
Side-Channel Security of Embedded Devices

by

Ing. Petr Socha

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Doctoral study programme: Informatics

Department of Digital Design

Prague, May 2023

Supervisor:
Dr.-Ing. Martin Novotný
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Co-Supervisor:
Ing. Vojtěch Mǐskovský, Ph.D.
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2023 Ing. Petr Socha

ii

Abstract and contributions

This dissertation thesis focuses on the physical security of cryptographic implementa-
tions in embedded devices, especially resistance to side-channel attacks such as differential
power analysis. Attention is paid to both symmetric encryption algorithms (PRESENT,
AES, Serpent) and the post-quantum asymmetric Rainbow signature scheme. Security
of symmetric cryptography is mainly investigated on a Field Programmable Gate Arrays
(FPGA) hardware platform, where countermeasures are proposed for design and synthesis
on register-transfer and system levels. Asymmetric cryptography is mainly investigated
on software platforms, where an attack on the reference Rainbow implementation is dis-
cussed and a multi-platform countermeasure against such attacks is proposed. All of the
proposed countermeasures are evaluated in terms of time and space requirements and their
effectiveness is evaluated using leakage assessment methodology.

The main contributions of the dissertation thesis are based on peer-reviewed and pub-
lished papers, here presented as follows:

1. Survey of the current state of the art in the field of side-channel analysis.

2. Design, implementation, and evaluation of countermeasures, based on a dynamic
reconfiguration of combinational logic, for AES and Serpent on FPGA, and designed
for register transfer level synthesis.

3. Design, implementation, and evaluation of countermeasures for PRESENT, AES, and
Serpent on FPGA, described at system level and designed for high-level synthesis.

4. Design, implementation, and evaluation of an attack on the 32-bit reference imple-
mentation of Rainbow on an ARM-based microcontroller.

5. Proposal of a countermeasure for multivariate quadratic signature schemes based on
the principle of equivalent keys, its formal examination, implementation for Rainbow,
and evaluation on an ARM-based microcontroller.

Keywords:
Embedded Systems, Cryptography, Side-Channel Security, Internet of Things.

iii

Abstrakt a p̌ŕınosy (Czech)

Tato dizertačńı práce se zabývá fyzickou bezpečnost́ı kryptografických implementaćı ve ves-
tavných zař́ızeńıch, konkrétně odolnost́ı proti útok̊um postranńımi kanály, mezi něž patř́ı
např́ıklad rozd́ılová odběrová analýza. Pozornost je věnována jak symetrickým šifrovaćım
algoritmům (PRESENT, AES, Serpent), tak asymetrickému podpisovému schéma Rain-
bow. Bezpečnost symetrické kryptografie je zkoumána předevš́ım na hardwarové platformě
založené na programovatelném hradlovém poli (FPGA), kde jsou navržena protiopatřeńı
jak pro návrh na úrovni meziregistrových přenos̊u, tak na systémové úrovni. Asymetrická
kryptografie je zkoumána předevš́ım na softwarové platformě, kde je navržen útok na ref-
erenčńı implementaci Rainbow a následně je navrženo multiplatformńı protiopatřeńı proti
takovým útok̊um. Všechna navržená protiopatřeńı jsou vyhodnocena z hlediska časové
a prostorové náročnosti a jejich účinnost je ověřena pomoćı vhodné metodologie.

Hlavńı př́ınosy této dizertačńı práce vycházej́ı z recenzovaných a publikovaných článk̊u,
zde prezentovaných následovně:

1. Shrnut́ı současného stavu poznáńı v oboru analýzy postranńıch kanál̊u.

2. Návrh, implementace a vyhodnoceńı protiopatřeńı, založených na dynamické rekon-
figuraci kombinačńı logiky, pro AES a Serpent na FPGA, určených pro syntézu na
úrovni meziregistrových přenos̊u.

3. Návrh, implementace a vyhodnoceńı protiopatřeńı pro PRESENT, AES a Serpent
na FPGA, popsaných na systémové úrovni a určených pro vysokoúrovňovou syntézu.

