
Pseudorandom Testability – Study of the Effect of the
Generator Type

Petr Fišer, Hana Kubátová

Czech Technical University in Prague
Dept. of Computer Science & Engineering

Karlovo nám. 13, CZ-121 35, Prague 2, Czech Rep.
E-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

In a pseudo-random testing of combinational circuits the pattern generator produces test vectors that
are being applied to the tested circuit. The nature of the generator thus directly influences the fault
coverage achieved. In this paper we discuss an influence of the type of the pseudo-random pattern generator
on the fault coverage. In most cases the LFSR is used as a pattern generator, while its generating
polynomial is primitive to ensure a maximal period. We show that using primitive polynomials is not
necessary, and in most cases even undesirable. This fact is documented by statistical graphs. The necessity
of properly selecting a generating polynomial and a LFSR seed is shown here, by designing a mixed-mode
BIST for the ISCAS benchmarks.

1. Introduction

As the complexity of the present VLSI
devices increases to millions of gates, the chips
are becoming untestable using standard
manufacture external ATE testers. The test
lengths rapidly increase, and so do the testing
times and ATE memory requirements. Hence
the built-in self-test (BIST) was established as
a necessary part of VLSI circuits. Then the
circuit is able to test itself without using any
ATE equipment, or when used together with
an external tester, the BIST significantly
reduces the test time and tester memory
demands.

Up to now many BIST techniques were
developed [1, 2]. A vast majority of them use a
pseudo-random pattern generator (PRPG) to
produce test vectors that detect the
easy-to-detect faults, which mostly represent
more than 90% of the total faults. For the
remaining faults, the test vectors are applied
either externally, or they are generated by the
BIST equipment itself.

As a PRPG a linear feedback shift register
(LFSR) is mostly used, for its simplicity.

A general structure of a BIST is shown in
Fig. 1. The patterns are generated by a test
pattern generator (TPG), then they are fed to

the circuit-under-test (CUT) and the circuit’s
responses are evaluated.

Figure 1: The BIST scheme

Test patterns might be applied to the
circuit in parallel, which is denoted as a
test-per-clock BIST, or serially (test-per-scan).

The design of the TPG has a key
importance for the whole BIST, since it
determines the fault coverage achieved and the
area overhead of the BIST equipment.
A simple LFSR often cannot ensure
satisfactory fault coverage, thus it has to be
augmented in some way. In some approaches
the LFSR code word sequence is being
modified, to produce patterns detecting more
faults. These methods imply reseeding the
LFSR during the test, eventually the generating
polynomial is being modified too [3], or the
LFSR patterns are being modified by an
additional logic [4, 5].

Best results are being produced by
mixed-mode BIST methods. Here some of the
PRPG patterns are applied to the circuit

unmodified to detect the easy-to-detect faults.
After that either deterministic or somehow
modified PRPG patterns are generated, to
detect the remaining faults [2, 5, 6].

In a case of a mixed-mode testing, properly
selecting a PRPG is very important. Detecting
as many faults as possible by a PRPG is
desired, so the additional logic is maximally
reduced. This is the main issue addressed in
this paper. We introduce statistics on the fault
coverages for the ISCAS benchmarks, using
different PRPGs. Influence of the PRPG on the
total BIST area overhead is shown for the
column-matching method [7].

The paper is organized as follows: basic
principles of the PRPGs are introduced in
Section 2, the statistics of the fault coverages
are presented in Section 3, Section 4 briefly
describes the mixed-mode BIST principles,
together with the column-matching BIST
method and the results obtained using this
method. Section 5 concludes the paper.

2. The PRPG Structure

Generally, the PRPGs are easily
implementable circuits that generate
deterministic code words having random
characteristics. These code words are then
either fed directly to the CUT inputs, or they
are modified by some additional circuitry.

The most common PRPG structures are
linear feedback shift registers (LFSRs) or
cellular automata (CA). An n-bit (n-stage)
LFSR is a linear sequential circuit consisting of
D flip-flops and XOR gates generating code
words (patterns) of a cyclic code. The structure
of an n-stage LFSR with internal XORs is
shown in Fig. 2.

Figure 2. LFSR structure

The register has n parallel outputs drawn
from the outputs of the D flip-flops, one
flip-flop output can be used as a serial output
of a register.

