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Abstract: We propose a modification of our Boolean minimizer BOOM-II enabling 
a single-level partitioning. The disadvantage of all the present logic synthesis systems is 
that the minimization and decomposition phases are strictly separated; the minimization 
process is independent on the subsequent decomposition. We propose a method where the 
two-level minimization is driven by some decomposition or other constraints. Here a 
two-level nature of a solution is retained, however, the circuit is divided into several 
stand-alone blocks, each block having several outputs. Our aim is to minimize the number 
of inputs for each block, as well as the blocks’ logic.  Copyright © 2004 DESDes'04 
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1. INTRODUCTION 
 
The Boolean minimization is an essential process in 
many phases in logic synthesis [Hassoun and Sasao, 
2002]. Many two-level Boolean minimizers were 
developed so far, originating from the Quine-
McCluskey’s algorithm. Latter heuristic algorithms, 
like ESPRESSO [Brayton, et al., 1984] with its 
improved versions [McGeer, et al., 1993] were 
developed. They are capable handling relatively large 
Boolean functions in a reasonable time, for a price of 
a non-minimal solution. 

Lately we have developed a two-level heuristic 
Boolean minimizer BOOM [Hlavi�ka and Fišer, 
2001], [Fišer and Hlavi�ka, 2003a]. This minimizer 
is capable to deal with functions with a large number 
of input variables (up to thousands) in a very short 
time. One disadvantage of BOOM is its relatively 
long runtime for functions with many outputs. Hence, 
we have developed FC-Min in succession [Fišer, 
Hlavi�ka and Kubátová, 2003b]. It is suitable for 
problems with a large number of output variables, 
however, for low-output functions it often fails to 
produce good results. To make a universal 
minimizer, efficient for problems of all dimensions, 
we have combined these two methods into BOOM-II. 
Here the two algorithms can be used simultaneously, 
their ratio being adjusted according the nature of the 
source problem. 

As a result of the standard minimization using 
BOOM-II we obtain a two-level implementation of 
the minimized circuit, particularly a set of sum-of-
product (SOP) forms, one for each output. To 
implement such a circuit in hardware, doing further 
decomposition into a multi-level network is 
necessary, since many-input gates, occurring is the 
SOP forms, often cannot be realized. Moreover, the 
decomposition often significantly reduces the 
resulting logic. 

In a logic design flow process the Boolean 
minimization is often being conducted independently 
on decomposition and technology mapping phases; 
the aim of the two-level minimization algorithm is to 
reduce the number of literals or products in the 
resulting SOP (sum-of-product) form to minimum. 
However, this measure often does not represent the 
real complexity of the circuit, since it can be 
approximated not before the decomposition is done. 
Hence, the minimization and decomposition phases 
should be linked somehow, preferably the 
minimization should be driven by the decomposition 
and technology mapping constraints. 

In this paper we propose an extension of BOOM-II 
allowing the minimization to be driven by some 
constraints. For decomposition purposes, the 
resulting circuit is divided into several stand-alone 
blocks. Particularly, we try to decompose the solution 
into a given number of blocks, while keeping the 



number of the inputs entering each block minimal, 
and, if possible, maximally disjoint. 

Any other constraints can be applied to the 
minimization process. Namely, in the DFT (design 
for testability), the size of the output cones (i.e., the 
number of inputs influencing one output) can be 
reduced by applying the specific constraints. The 
minimization process can be influenced to produce 
circuits with a balanced input load, and similarly. 

The paper is structured as follows: after the 
Introduction the principles of the single-level 
partitioning are given. The structure of BOOM-II is 
briefly described in Section 3. Section 4 describes the 
necessary modifications of BOOM-II algorithms 
needed to support the constraint-driven minimization. 
The experimental results are presented in Section 5, 
Section 6 concludes the paper. 

 

2. SINGLE-LEVEL PARTITIONING 
 
As a result of a two-level Boolean minimization we 
obtain a circuit consisting of an AND-plane 
generating the product terms and an OR-plane 
summing the products to obtain the output values. 
When using a group minimization, we try to share 
the products among the outputs. 

Unfortunately, such a two-level netlist often is very 
difficult to implement in hardware. If the target 
technology is, e.g., a PLA, or FPGA, the number of 
both its inputs and outputs is limited. Thus, some 
kind of decomposition has to be performed. 