4. Návrh, implementace a vyhodnoceńı útoku na 32bitovou referenčńı implementaci
Rainbow na mikrokontroléru s jádrem ARM.

5. Návrh protiopatřeńı pro multivarietńı kvadratická podpisová schémata založeného
na principu ekvivalentńıch kĺıč̊u, jeho formálńı analýza a implementace pro Rainbow
a vyhodnoceńı na mikrokontroléru s jádrem ARM.

Kĺıčová slova:
Vestavné systémy, kryptografie, bezpečnost postranńıch kanál̊u, internet věćı.

iv

Acknowledgement

First of all, I would like to thank my supervisor Martin Novotný for his help during my
studies, his valuable insights, for involving me in many different projects, and for introduc-
ing me to many interesting people. I would also like to thank my co-supervisor Vojtěch
Mǐskovský for his insights and cooperation, and for convincing me to do my research in
the first place. I would also like to thank my student and colleague David Pokorný for
a productive collaboration. Many thanks to my colleague Jan Onderka for helpful discus-
sions, proofreading of my work, and for providing a sober perspective. Many thanks also
to Hana Kubátová and the entire Department of Digital Design for providing a friendly
and helpful environment for my research.

A big thank you goes to my grandfather Josef, who taught me to build my own electrical
circuits and program my first 386 PC when I was just a little boy, thus predetermining
my whole life. Special thanks to my music teacher Karel Bareš, who taught me calmness,
perseverance, and prudence. I must not forget my friends, Martin, Honza, Zdeněk, Petr,
Milan, Filip, Marek, and others, who had a great influence on me at one time or another
in my life, and who gave me the strength to carry on. Finally, my biggest thanks go to my
parents Jana and Petr for their unwavering support in everything I do.

The research presented in this thesis has been partially supported by the following
grants:

◦ “Fault-Tolerant and Attack-Resistant Architectures Based on Programmable De-
vices: Research of Interplay and Common Features” (GA16-05179S) of The Czech
Science Foundation (2016-2018).

◦ “DRASTIC: Dynamically Reconfigurable Architectures for Side-channel analysis pro-
tecTIon of Cryptographic implementations” of the Central Europe Leuven Strategic
Alliance (CELSA) (2017-2019).

◦ “Tools for AI-enhanced Security Verification of Cryptographic Devices” (VJ02010010)
of the Ministry of the Interior of the Czech Republic (2022-2025).

v

◦ “Dependable and attack-resistant architectures for programmable devices” (2017-
2019, SGS17/213/OHK3/3T/18), “Design, programming and verification of embed-
ded systems” (2020-2022, SGS20/211/OHK3/3T/18), “Design, programming and
verification of intelligent embedded systems” (2023-2025, SGS23/208/OHK3/3T/18)
of the Student Grant Competition of CTU in Prague.

vi

Dedication

To all my loves, past, present, and to come.

vii

Contents

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Goals of the Dissertation Thesis . 2
1.3 Structure of the Dissertation Thesis . 2

2 Background and State of the Art 3
2.1 Introduction to Side-Channel Security . 3

2.1.1 Measurements . 6
2.1.2 Formal Model . 8
2.1.3 Leakage Function . 10

2.2 Non-Profiled Attacks . 11
2.2.1 Differential Power Analysis (DPA) 12
2.2.2 Multi-bit DPA and Partitioning Power Analysis (PPA) 13
2.2.3 Correlation Power Analysis (CPA) 14
2.2.4 Mutual Information Analysis (MIA) 16
2.2.5 Kolmogorov–Smirnov Analysis (KSA) 18
2.2.6 Differential Deep Learning Analysis (DDLA) 19

2.3 Profiled Attacks . 20
2.3.1 Template Attack (TA) . 20
2.3.2 Machine Learning-based Attacks 24

2.4 Side-Channel Attack Related Metrics . 25
2.4.1 Success Rate and Guessing Entropy 25
2.4.2 Confusion Coefficient and Distinguishing Margin 26

2.5 Countermeasures Against Attacks . 27
2.5.1 Secure Logic Styles . 28
2.5.2 Additional Modules . 28
2.5.3 Masking . 29

2.6 Attacks on Protected Implementations . 32

viii

Contents

2.6.1 Attacks on Hiding . 32
2.6.2 Attacks on Masking . 33

2.7 Leakage Assessment . 35
2.7.1 Welch’s t-test . 36
2.7.2 Chi-squared test . 36
2.7.3 Deep Learning Leakage Assessment 37

