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Abstract 

In a pseudo-random testing of combinational circuits the pattern generator produces test vectors that 
are being applied to the tested circuit. The nature of the generator thus directly influences the fault 
coverage achieved. In this paper we discuss an influence of the type of the pseudo-random pattern generator 
on the fault coverage. In most cases the LFSR is used as a pattern generator, while its generating 
polynomial is primitive to ensure a maximal period. We show that using primitive polynomials is not 
necessary, and in most cases even undesirable. This fact is documented by statistical graphs. The necessity 
of properly selecting a generating polynomial and a LFSR seed is shown here, by designing a mixed-mode 
BIST for the ISCAS benchmarks. 
 

1. Introduction 

As the complexity of the present VLSI 
devices increases to millions of gates, the chips 
are becoming untestable using standard 
manufacture external ATE testers. The test 
lengths rapidly increase, and so do the testing 
times and ATE memory requirements. Hence 
the built-in self-test (BIST) was established as 
a necessary part of VLSI circuits. Then the 
circuit is able to test itself without using any 
ATE equipment, or when used together with 
an external tester, the BIST significantly 
reduces the test time and tester memory 
demands. 

Up to now many BIST techniques were 
developed [1, 2]. A vast majority of them use a 
pseudo-random pattern generator (PRPG) to 
produce test vectors that detect the 
easy-to-detect faults, which mostly represent 
more than 90% of the total faults. For the 
remaining faults, the test vectors are applied 
either externally, or they are generated by the 
BIST equipment itself. 

As a PRPG a linear feedback shift register 
(LFSR) is mostly used, for its simplicity. 

A general structure of a BIST is shown in 
Fig. 1. The patterns are generated by a test 
pattern generator (TPG), then they are fed to 

the circuit-under-test (CUT) and the circuit’s 
responses are evaluated. 

 
Figure 1: The BIST scheme 

Test patterns might be applied to the 
circuit in parallel, which is denoted as a 
test-per-clock BIST, or serially (test-per-scan). 

The design of the TPG has a key 
importance for the whole BIST, since it 
determines the fault coverage achieved and the 
area overhead of the BIST equipment. 
A simple LFSR often cannot ensure 
satisfactory fault coverage, thus it has to be 
augmented in some way. In some approaches 
the LFSR code word sequence is being 
modified, to produce patterns detecting more 
faults. These methods imply reseeding the 
LFSR during the test, eventually the generating 
polynomial is being modified too [3], or the 
LFSR patterns are being modified by an 
additional logic [4, 5]. 

Best results are being produced by 
mixed-mode BIST methods. Here some of the 
PRPG patterns are applied to the circuit 



unmodified to detect the easy-to-detect faults. 
After that either deterministic or somehow 
modified PRPG patterns are generated, to 
detect the remaining faults [2, 5, 6]. 

In a case of a mixed-mode testing, properly 
selecting a PRPG is very important. Detecting 
as many faults as possible by a PRPG is 
desired, so the additional logic is maximally 
reduced. This is the main issue addressed in 
this paper. We introduce statistics on the fault 
coverages for the ISCAS benchmarks, using 
different PRPGs. Influence of the PRPG on the 
total BIST area overhead is shown for the 
column-matching method [7]. 

The paper is organized as follows: basic 
principles of the PRPGs are introduced in 
Section 2, the statistics of the fault coverages 
are presented in Section 3, Section 4 briefly 
describes the mixed-mode BIST principles, 
together with the column-matching BIST 
method and the results obtained using this 
method. Section 5 concludes the paper. 

2. The PRPG Structure 

Generally, the PRPGs are easily 
implementable circuits that generate 
deterministic code words having random 
characteristics. These code words are then 
either fed directly to the CUT inputs, or they 
are modified by some additional circuitry. 

The most common PRPG structures are 
linear feedback shift registers (LFSRs) or 
cellular automata (CA). An n-bit (n-stage) 
LFSR is a linear sequential circuit consisting of 
D flip-flops and XOR gates generating code 
words (patterns) of a cyclic code. The structure 
of an n-stage LFSR with internal XORs is 
shown in Fig. 2. 

 

 
Figure 2. LFSR structure 

The register has n parallel outputs drawn 
from the outputs of the D flip-flops, one 
flip-flop output can be used as a serial output 
of a register. 

The coefficients c1 – cn-1 express whether 
there exists (1) a connection from the feedback 
to the corresponding XOR gate or not (0), thus 
it determines whether there is a respective 
XOR gate present or the flip-flops are 
connected directly. The feedbacks leading to 
the XOR gates are also referenced as taps. 

