOOM-II system. In this subsection we will present a comparison of BOOM and FC-Min on several 
“harder” MCNC benchmarks [16]. Both the algorithms were run one iteration only. Here FC-Min 
always found a minimal solution, often in a shorter time than BOOM. Thus, presented results of 
BOOM-II would be meaningless, since it has to be run more than one iteration to take effect (BOOM 
and FC-Min is being alternated according to the FC-Min:BOOM ratio). 

The results are presented in Table 1. The “i / o / p” column indicates the numbers of the 
benchmark’s input and output variables and the number of care terms, the “lit / out / terms” shows the 
quality of the respective solution, in terms of the number of literals in the SOP form, the output cost 
and the number of product terms. The minimum solutions and smaller times are shadowed. It can be 
seen that running BOOM on these benchmarks would be ineffective (only a speedup is reached in 
some cases), however further experiments prove the contrary. For more details on the MCNC 
benchmarks see [10, 11], where the comparison with ESPRESSO results was presented. 

All the experiments were conducted on an Athlon XP2500+ PC, Windows XP. 

Table 1: MCNC Benchmarks 

 BOOM FC-Min 
bench i / o / p time [s] lit / out / terms time [s] lit / out / terms 

alcom 15 / 38 / 90 0.7 177 / 45 / 42 0.1 174 / 49 / 40 
apex1 45 / 45 / 1440 38.4 1915 / 1025 / 229 15.1 1739 / 1103 / 206 
apex2 39 / 3 / 1576 4.7 14489 / 1065 / 1041 17.3 14453 / 1075 / 1035 
apex3 54 / 50 / 1036 13.0 2537 / 821 / 326 17.7 2270 / 1022 / 280 
apex4 9 / 19 / 1907 2.9 4268 / 1426 / 530 20.5 3688 / 1731 / 436 
apex5 117 / 88 / 2710 161.5 6089 / 1192 / 1088 242.6 6089 / 1192 / 1088 
b4 33 / 23 / 680 1.8 472 / 96 / 59 0.4 437 / 109 / 54 



 BOOM FC-Min 
bench i / o / p time [s] lit / out / terms time [s] lit / out / terms 

chkn 29 / 7 / 370 0.4 1598 / 141 / 140 0.6 1598 / 141 / 140 
cordic 23 / 2 / 2105 2.7 13825 / 914 / 914 15.3 13825 / 914 / 914 
cps 24 / 109 / 855 11.1 2139 / 739 / 187 13.7 1890 / 946 / 163 
e64 65 / 65 / 327 8.8 2145 / 65 / 65 0.2 2145 / 65 / 65 
ex4 128 / 28 / 654 8.4 1649 / 279 / 279 6.7 1649 / 279 / 279 
exep 30 / 63 / 643 2.8 1175 / 110 / 110 1.65 1175 / 110 / 110 
ibm 48 / 17 / 499 0.8 882 / 173 / 173 1.2 882 / 173 / 173 
signet 39/8/3627 0.9 500 / 143 / 122 4.6 490 / 146 / 119 
soar 83/94/779 37.4 2570 / 508 / 379 17.7 2455 / 549 / 353 

4.2. Randomly Generated Problems 

As the second set of experiments randomly generated problems with varying n and p (number of 
inputs and care terms) were solved, the number of outputs was fixed to 15. For each problem size ten 
different instances were solved and the average of all the values computed. This measurement has been 
done in order to compare the quality of the final result. Each problem was solved by ESPRESSO first, 
and then by BOOM-II with different FC-Min:BOOM ratios, while the runtime was set equal to the 
runtime of ESPRESSO. 

The results are shown in Table 2. The number of input variables (i) increases horizontally, the 
number of defined terms (p) vertically. The first line in each cell shows the ESPRESSO result. The 
first number indicates the runtime, the number of literals in the SOP form follows, the third number is 
the output cost and the number of product terms is the last one. The second row describes the result 
reached by running BOOM only (no FC-Min). The runtime is omitted here, since all the runtimes are 
equal. On the other hand, the number in brackets indicates the number of iterations processed, which is 
a good measure of the speed-up. The third row describes the situation where the FC-Min:BOOM ratio 
was set to 1:1. Finally, the last row shows the results of a pure FC-Min, thus without running BOOM. 

The observations can be summarized as follows: 
• With increasing FC-Min:BOOM ratio (towards FC-Min) the speedup increases. Even when only 

three extreme ratios were used (FC-Min only, 1:1 and BOOM only), we have observed that the 
runtime grows almost linearly with the ratio. 

• FC-Min produces solutions with very few terms, especially for functions with many input 
variables (> 50), where BOOM-II outperforms ESPRESSO 

• The number of literals decreases was well, mostly due to the decreasing number of terms. 
• The output cost depends on the FC-Min:BOOM ratio only slightly, but it is always much lower 

than the output cost reached by ESPRESSO. In general, BOOM produces a solution with lower 
output cost. This is mainly due to the fact, that the solution is consisted of fewer group 
implicants. 