3 Symmetric Cryptography 39
3.1 Substitution-Permutation Networks . 39

3.1.1 PRESENT . 40
3.1.2 AES/Rijndael . 40
3.1.3 Serpent . 41

3.2 Combined Countermeasures Utilizing Dynamic Logic Reconfiguration . . . 41
3.2.1 Dynamic Logic Reconfiguration using CFGLUTs 41
3.2.2 Countermeasures Combination . 42
3.2.3 Proposed Secure Cipher Design . 45
3.2.4 Latency and Area Utilization . 47
3.2.5 Side-Channel Leakage Evaluation 47
3.2.6 Further Experiments . 53
3.2.7 Summary . 54

3.3 High-Level Synthesis of Masking Countermeasure 55
3.3.1 FPGA Design using High-Level Synthesis 56
3.3.2 Alternating Masks Scheme . 57
3.3.3 Proposed Secure Cipher Design . 57
3.3.4 Latency, Throughput and Area Utilization 60
3.3.5 Side-Channel Leakage Evaluation 62
3.3.6 Discussion and Future Work . 69
3.3.7 Summary . 70

3.4 Summary . 71

4 Asymmetric Cryptography 73
4.1 Rainbow Multivariate Quadratic Signature 74

4.1.1 Matrix Multiplication in the Reference Implementation 75
4.1.2 Central Map in Matrix Representation 76
4.1.3 Secret and Public Keys . 77
4.1.4 Signing and Verification Process . 77

4.2 Side-Channel Attack on the 32-bit Reference Implementation of the Rainbow 77
4.2.1 Attack on S map . 78
4.2.2 Attack on T map . 80
4.2.3 Extraction of the Central Map F 81
4.2.4 Experimental Evaluation . 81
4.2.5 Summary . 82

ix

Contents

4.3 Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures . 82
4.3.1 Equivalent Key . 83
4.3.2 Efficient Implementation . 89
4.3.3 Side-Channel Leakage Evaluation 95
4.3.4 Time Evaluation . 97
4.3.5 Memory Evaluation . 100
4.3.6 Summary . 100

4.4 Summary . 101

5 Conclusion 103
5.1 Summary of Contributions . 104
5.2 Future Work . 105

Bibliography 107

Reviewed Publications of the Author Presented in This Thesis 125

Remaining Reviewed Publications of the Author 127

x

List of Figures

2.1 A CMOS inverter model. 5

2.2 A CMOS inverter current consumption. 5

2.3 Rijndael/AES Encryption FPGA Power Trace. 6

2.4 Example of a power measurement setup. 7

2.5 Combinatorial logic delay monitors. 8

2.6 Illustration of channels involved in side-channel analysis. 9

2.7 Architecture of Rijndael/AES last round. 15

3.1 Discussed symmetric encryption algorithms (128-bit key variants). 40

3.2 Example of a 2-input reconfigurable look-up table with serial programming I/O. 42

3.3 S-box Decomposition. 43

3.4 S-box Decomposition + Masking. 44

3.5 S-box Decomposition + Masking + Register Precharge. 45

3.6 Serpent S-boxes decomposition. 46

3.7 Results of the AES/Rijndael t-test. 49

3.8 Results of the Serpent t-test. 50

3.9 Results of the univariate second-order t-test. 52

3.10 Second-order DPA attack. 53

3.11 Second-order CPA attack. 54

3.12 Example of a design flow using high-level synthesis. 56

3.13 PRESENT specific t-test results of 64 models based on substitution layer out-
put (S-boxes outputs). 64

3.14 PRESENT specific t-test results of 64 models based on round register leakage
(xor of consecutive rounds inputs). 65

3.15 PRESENT non-specific t-test results. 65

3.16 AES/Rijndael specific t-test results of 128 models based on substitution layer
output (S-boxes outputs). 66

3.17 AES/Rijndael specific t-test results of 128 models based on round register
leakage (xor of consecutive rounds inputs). 66

xi

List of Figures

3.18 AES/Rijndael non-specific t-test results. 67
3.19 Serpent specific t-test results of 128 models based on substitution layer output

(S-boxes outputs). 67
3.20 Serpent specific t-test results of 128 models based on round register leakage