The sequence of code words that are 
produced by a LFSR can be described by a 
generating polynomial g(x) in GF(2n): 

 
g(x) = xn

 + cn-1x
n-1 + cn-2x

n-2 + ... + c1x
1 + 1 

 
If the generating polynomial is primitive, 

the LFSR has a maximum period 2n-1, thus 
it produces 2n-1 different patterns. 

The initial state of a register (initial 
values of the flip-flops) is called a seed. 

3. Fault Coverage Statistics 

In order to determine the stuck-at fault 
coverage reached by a pseudo-random test 
sequence generated by a PRPG, we have made 
extensive experiments on the standard ISCAS 
benchmarks, both the combinational ones [10] 
and the full-scan versions of the sequential ones 
[11]. In all the examples the FSIM fault 
simulator [12] was used. 

3.1. Pseudo-Random Testability of the 
Circuits 

In order to design a fast BIST with a low 
area overhead, it is necessary to thoroughly 
study the nature of a circuit, for which the 
BIST is being designed. Pseudo-random 
testability of a particular circuit strictly depends 
on the number of the hard-to-detect faults. For 
some circuits, it is possible to apply an 
unmodified LFSR sequence of code words to 
fully test it in a reasonable number of cycles, 
while some circuits are particularly untestable 
by this way. 

We have studied the pseudo-random 
testability of the ISCAS benchmarks, using 
standard LFSRs. Each benchmark was tested 
1000-times using different LFSR polynomials 
and seeds. Both the polynomials and seeds 
were randomly generated, however a 
satisfactory period length was ensured. The 



number of the LFSRs stages was set to the 
number of the CUT inputs. The results of a 
simulation of a selected set of benchmarks are 
shown in Table 1. The “i”  column shows the 
number of the benchmark inputs, “range”  
indicates the range of the encountered number 
of the test patterns to fully test the circuit (in 
those 1000 samples), while the statistic average 
value is shown in the last column. 

For some benchmarks the range has not 
been evaluated, for an extremely large number 
of patterns needed to fully test the circuit 
(more than 10 M). 

Table 1. Pseudo-random testability 

bench i range avg 
c17 5 2 – 33 4 
c432 36 250 – 120 600 
c499 41 300 – 6 K 1 200 
c880 60 2 500 – 57 K 13 K 
c1355 41 800 – 12 K 2 800 
c1908 33 3 K – 77 K 12 K 
c2670 233 2.4 M – 12.5 M 4.4 M 
c3540 50 5 K – 174 K 32 K 
c5315 178 1 400 – 5 K 2 500 
c6288 32 33 – 474 131 
c7552 207 > 100 M  
s27 7 2 – 192 29 
s208.1 18 1 400 – 26 K 6 K 
s298 17 100 – 1000 500 
s344 24 60 – 1000 250 
s349 24 70 – 1000 250 
s382 24 150 – 2000 500 
s386 13 1 400 – 15 K 3 600 
s400 24 120 – 2000 500 
s420.1 34 165 K – 4 M 1.4 M 
s444 24 130 – 2000 500 
s510 25 300 – 2500 900 
s526 24 5 K – 67 K 19 K 
s641 54 196 K – 3.2 M 1 M 
s713 54 294 K – 3.4 M 1 M 
s820 23 10 K - 78 K 27 K 
s832 23 9 K – 75 K 27 K 
s838 67 > 100 M  
s953 45 15 K – 98 K 46 K 
s1196 32 196 K – 3.2 M 1 M 
s1238 32 21 K – 489 K 118 K 
s1423 91 9 K – 138 K 55 K 
s1488 14 2500 – 24 K 6 800 
s1494 14 2200 – 23 K 5 K 
s5378 214 50 K – 196 K 82 K 
s9234.1 247 > 10 M  
s13207.1 700 97 K – 879 K 329 K 
s15850.1 611 > 10 M  
s35932 1763 150 – 500 230 
s38417 1664 > 10 M  
s38584.1 1464 > 1 G  

 
It can be seen that the number of 

pseudo-random patterns needed to fully test 

the circuits notably vary. The distribution of 
the number of required patterns follows the 
curve shown in Fig. 3. This particular curve 
corresponds to the c1908 circuit. 
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Figure 3. Distribution of the number of the patterns to 