The single-level partitioning concept is based on 
dividing the resulting circuit into a given number of 
blocks, so that their two-level nature is retained. The 
blocks share the primary inputs, each block generates 
several outputs. The products cannot be shared 
among the blocks. This is illustrated by Figure 1. 
Here a logic function of 7 inputs x1-x7 and 6 outputs 
y1-y6 is decomposed into two 5-input and 3-output 
blocks while each block is a two-level (AND-OR) 
circuit. 

 
 

Fig. 1. A single-level partitioning 
 

In our partitioning-based minimization method we 
try to reduce the number of inputs entering the blocks 
as well. The method is based on a fact that a function, 
can be implemented in many ways. Each two-level 
SOP form of a given function consists of a set of 
essential products, which have to be present in every 
representation of the function [Hassoun and Sasao, 

2002], and a set of implicants that could vary, as long 
as they together cover the whole on-set. Most of 
Boolean functions we encounter in praxis have only a 
few essentials, often none. Thus, we are able to select 
its implicants (products) with a big freedom. 
Moreover (and most importantly), in many cases not 
all the function’s inputs are needed to produce a 
particular output.  
 

Definition. A support of a single-output function is a 
set of its input variables needed to represent the 
function. The minimum support of a function is its 
support with the minimal cardinality. The definition 
can be easily extended to multi-output functions. 
 

Example. Let us consider a 5-input single-output 
Boolean function described by a truth table, where 
the on-set (1) and off-set (0) of the function is 
defined. The minterms not listed in the table are 
assigned as don’t cares. Let be the input variables 
named x0 - x4. 

 

Table 1. The example of the support 
x0 x1 x2 x3 x4 y 

1 1 1 0 0 1 

1 0 1 0 0 1 

1 0 0 0 0 1 

0 1 0 1 0 0 

1 0 1 0 1 0 

 

The minimum support of the function is the set {x0, 
x4}, since only these two input variables are needed 
to distinguish between the 0 and 1 output values. The 
inputs x1 – x3 are not necessary to use to implement 
the function. When performing the single-level 
partitioning, our goal is to construct a support S of an 
n-input function, while |S| < n, generally, |S| should 
be as small as possible, or at least should not exceed 
a given limit. In most cases, reducing the support of a 
function yields worse minimization results (in terms 
of the complexity of the resulting circuit), since we 
decrease the amount of information on the function. 
Thus, some kind of trade-off has to be found here. 

The single-level partitioning minimization process 
consists of two major issues: deciding how to assign 
the outputs of the multi-output function to the given 
blocks (i.e., how to group the outputs) and how to 
find the supports of the blocks. These issues will be 
addressed in Section 4. 

 

3. BOOM-II 
 

BOOM-II had come in succession to BOOM, as a 
combination of an original BOOM and the FC-Min 
minimizer. It combines two antipodal approaches to 
the Boolean minimization. The major part of BOOM 
is a CD-Search algorithm, where the implicants of 



each single function are being generated. The basis of 
FC-Min is a Find-Coverage procedure, where the 
group implicants are being produced directly. Both 
these algorithms can be executed in an iterative way; 
the implicant generation process is run several times, 
while all the implicants are being gathered together. 
After that, a covering problem is solved using all the 
implicants and the irredundant cover of the source 
function is computed using them. 

In BOOM-II the runs of the two algorithms are being 
alternated. At the beginning of each iteration it is 
decided which algorithm should be run to generate a 
new set of implicants. A probability of running each 
particular algorithm can be freely adjusted, according 
to the nature of the source function. The implicants 
obtained from the two methods are being put 
together, after several iterations the minimization is 
stopped and the CP is solved. The flowchart of 
BOOM-II is shown in Fig. 2. 

 

 
 

Fig. 2. Flowchart of BOOM-II 
 
3.1. Principles of BOOM 
 

The BOOM minimizer consists of several successive 
phases. At the beginning the multi-output function is 
split into single-output functions. For each function a 
set of implicants covering the whole on-set is 
produced in the CD-Search phase. These implicants 
are then expanded into prime implicants and then 
reduced to obtain group implicants, i.e., implicants of 
more than one function. After that the covering 
problem is solved and an output reduction is 
performed. The important phases will be described 
here briefly, for more detailed description see [Fišer 
and Hlavi�ka 2003a]. 

The Coverage-Directed Search (CD-Search). This is 
the main and most contributive part of the BOOM 
algorithm. It generates an irredundant set of 
implicants covering the on-set of a single-output 
function. Unlike the other Boolean minimization 
methods (ESPRESSO) the implicants are being 
constructed top-down, i.e., by reducing a universal 
hypercube until it becomes an implicant. It does not 
start with the source implicants – the algorithm uses 
them just as guidance. 

