
CD-A Based BIST Method

Petr Fišer , Jan HlaviþND��Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nám. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract: The paper introduces a novel test-per-clock BIST design technique for
combinational (or full scan) circuits. The method is based on a design of a combinational block
that transforms the code words produced by a LFSR into deterministic test patterns pre-
generated by some ATPG tool. Our aim is to synthesize this block to be as small as possible. We
propose a Coverage-Directed Assignment (CD-A) method to do this. The algorithm firstly finds
the rectangle cover of the ones in the test patterns and subsequently tries to derive implicants of
the transforming function.

I. INTRODUCTION

The problem of a built-in self-test (BIST) has been studied for more than two decades [1, 2]. Its use
is becoming ever more important, since the complexity of the circuits rapidly grows and their internal
logic is then hardly accessible from outside. Moreover, BIST enables us to test the circuit during its
function (either on-line of off-line), which is of a key importance in a design of highly reliable circuits.

The basic problem of a BIST is the way how to generate the test patterns to reach sufficient fault
coverage. In most of cases some pseudo-random pattern generator (PRPG) is used to produce test
vectors. The linear feedback shift register (LFSR) is mostly used here. The exhaustive testing, in
which all the 2n-1 LFSR code words are fed into the circuit under test (CUT) enables us to reach a
complete fault coverage, however, the testing is rather time consuming. When fewer patterns are
applied to the CUT, the fault coverage obtained is often not sufficient. A good solution to this problem
is to modify the PRPG code words by some additional circuitry. Some methods use an ATPG
(automatic test pattern generator) to produce a set of test vectors ensuring the required fault coverage.
These patterns are then stored in ROM from where they are applied to the CUT. The area overhead of
a ROM is, however, extremely large, thus some compromise solution has to be used. In a mixed-mode
BIST the PRPG is used to produce several test patterns detecting easy-to-detect faults and then the
random pattern resistant faults are detected by patterns stored in ROM. However, the size of a memory
is often large, even when using this approach. Here some pattern compression techniques have to be
used [3]. Modern methods tend to completely eliminate the ROM. Here the PRPG is used to produce
pseudorandom patterns, which are then being modified in order to reach a better fault coverage [4-5].
We propose a BIST method based on a transformation of the PRPG code words into deterministic test
patterns pre-computed by some ATPG tool. Thus, the test pattern generator (TPG) consists of a PRPG
and the combinational output decoder. Our task is to synthesize the output decoder to be as small as
possible. The method is designed for a BIST of combinational circuits, thus the order of the test
patterns is insignificant. The output decoder is then a combinational block that transforms the PRPG
code words into the test patterns.

Earlier we have introduced the column matching method [6] to design the output decoder. Here the
maximum of the output variables of the decoder is tried to be implemented as mere wires, thus without
any logic. This significantly complicates the synthesis of the remaining outputs. In this paper a
Coverage-Directed Assignment (CD-A) method to design the output decoder is proposed. In its main
part, namely the Find Coverage phase, the rectangle cover of all ones in the test set is found. This
coverage determines the output parts of the cubes (implicants) of the output decoder. The input parts
of these cubes are then derived from the PRPG patterns. The result of the algorithm is a
sum-of-products (SOP) form of the output decoder logic.

The paper is organized as follows: the Section II contains the problem statement, the principles of
the method are described in Section II I and experimental results are discussed in Section IV. Section V
concludes the paper.

II . PROBLEM STATEMENT

Let us have an n-bit PRPG running for p clock cycles. The code words generated by this PRPG can
be described by a C matrix (code matrix) of dimensions (p, n). These code words are to be
transformed into the test patterns pre-computed by some ATPG tool. They are described by a T matrix
(test matrix). For an r-input CUT and the test consisting of s vectors the T matrix will have
dimensions (s, r). The rows of the matrices wil l be denoted as vectors.

Designing the output decoder means finding a combinational logic that transforms these two
matrices. Each of the T matrix vectors must be generated from some of the C matrix vector. Thus, the
transformation consists in finding an assignment of all the T matrix vectors to some of the C matrix
vectors. The C matrix vectors generating no T matrix vector just represent idle cycles of the PRPG.
They do not disturb the testing, but only extend its length. If a low-power testing is required, we may
use some pattern inhibition techniques.