reach full fault coverage for c1908 

3.2. Influence of the PRPG on the Test 
Length 

In most methods exploiting a LFSR as a 
pseudo-random pattern generator its 
generating polynomial is chosen to be primitive 
to provide the longest period of the code 
words generated. In this Subsection we show 
that it is not necessary to use primitive 
polynomials. We have investigated the 
influence of the number of the LFSR taps on 
the testing capability. In particular, we have 
studied the necessary number of patterns 
needed to cover all the faults in a circuit (like in 
Subsection 3.1), while varying the number of 
the LFSR taps. For each LFSR a satisfactory 
period was ensured, by a simulation of its run. 
The results of the experiment are shown in 
Fig. 4. Here the number of LFSR cycles needed 
to cover all the faults in the c1355 circuit is 
shown. For each LFSR size 100 different 
LFSRs were produced, differing both in the tap 
positions and the seed. Thus, for the circuit 
used (having 40 inputs) 3900 different LFSRs 
were produced. The LFSRs 0-99 correspond to 
the 1-tap LFSRs, 100-199 to the 2-tap LFSRs, 
and so on. It can be observed that the number 
of taps does not influence the fault coverage 
capability at all; the test lengths are steadily 
distributed. Thus, we can conclude that the 
most advantageous LFSR to use is one of the 
1-tap LFSRs, since its area overhead is the 
smallest one. In most cases a 1-tap LFSR 
having a satisfactory period can be found. 



Using primitive polynomials thus becomes 
counterproductive, since the number of taps is 
mostly bigger than one here and they do not 
bring any contribution. 
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Figure 4. Influence of the LFSR 

4. Mixed-Mode BIST Principles 

When pseudo-random patterns are being 
successively applied to the CUT, the number of 
faults detected by these patterns follows the 
saturation curve, as it is shown in Fig. 5. Here 
the LFSR patterns were gradually applied to 
the s1196 ISCAS benchmark, while the number 
of covered faults was recorded. It can be 
observed that 90% of the faults were covered 
in the first 1000 cycles, while 60 000 cycles 
were needed to reach a complete fault 
coverage.  
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Figure 5. Fault Coverage Curve 

Thus, it is advantageous to apply a 
relatively small number of pseudo-random 
patterns to cover the easy-to-detect faults, and 
then produce several deterministic patterns to 
cover the rest. This approach is called a 
mixed-mode BIST. 

There has to be found a trade-off between 
the number of pseudo-random and 
deterministic patterns. A probability of 
covering a given number of faults by a PRPG is 
illustrated by Fig. 6. Here sets of 50, 100, 500 

and 1000 LFSR patterns were applied to the 
c3540 circuit, 1000 samples for each test size. 
The distribution of the number of faults which 
remained undetected is shown here. For a low 
number of patterns many faults are left 
undetected, while also their number varies a 
lot. With an increasing number of the test 
patterns the number of undetected faults 
rapidly decreases, while the variance of this 
number decreases as well. 
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Figure 6. Pseudo-random fault coverage 

4.1. Column-Matching BIST 

The column-matching BIST method is 
based on a transformation of the LFSR code 
words into deterministic test patterns 
pre-computed by some ATPG tool. This 
transformation is being done by a 
combinational block, the Output Decoder. The 
method is designed for combinational or full-
scan circuits, thus the order of the test patterns 
applied to the CUT is insignificant. Moreover, 
not all the LFSR patterns have to be 
transformed info test patterns; the excessive 
ones just do not test any faults. 

In our column-matching method we try to 
assign the LFSR code words to the 
deterministic patterns, so that some of the 
columns are equal. Then the decoding logic 
needed to implement the matched column 
would be reduced to a mere wire connecting 
the decoder output with its respective input. 
The unmatched outputs have to be synthesized 
by some Boolean minimizer. For more detailed 
description see [13, 14].  

This principle was further extended to 
support the mixed-mode testing [7]. The BIST 
run is divided into two disjoint phases. First, 
the circuit is tested using an unmodified 
sequence of LFSR code words, detecting the 



easy-to-detect faults. For the rest of the faults 
deterministic test patterns are computed by 
Atalanta ATPG tool [15]. These vectors are to 
be produced by the Decoder. There has to be 
some additional logic present, to switch 
between the two phases. It is implemented as 
an array of multiplexers, one for each CUT 
input, however we try to eliminate the MUXes 
as well, by introducing direct matches [7]. The 
structure of a mixed-mode BIST is shown in 
Fig. 7.  

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

 
Figure 7. Mixed-mode BIST structure 

4.2. The Test Lengths 

It is clear that choosing appropriate lengths 
of the two phases is of a key importance. 
Maximum faults should be detected in the 
pseudo-random phase, while its length should 
be acceptable. According to Fig. 5 the majority 
of faults can be detected by a few initial 
patterns and for the remaining faults 
deterministic patterns have to be produced. 
The more faults remain undetected, the more 
ATPG vectors are needed, which also 
complicates the Decoder design, in terms of an 
area overhead. It can be compensated by a 
longer run of the deterministic phase to some 
extent, however not significantly. 