(xor of consecutive rounds inputs). 68
3.21 Serpent non-specific t-test results. 68
3.22 Results of the specific t-tests based on substitution layer output (S-boxes out-

puts), Version 2. 69

4.1 Results of the t-tests (Rainbow). 97
4.2 Execution times of the components in equivalent key generation. 99

xii

List of Tables

3.1 Latency and Area Utilization. 47
3.2 Total S-box count. 58
3.3 Post-RTL-synthesis area and timing estimates comparison. 60

4.1 Attack I: Revealing a matrix row. 78
4.2 Attack II: Row identification. 79
4.3 Attack III: Revealing remaining rows. 80
4.4 Summary of equivalent key variants. 92
4.5 Time overhead comparison. 98

xiii

Abbreviations

Related to Cryptography and Side-Channel Analysis

AES Advanced Encryption Standard
CPA Correlation Power Analysis
DDLA Differential Deep Learning Analysis
DLLA Deep Learning Leakage Assessment
DM Distinguishing Margin
DPA Differential Power Analysis
GE Guessing Entropy
HD Hamming Distance
HW Hamming Weight
ID Identity
iKSA Inter-class Kolmogorov-Smirnov Analysis
KSA Kolmogorov-Smirnov Analysis
MIA Mutual Information Analysis
PPA Partitioning Power Analysis
RSA Rivest–Shamir–Adleman cryptosystem
SR Success Rate
TA Template Attack

xiv

List of Tables

Related to Digital Design and Electronics

AC Alternating Current
ADC Analog-to-Digital Converter
ASIC Application-Specific Integrated Circuit
CLK Clock
CMOS Complementary Metal–Oxide–Semiconductor
DC Direct Current
EM Electromagnetic
FPGA Field-Programmable Gate Array
GND Ground
HLS High-Level Synthesis
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
NMOS N-channel Metal–Oxide–Semiconductor
PMOS P-channel Metal–Oxide–Semiconductor
RAM Random Access Memory
RTL Register-Transfer Level
SABL Sense Amplifier-Based Logic
SDDL Simple Dynamic Differential Logic
SNR Signal-to-Noise Ratio

VHDL
VHSIC (Very High-Speed Integrated Circuits Program)
Hardware Description Language

WDDL Wave Dynamic Differential Logic
XOR Exclusive OR

Miscellaneous

CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep Learning
GPU Graphics Processing Unit
IoT Internet of Things
ML Machine Learning
MLP Multilayer Perceptron
NIST National Institute of Standards and Technology
OpenCL Open Computing Language
OpenMP Open Multi-Processing
SVM Support Vector Machine

Mathematical notation and the used formal model is presented in subsection 2.1.2.

xv

Chapter 1

Introduction

1.1 Motivation and Problem Statement

In the past few decades, computer systems and communication networks have become
an essential part of our everyday lives. Various computing devices are used not only as
tools for many professionals, but also for entertainment. These devices include embedded
devices, such as payment cards, biometric passports, smart cars, trains or whole cities,
and even medical devices like pacemakers. Being surrounded by devices connected to the
Internet, our private lives are endangered more than ever [156].

Special attention must be given to ensure security of computer systems and their users.
Various measures are employed to achieve confidentiality, integrity, availability, and non-
repudiation of data with efficiency, ease of use, and cost in mind. Nowadays, widely used
algorithms such as AES [45, 120] or RSA [144] are typically considered secure from the
cryptanalytic point of view. However, their implementations may leak sensitive information
through side channels of the used cryptographic device, potentially compromising the entire
system.

Side-channel attacks exploit the data-dependent side channels, such as power con-
sumption of the cryptographic device [84, 83] or its electromagnetic radiation [136], in
order to extract secret information such as cipher keys. Such attacks pose a severe threat
to both hardware and software cryptographic implementations, especially in the IoT en-
vironment where the attacker may easily gain physical access to the device, leaving it
vulnerable to tampering. Various countermeasures have been proposed to prevent such
attacks. Masking is a widely used technique based on randomization of the processed
data [39, 109, 122, 63], making it difficult to exploit the leakage. Another common ap-
proach is hiding, which aims to conceal the exploitable leakage in either side-channel signal
amplitude or time [167, 168, 64, 108]. Recent real-world attack examples show that un-
compromising protection and testing of embedded cryptographic implementations is nec-
essary [95].