At the beginning the literal occurring in the on-set 
most frequently is found. Such a literal forms an n-1 
dimensional cube (for an n-input function) describing 
the half of the Boolean space containing the majority 
of the on-set (maximum of 1s). We compare this 
cube with the off-set to find out whether it is an 
implicant of the function, i.e., whether it does not 
intersect the off-set. If it is not an implicant, we 
search for the second most frequent literal and add it 
to the previous one. Again, we check if it is an 
implicant and repeat the process. When an implicant 
is generated, we remove the on-set terms that are 
covered by it and repeat the whole process until the 
whole on-set is covered. 

The Implicant Expansion (IE) Phase. The CD-Search 
algorithm is a greedy heuristic and the implicants 
need not be prime (PI). Thus, they should be 
expanded to reduce the number of literals in these 
terms. Several IE methods were proposed, all of them 
are based on a simple removal of literals from all the 
terms. 

The Implicant Reduction (IR) Phase. Here the PIs are 
being reduced into group implicants. This phase is 
similar to the CD-Search. Literals are being added to 
the present terms, so that the term becomes an 
implicant of the maximum number of output 
functions. 

 

3.2. FC-Min Principles 
 

The FC-Min minimizer has been developed to 
efficiently handle functions with a large number of 
output variables. Here the minimization is being 
conducted in a reverse way than the standard 
minimizers do. First, the cover of the on-set is found, 
independently on the source implicants. After that the 
minimized implicants are produced by joining the 
source implicants. This process is directed towards 
satisfying the cover. After that the implicants are 
expanded to reduce the number of literals. 

We will briefly describe these two phases, for more 
information, see [Fišer, Hlavi�ka and Kubátová, 
2003b].  

The Find Coverage Phase. It is an essential phase of 
the FC-Min algorithm. Here the whole cover of the 
on-set of the multi-output function is found, using the 
output part of the source function only. An example 
of such a cover is shown in Fig. 3. There is a 5-input 
and 5-output function defined by 10 terms. The rest 
are assigned as don’t cares. The result of the Find 
Coverage algorithm is a cover consisting of six 
terms, t1 – t6. Each element in this cover describes 
properties of an implicant. For example, t1 must be an 
implicant of y3 and y4, and cover the ones in the 4th, 
6th and 8th row. To solve the coverage finding 
problem we use a greedy heuristic as well, since it is 
NP. 



 
11010 10000 
10000 11100 
01001 01100 
01111 01010 
00110 00111 
01110 00000 
10110 00011 
00001 01101 
10101 10111 
11100 10100 

�y -y0 4

 
Fig. 3. Cover of the output matrix 
 

Implicant Generation Phase. In this phase we 
generate the implicants from the cover. Considering 
the conditions described above, particularly the 
definition of the rows (vectors) each cover element 
should cover, a simple rule for the implicants can be 
derived: the minimum implicant satisfying the 
particular cover can be constructed as a minimum 
supercube of all the input vectors corresponding to 
the rows of the cover of ti. Moreover, this supercube 
must not intersect any term that is not included in the 
particular cover, since it would cover some zeros 
then. In our example, a minimum implicant t1 would 
be (-01--), since 

00110 
10110 
10101 
-01-- 

 

Implicant Expansion Phase. The Implicant 
generation phase produces the minimal implicants, 
thus the satisfactory implicants having the maximum 
of literals. They can be further expanded to reduce 
the number of literals. 

 

3.3. Covering Problem Solution 
 

After the implicants are generated, the covering 
problem has to be solved to obtain an irredundant 
cover of the on-set. Solving it exactly is mostly 
impossible, since the number of implicants is often 
large. Thus, we use a scoring function based greedy 
incremental heuristic [Coudert, 1994]. 

We construct a covering matrix A, its dimensions will 
be (r, s). Its columns correspond to the implicants, 
rows to the individual on-set terms that have to be 
covered. We set A[i, j]  = 1 if the implicant j covers 
the on-set term i, A[i, j]  = 0 otherwise. For each row 
its strength of coverage is computed as 
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After that the implicant (column) with the maximum 
contribution value is selected into the solution, the 

contribution values are recomputed and the process is 
repeated until the whole on-set is covered. 

The Output Reduction consists in solving m separate 
covering problems for an m-output function. In this 
phase the number of terms cannot be reduced, 
however it determines the irredundant set of 
implicants for each function, and thus removes 
redundant connections between the AND and OR 
planes in the resulting two-level network. 