The influence of the length of the initial 
phase on the final result is illustrated by 
Table 2. The lengths of the two phases are 
shown in the “rand / det.”  column. After the 
“rand”  pseudo-random (unmodified) patterns 
are applied to the CUT, “ud.”  faults were left 
undetected and “vct.”  deterministic vectors 
were produced to detect them. These vectors 
are to be generated from additional “det.”  
LFSR patterns by the Decoder. The area 
overhead of the BIST decoder synthesized by a 
column-matching method is indicated in the 
“GEs”  column. It is given in terms of gate 
equivalents [16]. Only the logic of the decoder 
and the switching logic is considered, the 
overhead of the LFSR is not included here. 

Table 2. Influence of the test length 

bench rand / det. ud. vct. GEs 
c1355 500 / 500 31 12 70 
 1000 / 1000 8 1 15 
c1908 1000 / 1000 46 30 46.5 
 2000 / 1000 19 10 7.5 
c3540 1000 / 1000 33 22 15 
 2000 / 1000 8 8 7.5 
 5000 / 1000 3 3 6 
s420 400 / 600 40 30 24.5 
 1000 / 1000 35 19 25.5 
 3000 / 1000 29 17 27 
s526 500 / 500 21 17 30.5 
 1000 / 1000 12 11 4.5 
 2000 / 1000 7 6 4.5 
s641 1000 / 500 12 9 21 
 3000 / 1000 8 7 15 
 5000 / 1000 7 6 16.5 
s820 1000 / 1000 70 28 63 
 5000 / 5000 34 14 0 
s838 1000 / 1000 129 72 120 
 5000 / 1000 105 56 130 
 10000 / 1000 106 62 110 
s1196 1000 / 1000 89 54 50.5 
 5000 / 1000 25 19 28.5 
 

It can be seen that when increasing the 
length of the pseudo-random phase the BIST 
overhead decreases to some extent. In some 
cases a significant decrease of the overhead is 
reached for a small increase of the test length 
(c1355, c1908, s820). In some cases the 
improvement is negligible even when the test 
length is significantly increased (s641, s838). 
Sometimes a longer pseudo-random phase 
causes even an increase of the area overhead 
(s420, s641). This is due to the fact that the 
amount of the test don’t cares decrease for 
smaller test size, which complicates the 
decoder synthesis. 

4.3. Influence of the LFSR 

Not only the length of the pseudo-random 
test influences the fault coverage reached in the 
first phase. The number of detected faults also 
depends on the pseudo-random sequence, thus 
it is influenced by the LFSR polynomial and 
seed. This is illustrated by Figures 4 and 6. For 
different LFSRs, significantly different results 
are produced, even when the lengths of the 
phases are retained. For illustration, we have 
designed a BIST for the c1908 circuit. The 
pseudo-random phase was run for 2000 cycles, 



the LFSR polynomial was set constant (1-tap) 
and we have repeatedly randomly reseeded it. 
Then the deterministic phase was run for 1000 
clock cycles. The simulation results are shown 
in Table 3. Again, the “ud.”  column indicates 
the number of undetected faults in the first 
phase, “vct.”  gives the number of deterministic 
vectors, “GEs”  shows the complexity of the 
BIST. The entries are sorted by the number of 
undetected faults. 

We can see that the complexity of the final 
circuit strictly depends on the LFSR seed 
selected – it varies from 7.5 GEs up to 69 GEs. 

Computing a proper LFSR seed and/or 
generating polynomial analytically is impossible 
for practical examples, due to the complexity 
of this problem. Thus, in praxis we repeatedly 
reseed the polynomial and conduct a fault 
simulation several times, while we pick out the 
best seed for further processing. The fault 
simulation is often a very fast process, thus it 
does not significantly influence the BIST 
design time. 

Table 3. Influence of the LFSR seed 

ud. vct. GEs  ud. vct. GEs 
19 10 7.5  33 15 37 
21 9 19.5  34 16 33 
24 13 23.5  36 18 38 
26 15 28  37 20 40.5 
26 13 25  39 22 53 
28 15 37.5  44 26 40 
28 14 22.5  46 22 42.5 
30 14 36  48 24 44 
32 16 31  52 28 63.5 
33 17 27.5  62 34 69 

5. Conclusions 

We have presented a discussion on the 
influence of the pseudo-random pattern 
generator type on its fault detection capability, 
which directly influences the complexity of the 
resulting BIST circuit. We have shown that 
selecting a 1-tap LFSR is mostly a good 
solution, for its satisfactory period length and 
fault coverage, while the area overhead is 
minimum. 

The claims were confirmed experimentally 
on a BIST design for ISCAS benchmarks, 
however the conclusions made can be applied 
to any circuits. 
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