1

1. Introduction

1.2 Goals of the Dissertation Thesis

Together with my supervisors, we aimed to contribute to effective, efficient, and easy-to-
use countermeasures against passive non-invasive side-channel attacks. Our goals can be
summarized as follows:

1. Development of effective, efficient (in the terms of area and time), and easy-to-
use side-channel countermeasures for symmetric cryptography (most notably Rijn-
dael/AES) tailored specifically for FPGA hardware platforms.

2. Side-channel analysis of the Rainbow signature scheme and development of effective
and efficient side-channel countermeasures for such multivariate quadratic signature
schemes.

1.3 Structure of the Dissertation Thesis

This doctoral dissertation thesis is organized into 5 chapters as follows:

◦ Chapter 1: Introduction: Describes the motivation behind our efforts together with
our goals.

◦ Chapter 2: Background and State of the Art : Introduces the reader to the necessary
theoretical background and surveys the current state of the art.

◦ Chapter 3: Symmetric Cryptography : Describes our countermeasure development
for PRESENT, Rijndael/AES, and Serpent on FPGA. Countermeasures for both
register-transfer level and high level synthesis are proposed and thoroughly evaluated.

◦ Chapter 4: Asymmetric Cryptography : Describes our side-channel attack on the
Rainbow signature scheme reference implementation and our development of a multi-
platform countermeasure based on a concept of equivalent keys, suitable for multi-
variate-quadratic signature schemes.

◦ Chapter 5: Conclusion: Summarizes the results of our research, suggests possible
topics for further research, and concludes the thesis.

2

Chapter 2

Background and State of the Art

This chapter was published as a review article in the Sensors journal [A.1]
in 2022.

This chapter presents theoretical background and state of the art in the area of non-
invasive passive side-channel attacks. It is structured into 7 sections as follows:

1. Introduction to Side-Channel Security : Introduces side-channel leakage origin, mea-
surement setup, formal model of the leakage, and leakage functions.

2. Non-Profiled Attacks : Describes non-invasive passive non-profiled attacks.

3. Profiled Attacks : Describes non-invasive passive profiled attacks.

4. Side-Channel Related Metrics : Describes both experimental and theoretical attack-
related metrics.

5. Countermeasures Against Attacks : Describes hiding and masking countermeasures.

6. Attacks on Protected Implementations : Describes extensions of the presented attacks
for attacking implementations with countermeasures.

7. Leakage Assessment : Describes methods for evaluations of side-channel leakage.

2.1 Introduction to Side-Channel Security

Side channels of digital systems that may be used to compromise the system include
power consumption [83, 49, 29, 40], electromagnetic radiation [136], combinational logic
delay [150, 183], timing [84], and more. Some of these side channels are mutually depen-
dent, for example, the relationship between current intensity and the magnetic field can
be shown, e.g., by Biot–Savart law [160], and the combinational logic delay can be con-
vincingly modeled as inversely proportional to the voltage drop [128]. This dissertation

3

2. Background and State of the Art

thesis focuses on dynamic power consumption side channel, but presented concepts may
be relevant for other side channels as well.

Side-channel attacks may be classified in many different ways [160], such as invasive/non-
invasive or active/passive. Invasive attacks require depackaging the chip in order to access
internal components, such as data buses, while non-invasive attacks only exploit the ex-
ternal access. Active attacks tamper with proper functionality of the device (e.g., by
introducing faults), while passive attacks only make use of observation of the device during
its undisturbed operation. This dissertation thesis focuses on non-invasive passive attacks
only.

Side-channel attacks can also be classified as either horizontal or vertical. Horizontal
attacks exploit leakage during a single algorithm execution, while vertical attacks exploit
leakage from multiple executions. For example, considering a hardware implementation
of RSA algorithm that uses näıve Square&Multiply exponentiation, either only Square is
performed, or both Square&Multiply operations are performed during computation, for
every exponent bit, depending on the bit being zero or one. This not only influences
execution time, but, in some cases, it also allows the attacker to directly read the secret
key from a single measured power/EM trace by graphing the trace, as the two operations
form distinctive patterns [84]. This kind of a horizontal side-channel attack is called Simple
Power Analysis. Unlike this simple example, this dissertation thesis focuses on vertical side-
channel attacks, where the information is typically contained in the instantaneous signal
amplitude as further described below.