The coefficients c1 – cn-1 express whether
there exists (1) a connection from the feedback
to the corresponding XOR gate or not (0), thus
it determines whether there is a respective
XOR gate present or the flip-flops are
connected directly. The feedbacks leading to
the XOR gates are also referenced as taps.

The sequence of code words that are
produced by a LFSR can be described by a
generating polynomial g(x) in GF(2n):

g(x) = xn

 + cn-1x
n-1 + cn-2x

n-2 + ... + c1x
1 + 1

If the generating polynomial is primitive,

the LFSR has a maximum period 2n-1, thus
it produces 2n-1 different patterns.

The initial state of a register (initial
values of the flip-flops) is called a seed.

3. Fault Coverage Statistics

In order to determine the stuck-at fault
coverage reached by a pseudo-random test
sequence generated by a PRPG, we have made
extensive experiments on the standard ISCAS
benchmarks, both the combinational ones [10]
and the full-scan versions of the sequential ones
[11]. In all the examples the FSIM fault
simulator [12] was used.

3.1. Pseudo-Random Testability of the
Circuits

In order to design a fast BIST with a low
area overhead, it is necessary to thoroughly
study the nature of a circuit, for which the
BIST is being designed. Pseudo-random
testability of a particular circuit strictly depends
on the number of the hard-to-detect faults. For
some circuits, it is possible to apply an
unmodified LFSR sequence of code words to
fully test it in a reasonable number of cycles,
while some circuits are particularly untestable
by this way.

We have studied the pseudo-random
testability of the ISCAS benchmarks, using
standard LFSRs. Each benchmark was tested
1000-times using different LFSR polynomials
and seeds. Both the polynomials and seeds
were randomly generated, however a
satisfactory period length was ensured. The

number of the LFSRs stages was set to the
number of the CUT inputs. The results of a
simulation of a selected set of benchmarks are
shown in Table 1. The “i” column shows the
number of the benchmark inputs, “range”
indicates the range of the encountered number
of the test patterns to fully test the circuit (in
those 1000 samples), while the statistic average
value is shown in the last column.

For some benchmarks the range has not
been evaluated, for an extremely large number
of patterns needed to fully test the circuit
(more than 10 M).

Table 1. Pseudo-random testability

bench i range avg
c17 5 2 – 33 4
c432 36 250 – 120 600
c499 41 300 – 6 K 1 200
c880 60 2 500 – 57 K 13 K
c1355 41 800 – 12 K 2 800
c1908 33 3 K – 77 K 12 K
c2670 233 2.4 M – 12.5 M 4.4 M
c3540 50 5 K – 174 K 32 K
c5315 178 1 400 – 5 K 2 500
c6288 32 33 – 474 131
c7552 207 > 100 M
s27 7 2 – 192 29
s208.1 18 1 400 – 26 K 6 K
s298 17 100 – 1000 500
s344 24 60 – 1000 250
s349 24 70 – 1000 250
s382 24 150 – 2000 500
s386 13 1 400 – 15 K 3 600
s400 24 120 – 2000 500
s420.1 34 165 K – 4 M 1.4 M
s444 24 130 – 2000 500
s510 25 300 – 2500 900
s526 24 5 K – 67 K 19 K
s641 54 196 K – 3.2 M 1 M
s713 54 294 K – 3.4 M 1 M
s820 23 10 K - 78 K 27 K
s832 23 9 K – 75 K 27 K
s838 67 > 100 M
s953 45 15 K – 98 K 46 K
s1196 32 196 K – 3.2 M 1 M
s1238 32 21 K – 489 K 118 K
s1423 91 9 K – 138 K 55 K
s1488 14 2500 – 24 K 6 800
s1494 14 2200 – 23 K 5 K
s5378 214 50 K – 196 K 82 K
s9234.1 247 > 10 M
s13207.1 700 97 K – 879 K 329 K
s15850.1 611 > 10 M
s35932 1763 150 – 500 230
s38417 1664 > 10 M
s38584.1 1464 > 1 G

It can be seen that the number of

pseudo-random patterns needed to fully test

the circuits notably vary. The distribution of
the number of required patterns follows the
curve shown in Fig. 3. This particular curve
corresponds to the c1908 circuit.