 

4. THE CONSTRAINT-DRIVEN 
MINIMIZATION 

 

In this section we will describe modifications of the 
previously described algorithms, allowing us to 
influence the minimization result in a desired way. 

First, the multi-output function has to be divided into 
stand-alone blocks, or at least the set of its outputs 
has to be partitioned somehow. Then, the modified 
algorithm is run for each block. 

 

4.1. The Types of Constraints 
 

The minimization constraints need not be only the 
partitioning demands. We will briefly describe some 
of them: 

Partitioning Constraints. In order to combine the 
minimization process with a partitioning, we split the 
source circuit by its outputs. Further, we try to keep 
the support of each block (i.e., the number of input 
variables in the minimized function) minimal. 

DFT Constraints. To synthesize an easily testable 
circuit, we try to reduce the sizes of the cones in the 
minimized circuit. Thus, we try to minimize the 
support of each output variable separately. 

Load Balancing. The low-power design is becoming 
more and more important nowadays. In some cases it 
is desirable to design circuits with a balanced load of 
its inputs. This means that the number of branchings 
of the circuit’s inputs should be kept balanced. 
Moreover, for the low-power design, the number of 
branchings should be kept minimal. This condition 
may be contrary to the partitioning constraints, thus 
some trade-off has to be found. 

 

4.2. Modification of BOOM Algorithm 
 

CD-Search. This is the essential phase that has to be 
modified. The algorithm is based on a gradual 
addition of literals into the terms. The candidate 
literals are being selected using a scoring function; 
originally it was the frequency of occurrence. Thus, it 
is easy to modify this scoring function to manifest the 
constraints. 

For the partitioning purposes we modify the scoring 
function, so that the frequency of the literal that is 
already included in the processed block is multiplied 
by the CD-Search partitioning force PFCD, and is thus 



preferred to other literals. The higher this force is, the 
smaller is the number of input variables entering the 
blocks. For DFT, further modification is very similar 
to the previous one: we prefer input variables that are 
already included in the current partial SOP form of 
the currently processed variable. When applying the 
load balancing, we penalize variables entering the 
other blocks. 

Implicant Expansion. In this phase the literals are 
being removed from the terms. It could be modified 
to adopt some constraints as well, e.g., by preferring 
a removal of the literal that would yield a reduction 
of the number of inputs entering the block (for 
partitioning). In praxis we do not do it, since the 
expansion phase produces several PIs from one 
non-PI, and the “advantageous” implicants are being 
produced anyway. 

Implicant Reduction. Here, as well, many group 
implicants are being produced from one PI. 
Modifying the scoring function defining the 
candidate literals for inclusion is possible, however 
we have found that the effect of this modification is 
negligible. 

For a more thorough description of the partitioning-
based BOOM method see [Fišer and Hlavi�ka, 2002] 

 

4.3. Modification of FC-Min 
 

Find-Coverage. Since this phase does not directly 
influence the selection of what literals would be 
included in the solution, its modification would be 
meaningless. However, it strictly defines what terms 
would be shared among what output variables – it 
defines the group implicants. Therefore, it determines 
what outputs would be grouped together in the final 
solution. 

Until now we haven’t described the way how we 
group the outputs into the blocks. This decision could 
be made at random (as it was being done in BOOM), 
or we can exploit the Find Coverage phase to make 
the partitioning. 

Before the whole modified minimization is run, we 
run the FC-Min for the original circuit and determine 
from the result, which outputs share the maximum of 
implicants. These outputs are then grouped together 
into one block. Then we remove these outputs from 
the source function and repeat the whole process, 
until all the outputs belong to some block. The 
number of outputs to be grouped is determined by the 
size of each block (which is customizable). 

Implicant Generation. This phase is fully 
deterministic and cannot be influenced in any way. 

Implicant Expansion. In this phase the number of 
literals in the final set of SOP forms is being 
significantly reduced, by up to 70%. Thus, here we 
can decide what literals will be included in the 
solution. For the partitioning based minimization, 
literals of input variables that are not included in the 
currently processed block are tried for removal at 

first, and only when no such a removal is possible, 
literals of variables that are entering the processed 
block are tried for removal. 

For the load-balancing and minimization, literals of 
variables included in other blocks are removed first, 
then the rest. In a DFT design, we remove literals 
that are not included in current SOP forms of output 
variables, for which the currently processed term is 
an implicant. 