A CMOS inverter model is depicted in Figure 2.1. Three different dissipation sources
can be observed in such a CMOS structure [137]:

◦ static leakage current,

◦ short-circuit current, and

◦ capacitance charge and discharge.

When the inverter input presents a stable voltage corresponding to 0 or 1, one of the
transistors is open and the other one is closed. In this case, only static leakage current is
present. When the input changes, short-circuit current can be observed for a brief period of
time when both transistors are open. Furthermore, the modeled load capacitance CL has
to be charged to the proper voltage when the input changes its value. Therefore, based on
the instantaneous current consumption, it can be easily distinguished whether a transition
happened or not. This fact is exploited by the most common leakage models as described
later in this section. The consumption during a transition is demonstrated in Figure 2.2.

Because the P-channel MOSFET majority carriers have lower mobility and the minority
carriers have lower lifetime, in contrast to the N-channel MOSFET [71, 57], the P-channel
MOSFET is typically built larger than the N-channel MOSFET [71], resulting in different
characteristics, most importantly on-resistance and propagation delay (for non-inverter
gates) [138]. Due to differences between N-channel and P-channel MOSFETs, the output
value after transition can also be distinguished by the instantaneous current [100].

4

2.1. Introduction to Side-Channel Security

VDD

VSS

A

N-channel

P-channel

CL

not A

Figure 2.1: A CMOS inverter model.

Figure 2.2: A CMOS inverter current consumption. The yellow line is the inverter input,
the green line is the inverter output. The pink line is the current consumption, where
peaks during the transition are clearly observable.

5

2. Background and State of the Art

500 1000 1500 2000

t

-10000

10000

20000

O

Figure 2.3: Rijndael/AES Encryption FPGA Power Trace.

This simple example illustrates data dependency of the instantaneous power consump-
tion, which is the main cause of the power-related side-channel information leakage in
CMOS-based integrated circuits. Vertical attacks exploiting this kind of leakage typically
require multiple side-channel measurements, unlike the previously described simple power
analysis attack.

2.1.1 Measurements

The device’s side channel is typically observed during a cryptographic operation, resulting
in a measurement record, so-called trace, i.e., a vector of samples. For example, a single
trace of dynamic power consumption during Rijndael/AES encryption in an FPGA is
visualized in Figure 2.3. As mentioned earlier, multiple aligned traces, such as this one,
are typically required for a successful attack, although single-trace attacks are sometimes
also possible. This subsection briefly describes different measurement methods.

2.1.1.1 Power Consumption

Power consumption of the cryptographic device is typically measured using an oscilloscope
which samples voltage across a shunt resistor. The current can then be obtained, knowing
both resistance and voltage, using Ohm’s law I = U

R
. However, raw ADC values corre-

sponding to the voltage can be directly used in a typical attack scenario, since the current
and the voltage are assumed to be linearly dependent, as long as the oscilloscope setup
parameters are consistent during all measurements.

Various measurement setups are described in [115], the differences being primarily in
the shunt resistor placement:

◦ Shunt resistor in GND path, with the voltage across the resistor being sampled
by the oscilloscope, as shown in Figure 2.4a,

◦ Shunt resistor in VDC path, with the voltage across the cryptographic device
being sampled by the oscilloscope, as shown in Figure 2.4b, also observing voltage
drops of the power regulator.

6

2.1. Introduction to Side-Channel Security

Device Under Attack

Oscilloscope

PC

RSHUNT

VDC

Trigger

(a) GND path measurement

Device Under Attack
Oscilloscope

PC

VDC

RSHUNT

Trigger

(b) VDC path measurement

Figure 2.4: Example of a power measurement setup.

The latter setup offers an advantage when the device under attack has multiple power net-
works, because it allows the attacker to measure the just cryptographic core consumption.
When the voltage is measured using a shunt resistor in the ground path (Figure 2.4a),
the measured voltage typically contains more noise such as noise caused by the device’s
peripheral drivers. When measuring in the VDC path (Figure 2.4b), the DC shift must be
removed (unless measuring in a differential mode), which can be ensured either by using
oscilloscope’s AC mode, or by using external DC blocker. Other choices for power measure-
ment include differential or current probes. However, these are not recommended unless
necessary, as they present an additional source of environmental noise [115].