0 10000 20000 30000 40000 50000 60000 70000 80000
0

50

100

150

200

250

300

350

c1908

F
re

q
u

en
c

y

LFSR Cycles

Figure 3. Distribution of the number of the patterns to

reach full fault coverage for c1908

3.2. Influence of the PRPG on the Test
Length

In most methods exploiting a LFSR as a
pseudo-random pattern generator its
generating polynomial is chosen to be primitive
to provide the longest period of the code
words generated. In this Subsection we show
that it is not necessary to use primitive
polynomials. We have investigated the
influence of the number of the LFSR taps on
the testing capability. In particular, we have
studied the necessary number of patterns
needed to cover all the faults in a circuit (like in
Subsection 3.1), while varying the number of
the LFSR taps. For each LFSR a satisfactory
period was ensured, by a simulation of its run.
The results of the experiment are shown in
Fig. 4. Here the number of LFSR cycles needed
to cover all the faults in the c1355 circuit is
shown. For each LFSR size 100 different
LFSRs were produced, differing both in the tap
positions and the seed. Thus, for the circuit
used (having 40 inputs) 3900 different LFSRs
were produced. The LFSRs 0-99 correspond to
the 1-tap LFSRs, 100-199 to the 2-tap LFSRs,
and so on. It can be observed that the number
of taps does not influence the fault coverage
capability at all; the test lengths are steadily
distributed. Thus, we can conclude that the
most advantageous LFSR to use is one of the
1-tap LFSRs, since its area overhead is the
smallest one. In most cases a 1-tap LFSR
having a satisfactory period can be found.

Using primitive polynomials thus becomes
counterproductive, since the number of taps is
mostly bigger than one here and they do not
bring any contribution.

0 500 1000 1500 2000 2500 3000 3500 4000
0

2000

4000

6000

8000

10000

12000
c1355

C
yc

le
s

LFSR

Figure 4. Influence of the LFSR

4. Mixed-Mode BIST Principles

When pseudo-random patterns are being
successively applied to the CUT, the number of
faults detected by these patterns follows the
saturation curve, as it is shown in Fig. 5. Here
the LFSR patterns were gradually applied to
the s1196 ISCAS benchmark, while the number
of covered faults was recorded. It can be
observed that 90% of the faults were covered
in the first 1000 cycles, while 60 000 cycles
were needed to reach a complete fault
coverage.

0 10000 20000 30000 40000 50000 60000
0

200

400

600

800

1000

1200

1400

F
au

lt
s

 C
o

v
er

ed

Test Patterns

Figure 5. Fault Coverage Curve

Thus, it is advantageous to apply a
relatively small number of pseudo-random
patterns to cover the easy-to-detect faults, and
then produce several deterministic patterns to
cover the rest. This approach is called a
mixed-mode BIST.

There has to be found a trade-off between
the number of pseudo-random and
deterministic patterns. A probability of
covering a given number of faults by a PRPG is
illustrated by Fig. 6. Here sets of 50, 100, 500

and 1000 LFSR patterns were applied to the
c3540 circuit, 1000 samples for each test size.
The distribution of the number of faults which
remained undetected is shown here. For a low
number of patterns many faults are left
undetected, while also their number varies a
lot. With an increasing number of the test
patterns the number of undetected faults
rapidly decreases, while the variance of this
number decreases as well.

200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800
c3540

50 patterns

100 patterns

500 patterns

1000 patterns

F
re

qu
en

cy
Undetected Faults

Figure 6. Pseudo-random fault coverage

4.1. Column-Matching BIST

The column-matching BIST method is
based on a transformation of the LFSR code
words into deterministic test patterns
pre-computed by some ATPG tool. This
transformation is being done by a
combinational block, the Output Decoder. The
method is designed for combinational or full-
scan circuits, thus the order of the test patterns
applied to the CUT is insignificant. Moreover,
not all the LFSR patterns have to be
transformed info test patterns; the excessive
ones just do not test any faults.

In our column-matching method we try to
assign the LFSR code words to the
deterministic patterns, so that some of the
columns are equal. Then the decoding logic
needed to implement the matched column
would be reduced to a mere wire connecting
the decoder output with its respective input.
The unmatched outputs have to be synthesized
by some Boolean minimizer. For more detailed
description see [13, 14].

This principle was further extended to
support the mixed-mode testing [7]. The BIST
run is divided into two disjoint phases. First,
the circuit is tested using an unmodified
sequence of LFSR code words, detecting the

easy-to-detect faults. For the rest of the faults
deterministic test patterns are computed by
Atalanta ATPG tool [15]. These vectors are to
be produced by the Decoder. There has to be
some additional logic present, to switch
between the two phases. It is implemented as
an array of multiplexers, one for each CUT
input, however we try to eliminate the MUXes
as well, by introducing direct matches [7]. The
structure of a mixed-mode BIST is shown in
Fig. 7.