 

4.4. Covering Problem Solution 
 

Modifying the CP solution algorithm is of a key 
importance to reach good results. Consider that the 
CP solver selects only a small number of implicants 
from a huge implicant pool and constructs the final 
solution. Thus, if the algorithm was not modified, it 
could spoil all the effort of the previous phases. 

In fact, any CP solver can be used, where only one 
condition has to be fulfilled: it has to be a greedy 
additive heuristic, i.e., the implicants have to be 
added to the solution one by one. Modifying an exact 
solver could also be possible, however it would 
extremely complicate the construction of a cost 
function here. 

The CP is solved for each block individually, so that 
we prevent sharing the implicants among the blocks.  

We will consider the CP algorithm described in 
Subsection 3.3. To apply the partitioning, additional 
weights are assigned to the implicants, thus the 
weights modify the contributions. Input variables 
used in particular blocks are recorded during the 
process. The weights of the implicants are 
proportional to the number of new input variables 
they would add to the currently processed block if 
they were selected into the solution. The more input 
variables is newly added into a given block by a 
term, the less likely this term will be selected. 

In particular, the weight is being multiplied by a 
customizable PFCOV factor and the cost of the term 
divided by this value. 

For the load minimization purposes the weights can 
be modified so that implicants containing inputs 
entering other blocks will be penalized. 

 

5. EXPERIMENTAL RESULTS 
 

To illustrate the effects of the partitioning and load 
minimization supports, we have processed a 
randomly generated function having 50 input 
variables, 40 output variables and 150 defined terms. 
Functions of such dimensions occur, i.e., in a design 
of control systems, BIST design (Fišer, Hlavi�ka and 
Kubátová, 2003c). Our aim was to minimize the 
circuit and implement it using four 10-output blocks. 

First, we have run BOOM-II without any 
modification; only the original circuit was randomly 
divided into 4 10-output blocks. As a result, we have 



obtained four two-level circuits; their summary 
complexity was equal to 2375 gate equivalents 
(De Micheli, 1994). Each of the primary inputs was 
used (i.e., the support = 50), and each of them was 
entering each of the four blocks. 

After that, we have determined a proper 
decomposition of the circuit by running FC-Min and 
applied the partitioning forces to the CD-Search and 
Covering problem solution. The FC-Min Implicant 
expansion phase was modified to support the 
partitioning as well. The results of the minimization 
are shown in Table 2, together with the results of the 
unmodified algorithm. The PFCD and PFCOV forces 
were both set to 1. 

 

Table 2. The experimental results 

 

 no 
partitioning 

with 
partitioning  

total support 200 114 
used inputs 50 47 
branching inputs 50 36 
branchings 150 67 
maximum load 4 4 
average load 4 2.34 
GEs 2375.5 2874.5 
block 0 inputs 50 30 
block 1 inputs 50 30 
block 2 inputs 50 26 
block 3 inputs 50 28 

 

The “total support” row shows the sum of the 
supports of all the four blocks, i.e., the total number 
of wires entering the blocks. A great reduction can be 
seen here, when the partitioning is applied. Without 
the partitioning all the inputs enter all the blocks 
(4 x 50 = 200). With partitioning, this value is 
reduced to nearly one half. 

The number of input variables used is reduced as 
well. When the partitioning was applied, 3 inputs 
were found to be not needed to interpret the function. 

Even when no load minimization was applied here, 
the simple partitioning reduces it as well. The 
number of branchings was reduced from 150 to 67, 
while the average load of the inputs was reduced 
from 4 to 2.34. 

As the most important fact we can observe that the 
number of inputs of each block was significantly 
reduced – from the total 50 to at most 30. Thus, after 
the partitioning is applied we are able to construct the 
whole circuit using four 30-input and 10-output 
stand-alone blocks, which was not possible before. 

The increase of the area is only 17%, which is 
acceptable in most cases (see the GEs row). 

 

6. CONCLUSIONS 
 

We have presented principles of a constraint-based 
minimization in BOOM-II, with emphasis on a 
partitioning of the circuit. Since BOOM-II is a very 
complex system, many changes had to be done. 
A good partitioning scheme can be obtained using 
the FC-Min algorithm, which is a part of BOOM-II. 
Then, using the BOOM-II algorithms modified to 
support the partitioning, the circuit can be efficiently 
divided into several stand-alone blocks, directly in 
the two-level minimization process. 

The principles can be extended for a low-power 
design, design-for-testability, and many other 
constraint-driven designs. 
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