Table 2: Randomly generated problems 

p / n 25 50 100 

50 

2.15/233/346/49 
340/246/70(2) 
307/257/62(3) 
290/264/58(8) 

10.80/218/324/48 
294/189/61(7) 
269/190/53(11) 
252/185/50(28) 

51.96/204/309/47 
247/139/53(27) 
231/151/46(38) 
214/150/43(81) 

75 

5.62/400/513/74 
525/381/95(3) 
502/382/90(5) 
465/394/83(13) 

34.37/370/463/70 
466/276/86(12) 
433/280/76(18) 
404/279/71(47) 

154.71/357/438/68 
423/218/79(35) 
373/223/66(48) 
357/223/62(99) 

100 

11.24/581/673/99 
768/528/127(4) 
712/529/117(5) 
659/543/110(19) 

84.48/546/586/92 
665/358/111(16) 
594/362/96(24) 
571/365/92(63) 

416.29/520/564/90 
600/287/102(44) 
524/301/84(62) 
498/301/80(118) 

125 

17.75/773/845/123 
1010/616/160(4) 
950/632/149(6) 
868/674/138(22) 

157.19/706/722/113 
872/459/137(17) 
783/464/120(27) 
745/456/115(71) 

895.25/657/700/110 
765/359/122(52) 
674/377/102(69) 
650/374/99(137) 

Entry format: ESPRESSO (1st line): time [s] / #of literals / output cost / #of implicants 
 Next 3 lines: #of literals / output cost / #of implicants (iterations) 



 
It could have been apparent from this example, that a pure FC-Min always produces better results 

than BOOM (-II) and ESPRESSO. This is not true in general, especially for functions with a low 
number of inputs.  

Let us consider an example single-output function with 25 input variables and 500 defined terms. 
The results of the same minimization process are shown in Table 3. The data format is retained from 
Table 2. 

Table 3: Results for single-output function 

21.93/881/111/111 
793/98/98(33) 
852/106/106(19) 
981/124/124(15) 

 
Here the results are completely different – FC-Min is much slower than BOOM and the result 

quality is much worse as well. Thus, a proper FC-Min:BOOM ratio must always be found (e.g., 
experimentally on the particular circuits). In general, FC-Min is more advantageous for functions with 
many outputs, BOOM for low-output functions. 

4.3. Study of the Structure of the Solution 

One possibility how to estimate the "usefulness" of the incorporation of FC-Min into BOOM is to 
analyze the implicants in the solution of some problem. Particularly, we have studied the origin of the 
implicants in the final solution, and analyzed which of the two major algorithms contributes to it at 
most. 

At any time, the set of implicants in the common implicant buffer (and, of course, in the final 
solution too) can be divided into six groups: 

1. Prime implicants (of at least one output function) that have been found by BOOM only 

2. Prime implicants that have been found both by FC-Min and BOOM 

3. Prime implicants that have been produced by FC-Min and which were not found by BOOM (these 
had to be identified by a subsequent analyzis, since FC-Min does not recognize any PIs) 

4. Group implicants that have been found by BOOM only 

5. Group implicants that have been found both by FC-Min and BOOM 

6. Group implicants that have been found by FC-Min only 

These sets make a decomposition of the set of all the implicants; the union of the six subsets gives 
all the implicants, the subsets are disjoint. It can be better visualized by a Venn’s diagram: 

 

Figure 7: BOOM-II implicants 

We have minimized a randomly generated function of 20 input variables, 20 outputs, 10% of 
explicit both input and output don't cares and 500 defined terms. The ratio FC-Min:BOOM was set to 
1:1. Figure 8 shows the distribution of all the implicants that were ever produced after 50 iterations. 
We can see that 93% of them are prime implicants produced by BOOM, which seemingly puts the rest 
(i.e., all the group implicants) into an unimportant minority. However, the distribution of implicants in 
the final (and thus also the best) solution is shown in Fig. 9. Here, these make only 58% of the 
solution, while the group implicants begin to play an important role. The most important observation is 
that FC-Min significantly contributes to the solution both by group implicants and PIs. The majority of 
implicants was found by BOOM, however we must consider significantly shorter runtime of FC-Min 
comparing to BOOM (especially the IR phase). 

Let us note that the total number of implicants generated in 50 iterations was more than 40000 
(in Fig. 8), the solution consisted of 516 implicants (in Fig. 9). Thus, we can claim that BOOM often 
produces many unnecessary PIs, while FC-Min produces a low number of implicants, which often 
could form a significant part of the solution. However, to reach best results, running both the BOOM 
and FC-Min is required. 
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Figure 8, 9: Distribution of all the implicants and the implicants in the solution respectively 

5. Conclusions 
We have presented a flexible two-level Boolean minimizer constructed as a combination of two 

previously proposed methods. Each of the single methods excels in different problem sizes, and the 
nature of the solution obtained by the two algorithms differs as well. Joining them together in an 
adjustable manner allowed us to make a universal minimizer suitable for all kinds and sizes of 
problems. The time demanding implicant reduction phase can be often completely omitted and fully 
substituted by FC-Min. Criterion of the quality of the solution can be selected too, which makes 
BOOM-II a good minimizer for any hardware implementation of the circuit. The iterative 
minimization allows us to find a trade-off between the runtime and the quality of the solution. 

The BOOM-II minimizer can be downloaded for free from [17]. 
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