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

Figure 7. Mixed-mode BIST structure

4.2. The Test Lengths

It is clear that choosing appropriate lengths
of the two phases is of a key importance.
Maximum faults should be detected in the
pseudo-random phase, while its length should
be acceptable. According to Fig. 5 the majority
of faults can be detected by a few initial
patterns and for the remaining faults
deterministic patterns have to be produced.
The more faults remain undetected, the more
ATPG vectors are needed, which also
complicates the Decoder design, in terms of an
area overhead. It can be compensated by a
longer run of the deterministic phase to some
extent, however not significantly.

The influence of the length of the initial
phase on the final result is illustrated by
Table 2. The lengths of the two phases are
shown in the “rand / det.” column. After the
“rand” pseudo-random (unmodified) patterns
are applied to the CUT, “ud.” faults were left
undetected and “vct.” deterministic vectors
were produced to detect them. These vectors
are to be generated from additional “det.”
LFSR patterns by the Decoder. The area
overhead of the BIST decoder synthesized by a
column-matching method is indicated in the
“GEs” column. It is given in terms of gate
equivalents [16]. Only the logic of the decoder
and the switching logic is considered, the
overhead of the LFSR is not included here.

Table 2. Influence of the test length

bench rand / det. ud. vct. GEs
c1355 500 / 500 31 12 70
 1000 / 1000 8 1 15
c1908 1000 / 1000 46 30 46.5
 2000 / 1000 19 10 7.5
c3540 1000 / 1000 33 22 15
 2000 / 1000 8 8 7.5
 5000 / 1000 3 3 6
s420 400 / 600 40 30 24.5
 1000 / 1000 35 19 25.5
 3000 / 1000 29 17 27
s526 500 / 500 21 17 30.5
 1000 / 1000 12 11 4.5
 2000 / 1000 7 6 4.5
s641 1000 / 500 12 9 21
 3000 / 1000 8 7 15
 5000 / 1000 7 6 16.5
s820 1000 / 1000 70 28 63
 5000 / 5000 34 14 0
s838 1000 / 1000 129 72 120
 5000 / 1000 105 56 130
 10000 / 1000 106 62 110
s1196 1000 / 1000 89 54 50.5
 5000 / 1000 25 19 28.5

It can be seen that when increasing the
length of the pseudo-random phase the BIST
overhead decreases to some extent. In some
cases a significant decrease of the overhead is
reached for a small increase of the test length
(c1355, c1908, s820). In some cases the
improvement is negligible even when the test
length is significantly increased (s641, s838).
Sometimes a longer pseudo-random phase
causes even an increase of the area overhead
(s420, s641). This is due to the fact that the
amount of the test don’t cares decrease for
smaller test size, which complicates the
decoder synthesis.

4.3. Influence of the LFSR

Not only the length of the pseudo-random
test influences the fault coverage reached in the
first phase. The number of detected faults also
depends on the pseudo-random sequence, thus
it is influenced by the LFSR polynomial and
seed. This is illustrated by Figures 4 and 6. For
different LFSRs, significantly different results
are produced, even when the lengths of the
phases are retained. For illustration, we have
designed a BIST for the c1908 circuit. The
pseudo-random phase was run for 2000 cycles,

the LFSR polynomial was set constant (1-tap)
and we have repeatedly randomly reseeded it.
Then the deterministic phase was run for 1000
clock cycles. The simulation results are shown
in Table 3. Again, the “ud.” column indicates
the number of undetected faults in the first
phase, “vct.” gives the number of deterministic
vectors, “GEs” shows the complexity of the
BIST. The entries are sorted by the number of
undetected faults.

We can see that the complexity of the final
circuit strictly depends on the LFSR seed
selected – it varies from 7.5 GEs up to 69 GEs.

Computing a proper LFSR seed and/or
generating polynomial analytically is impossible
for practical examples, due to the complexity
of this problem. Thus, in praxis we repeatedly
reseed the polynomial and conduct a fault
simulation several times, while we pick out the
best seed for further processing. The fault
simulation is often a very fast process, thus it
does not significantly influence the BIST
design time.