III. THE CD-A PRINCIPLES

The principles of a Coverage-Directed Assignment (CD-A) method are based on a simple notion:
after assigning all the rows of the C matrix to the T matrix rows some kind Boolean minimization has
to be performed [6]. At the beginning of this process a set of implicants that cover all ones in the T
matrix (output matrix) is found. For each implicant the set of T matrix ones it covers is enumerated
and the irredundant set (or better the minimum set) of implicants covering all the ones is computed
during the covering problem solution. Let us denote the set of the ones covered by an implicant as its
coverage, the coverage of the output matrix will be a set of the coverages of all the implicants in the
final solution.

In the CD-A algorithm we proceed backwards: an irredundant cover of the output matrix is found
and after that the implicants that correspond to the cover are derived. The process thus consists of two
totally independent phases: the Find Coverage phase computes the coverage of the T matrix
(independently on the C matrix) and in the subsequent Find Implicants phase the proper implicants are
computed from the C matrix with a help of the coverages.

A. Find Coverage Phase

The coverage of the T matrix is produced in this phase. The problem fully corresponds to solving
the rectangle covering problem that appear in many areas of logic design [7], however our algorithm
slightly differs from the others. Let us state several Definitions:

Definition 1
Let ti be an implicant. The coverage set C(ti) of the implicant ti is a set of vectors (rows) of the T

matrix, in which at least one “1” value is covered by this implicant. In other words, the coverage set is
a set of vectors of the output matrix for which ti is an implicant for at least one output variable.

�

Definition 2
The coverage mask M(ti) of the implicant ti is the set of columns of the T matrix, in which all

vectors included in C(ti) have one or more “1” value.
The coverage mask M(ti) can also be expressed as a vector in the output matrix corresponding to the

term ti. In the following text we will use both representations of the coverage mask.
�

Definition 3
The coverage of an implicant ti is a pair of the sets C(ti) and M(ti) for which the following equation

holds:
() () [] "0" ,:, ≠∈∀∈∀ batMbtCa ii T

The “1” values covered by ti are identified by the Cartesian product C(ti) × M(ti).
�

Definition 4
The coverage of the matrix T is a set of coverages { C(ti), M(ti)} so that

[] { } () ()�
i

ii tMtCa,bbarbsa
∀

×∈=<∀<∀ :"1" ,,, T

�

The number of coverages of the T matrix determines the number of implicants in the final SOP
form. Obviously, there exist many possible coverages of a particular matrix. Finding the minimum
rectangle cover is a NP hard problem, thus some heuristic must be used. Moreover, the minimum
rectangle cover does not ensure the minimal complexity of the output decoder. This problem wil l be
further explained in Subsection IV.A. We use a heuristic that sequentially tries to find the coverage
sets that cover the maximum yet uncovered ones in the T matrix. At the beginning, the T matrix vector
with the maximum number of ones is selected and included into the first coverage set, while the
coverage mask is set equal to this vector. Next, we systematically try to add such vectors to this set, so
the number of ones covered by them is increasing. After each such an addition the decision has to be
made whether to continue adding vectors (if possible) or terminate the set generation. Too large
coverage sets may cause problems when generating the implicants (see Subsection III .C). In praxis,
the decision is made at random with a given probability. The probability of the further increase of the
number of vectors covered by a processed coverage is determined by a depth factor (DF). The
influence of this factor on the result will be studied in Subsection IV.A. After completing one
coverage, another one is constructed in the same way, until all the “1” entries are covered.

B. Example of Find Implicant Phase

The principles of the Find Coverage phase are illustrated by Fig. 1. The ten T matrix vectors are
labeled a-j. A minimum rectangle cover of this matrix consisting of six coverages has been found. The
coverage sets and coverage masks are shown in Table 1.

Fig. 1: The coverage of the T matrix

TABLE 1. The coverage sets and masks

Implicant C(ti) M(ti)
t1 {e, g, i} {0, 0, 0, 1, 1}
t2 {b, c, h} {0, 1, 1, 0, 0}
t3 {i, j} {1, 0, 1, 0, 0}
t4 {d} {0, 1, 0, 1, 0}
t5 {a, b} {1, 1, 0, 0, 0}
t6 {e, h} {0, 0, 1, 0, 1}

C. Find Implicant Phase

When the coverage of the T matrix is found the implicants corresponding to the coverage sets
should be derived from the vectors (minterms) of the C matrix. Such implicants will be denoted as
implicants that fulfil the respective coverage. Their properties will be studied in this section.

Definition 5
Let us introduce an inclusion function ϕ(t1, t2) for two terms t1 and t2 of the same dimension:
ϕ(t1, t2) = 1 if t2 ⊆ t1, thus t2 is included in t1, ϕ(t1, t2) = 0 otherwise.