Table 3. Influence of the LFSR seed

ud. vct. GEs ud. vct. GEs
19 10 7.5 33 15 37
21 9 19.5 34 16 33
24 13 23.5 36 18 38
26 15 28 37 20 40.5
26 13 25 39 22 53
28 15 37.5 44 26 40
28 14 22.5 46 22 42.5
30 14 36 48 24 44
32 16 31 52 28 63.5
33 17 27.5 62 34 69

5. Conclusions

We have presented a discussion on the
influence of the pseudo-random pattern
generator type on its fault detection capability,
which directly influences the complexity of the
resulting BIST circuit. We have shown that
selecting a 1-tap LFSR is mostly a good
solution, for its satisfactory period length and
fault coverage, while the area overhead is
minimum.

The claims were confirmed experimentally
on a BIST design for ISCAS benchmarks,
however the conclusions made can be applied
to any circuits.

Acknowledgement

This research was supported by a grant
GA 102/04/0737 and MSM 212300014

References
[1] Agarwal, V., K., Kime, C., R., Saluja, K., K.: A tutorial

on BIST, part 1: Principles, IEEE Design & Test of
Computers, vol. 10, No.1 March 1993, pp.73-83, part 2:
Applications, No.2 June 1993, pp.69-77

[2] Touba, N., A., McCluskey, E., J.: Synthesis Techniques
for Pseudo-Random Built-In Self-Test, Technical Report,
(CSL TR # 96-704), Dept. of Electrical Engineering and
Computer Science Stanford University, August 1996

[3] Hellebrand, S. et al.: Built-In Test for Circuits with Scan
Based on Reseeding of Multiple-Polynomial Linear
Feedback Shift Registers. IEEE Trans. on Comp., vol. 44,
No. 2, February 1995, pp. 223-233

[4] Hartmann, J., Kemnitz, G.: How to Do Weighted Random
Testing for BIST, Proc. of International Conference on
Computer-Aided Design (ICCAD), pp. 568-571, 1993

[5] Chatterjee, M., Pradhan, D.K.: A BIST Pattern Generator
Design for Near-Perfect Fault Coverage, IEEE
Transactions on Computers, vol. 52, no. 12, December
2003, pp. 1543-1558

[6] Touba, N.A. : Synthesis of mapping logic for generating
transformed pseudo-random patterns for BIST, Proc. of
International Test Conference, pp. 674-682, 1995

[7] Fišer, P., Kubátová, H.: An Efficient Mixed-Mode BIST
Technique, DDECS'04, Tatranská Lomnica, SK, 18.-
21.4.2004, pp. 227-230

[8] Aloke, K., Chaudhuri, D.P.: Vector Space Theoretic
Analysis of Additive Cellular Automata and Its
Application of Pseudoexhaustive Test Pattern Generation,
IEEE Transactions on Computers, Vol. 42, No. 3, March
1993, pp. 340-352

[9] Novák, O., Hlavicka, J.: Design of a Cellular Automaton
for Efficient Test Pattern Generation. Proc. IEEE ETW
1998, Barcelona, Spain, pp. 30-31

[10] Brglez, F., Fujiwara, H.: A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortan, Proc. of International Symposium on
Circuits and Systems, pp. 663-698, 1985

[11] Brglez, F., Bryan, D., Kozminski, K.: Combinational
Profiles of Sequential Benchmark Circuits, Proc. of
International Symposium of Circuits and Systems, pp.
1929-1934, 1989

[12] Lee, H.K., Ha, D.S.: An Efficient Forward Fault
Simulation Algorithm Based on the Paralel Pattern Single
Fault Propagation, Proc. of the 1991 International Test
Conference, pp. 946-955, Oct. 1991.

[13] Fišer, P., Hlavi�ka, J.: Column-Matching Based BIST
Design Method. Proc. 7th IEEE Europian Test Workshop
(ETW'02), Corfu (Greece), 26.-29.5.2002, pp. 15-16

[14] Fišer, P., Hlavi�ka, J., Kubátová, H.: Column-Matching
BIST Exploiting Test Don't-Cares. Proc. 8th IEEE
Europian Test Workshop (ETW'03), Maastricht (The
Netherlands), 25.-28.5.2003, pp. 215-216

[15] Lee, H.K., Ha, D.S.: Atalanta: an Efficient ATPG for
Combinational Circuits, Technical Report, 93-12, Dep't of
Electrical Eng., Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1993

[16] De Micheli, G.: Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.