�

Now we will state the necessary conditions for a term ti to fulfil the given coverage { C(ti), M(ti)} :
1. Obviously, all the C matrix minterms included in ti imply a “1” output value for ti. The

cardinality of the coverage set |C(ti)| determines the number of T matrix vectors, in which the
outputs included in M(ti) have “1” value. A term that fulfil s a coverage C(ti) must then
generate at least |C(ti)| ones from the C matrix vectors, i.e. at least |C(ti)| C matrix vectors must
be included in ti:

[]() ()i

p

j
i tCjt ≥∑

=0

,Cϕ

2. The terms that fulfil the coverages intersecting in one or more T matrix vectors must have a
non-empty intersection; the number of the C matrix minterms included in this intersection
must be greater or equal to the cardinality of the intersection of the respective coverages. Thus,
the previous condition applies too all the intersections of the coverages too.

3. It may happen that the candidate term contains so many C matrix minterms, that there is will
be enough “ free” minterms left for the not yet processed coverage sets. So the additional
condition must be applied:

[]() () ()��
PP

C
∈∉=

−≥− ∑
j

j
j

j

p

j
i tCtCjtp

0

,ϕ

where P is a set of the already processed implicants.
The candidates for implicants fulfilling a particular coverage are being constructed by expansion of

the C matrix terms. The principles of the method will not be described in detail here, since it exceeds
the scope of this paper.

D. Illustrative Example

Let us have the C matrix consisting of 20 vectors as shown in Fig. 2 (the matrix is divided into four
columns to save space). The vectors are labeled A-T. We will try to derive the six implicants that fulfil
the coverage from the previous example.

A 01111 E 00001 I 01000 M 00100 Q 00000
C = B 01101 F 10001 J 11000 N 10011 R 01100

C 00011 G 11001 K 10111 O 00010 S 00101
D 01011 H 01110 L 11010 P 01001 T 10100

Fig. 2: The example C matrix

In Table 2 the intersections of the coverage sets and their cardinalities are computed, together with
the cardinalities of the sets. The coverage sets intersections not present in Table 2 are empty. Table 3
shows the final results. The left side of this table shows the structure of the terms t1 - t6 that form the
final solution (the input variables of the decoder are labeled x0 – x4). The process of generating the
implicants is not described in this example, however it is apparent from the example that the solution
is valid. The inclusion relation of the C matrix vectors to the terms is shown in the right-hand side of
the Table, together with the final assignment of the C and T matrix vectors.

TABLE 2. Coverage sets

Cov. set Contains Card
C(t1) {e, g, i} 3
C(t2) {b, c, h} 3
C(t3) {i, j} 2
C(t4) {d} 1
C(t5) {a, b} 2
C(t6) {e, h} 2

C(t1) ∩ C(t3) {i} 1
C(t1) ∩ C(t6) {e} 1
C(t2) ∩ C(t5) {b} 1
C(t2) ∩ C(t6) {h} 1

TABLE 3. The resulting terms and
assignments

t 1 = (---1-)
t 2 = (--00-)
t 3 = (1-1--)
t 4 = (-1---)
t 5 = (0---1)
t 6 = (1-0--)

t 1 = x3

t 2 = x2’x 3’
t 3 = x0x2

t 4 = x1

t 5 = x0’x 4

t 6 = x0x2’

A 01111 ⊆ t 1, t 4, t 5

B 01101 ⊆ t 4, t 5

C 00011 ⊆ t 1, t 5

D 01011 ⊆ t 1, t 4, t 5

E 00001 ⊆ t 2, t 5 -> b
F 10001 ⊆ t 2, t 6 -> h
G 11001 ⊆ t 2, t 4, t 6

H 01110 ⊆ t 1, t 4

I 01000 ⊆ t 2, t 4

C = J 11000 ⊆ t 2, t 4, t 6

K 10111 ⊆ t 1, t 3 -> i
L 11010 ⊆ t 4, t 6

M 00100 -> f
N 10011 ⊆ t 1, t 6 -> e
O 00010 ⊆ t 1 -> g
P 01001 ⊆ t 2, t 4, t 5

Q 00000 ⊆ t 2 -> c
R 01100 ⊆ t 4 -> d
S 00101 ⊆ t 5 -> a
T 10100 ⊆ t 3 -> j

IV. EXPERIMENTAL RESULTS

A. Influence of the DF on the Result

As an example we have chosen the c432 ISCAS benchmark circuit [8], whose test vectors were
generated by an ATPG tool TurboTester [9]. The c432 circuit had 36 inputs and the test set contained
40 vectors. The C matrix vectors were produced by a 36-stage LFSR running for 300 cycles. We have
varied the DF from 1:100 to 2:1 to determine its influence on the complexity of the output decoder.
The results of the experiment are shown in Table 4. The resulting decoder is described by the number
of group product terms in the SOP form, the output cost (OC), which is the number of wires entering
the OR gates (i.e. the total number of terms) and the number of literals in the SOP form.

TABLE 4. Influence of DF on the result

DF terms/OC/lit
1:100 40/734/114
1:10 43/696/121
1:5 47/644/135

DF terms/OC/lit
1:2 59/555/174
1:1 56/574/169
2:1 72/468/216

There is the lowest number of terms for very low values of DF. In fact, the Find Coverage phase
generates only one-vector coverages in this case, and thus it does not influence the result. Notice the
number of terms equal to the number of the T matrix vectors. Even if the number of terms is low, the
output cost is rather high. This is due to the fact that the coverage masks contain a lot of “1” values.
We can significantly reduce the output cost by increasing the value of DF. However, the number of
terms then grows, thus the trade-off must be found.

B. ISCAS Benchmarks

In order to test the algorithm on some practical examples we have chosen a subset of the ISCAS
benchmarks. The test patterns for all benchmark files were generated by TurboTester. As a
pseudorandom pattern generator a LFSR of the width equal to the number of primary inputs of the
CUT was used, the number of patterns generated was fixed to 5000, DF was fixed to 1:3. The results
are shown in Table 5. For each particular benchmark the number of its primary inputs (r) is given,
together with the test length (s). The CD-A results are indicated by the number of terms obtained in
the Find Coverage phase together with the total number of literals obtained in the second phase.

TABLE 5. ISCAS benchmarks
benchmark inputs (r) test length (s) terms/literals

c432 36 40 49/141
c499 41 40 47/132
c880 60 36 41/106
c1355 41 84 105/358
c1908 33 107 139/564
c2670 233 84 104/309

V. CONCLUSIONS

We have proposed a novel test-per-clock BIST method for combinational circuits. It is based on a
synthesis of a combinational block transforming the PRPG code words into arbitrary tests. The
algorithm firstly finds a coverage of the ones in the test patterns and then generates implicants that
fulfil this coverage. The method was tested on the ISCAS benchmarks and satisfactory results were
reached. General principles of the method can be exploited also in other areas of logic design, e.g. in
Boolean minimization.

ACKNOWLEDGEMENT

This research has been in part supported by the GA102/03/0672 grant (Research of methods and tools for
verification of embedded computer system fault tolerance) and MSM 212300014 , 1999 – 2003.

REFERENCES

[1] V. K. Agarwal, C. R. Kime, K. K. Saluja: “A tutorial on BIST, part 1 Principles” , IEEE Design & Test of Computers, vol.
10, No.1 March 1993, pp.73-83, part 2: Applications, No.2 June 1993, pp.69-77

[2] E. J. McCluskey: “BIST techniques” , IEEE Design & Test of Computers, vol. 2 No.2 Apr. 1985. pp.21-28, BIST
structures. vol. 2 No.2 Apr. 1985. pp. 29-36

[3] V. K. Agarwal, E. Cerny: „Store and Generate Built -In Testing Approach“ , Proc. of FTCS-11, pp. 35-40, 1981
[4] M. Chatterjee, D. J. Pradhan: “A novel pattern generator for near-perfect fault coverage”, Proc. of VLSI Test Symposium

1995, pp. 417-425
[5] N. A. Touba, E.J. McCluskey: “Synthesis Techniques for Pseudo-Random Built -In Self-Test” , Technical Report, (CSL

TR # 96-704), Departments of Electrical Engineering and Computer Science Stanford University, August 1996� �������	��
 �������������� ����
 �������!
Column-Matching Based BIST Design Method“, Proc. 7th IEEE Europian Test Workshop

(ETW'02), Corfu (Greece), 26.-29.5.2002, pp. 15-16
[7] S. Hassoun, T. Sasao: „Logic Synthesis and Verification“ , Boston, MA, Kluwer Academic Publishers, 2002, 454 pp.
[8] F. Brglez, H. Fujiwara: „A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target Translator in Fortan“ ,

Proc. of International Symposium on Circuits and Systems, pp. 663-698, 1985
[9] G. Jervan, A. Markus, P. Paomets, J. Raik, R. Ubar: “A CAD System for Teaching Digital Test” , Proc. of the 2nd

European Workshop on Microelectronics Education, Kluwer Academic Publishers, pp. 287-290, Noordwijkerhout, the
Netherlands, May 14-15, 1998