In a real-world attack, any decoupling capacitors near the cryptographic core must be
removed as they might filter out the relevant voltage changes. Correct power measurement
setup is crucial for successful side-channel analysis. Parameters such as the environmental
noise, sampling rate, or synchronization jitter have a direct impact on the attack suc-
cess [127].

2.1.1.2 Electromagnetic Radiation

Similarly to power measurement, an oscilloscope connected to a near-field probe may be
used for measurement of electromagnetic radiation [136]. As mentioned earlier, there is
a close relationship between the power consumption and the radiation [160].

Attacking electromagnetic radiation offers more degrees of freedom compared to the
power analysis. The attacker can examine a particular part of the chip only, and she
can choose from a wide variety of probes. Consequently, EM analysis may provide a very
powerful tool at the cost of more intricate and more costly employment. Further discussion
of EM side channels is outside of the scope of this dissertation thesis.

7

2. Background and State of the Art

... ...

Latches

CLK

(a) Delay chain + latches.

D Q

Q

D Q

Q

enable
1

...

(b) Ring oscillator + asynchronous counter.

Figure 2.5: Combinatorial logic delay monitors.

In addition to directly measuring electromagnetic radiation of the device under at-
tack, data-dependent leakage may also be unintentionally broadcast by a radio transmitter
present on the same chip (such as SoC bluetooth/WiFi transmitters with built-in encryp-
tion) [36]. In mixed-signal systems on chip, the leakage from the digital part of the chip
couples through substrate to the high-frequency analog radio transmitter [2]. This class of
attacks is called screaming channels and it allows the attacker to successfully reveal cipher
keys from traces obtained by a radio receiver from even 15m distance [35].

2.1.1.3 Combinational Logic Delay

Combinational logic delay inside a chip can be satisfactorily modeled as inversely propor-
tional to the voltage drop of the internal power network [128], which is data-dependent
due to the switching activity. In FPGA chips, the delay can be measured internally using
a delay-chain monitor [61, 150], shown in Figure 2.5a, or using a ring oscillator moni-
tor [183], shown in Figure 2.5b. Acquired delay traces can be used in side-channel analysis
in a similar fashion as the power traces.

Furthermore, crosstalk between two long wires inside the chip can be detected [140]
using a ring oscillator monitor as a receiver. In a multitenant FPGA chip setting, where
independent customers share the same FPGA accelerator, e.g., in a cloud environment,
these monitors open possibility for remote and even automated large-scale side-channel
attacks.

2.1.2 Formal Model

This subsection presents a formal model of side-channel leakage and corresponding termi-
nology as described in [58, 163]. The presented model is used for attack descriptions in

8

2.1. Introduction to Side-Channel Security

Cryptographic device/chip

W

L(W)

X EK(X)

W→L

L→O

Side-
channel
leakage

Measurement
setup,

environment,...
Oscilloscope, probes, ...

Noisy measurement
O

Figure 2.6: Illustration of channels involved in side-channel analysis.

following sections.
Consider a physical device performing a cryptographic operation Ek(x), depending on

a secret (sub)key k ∈ K, where K = Bm = {0, 1}m, x ∈ X . The unknown (sub)key is
then modeled as a random variable K : Ω → K, the processed data as a random variable
X : Ω → X .

Key-dependent state transitions (bit flips) occur inside the device during the execution
of Ek. These state transitions are described as word pairs (v1, v2) ∈ W , whereW = Bn×Bn,
v1 is previous state, v2 is new state. Unknown transitions (word pairs) are modeled as
a random variable W : Ω → W .

State transitions W induce side-channel leakage L on space L, modeled by a side-
channel leakage function L(W). Leakage L is measured through the noisy physical observ-
able O on space O.

The model describes a cascade of two channelsW → L → O. This cascade is comprised
of a leakage channel W → L through which information on processed words W leaks in
L, and observation channel L → O through which the attacker obtains noisy information
on L. The described channels are illustrated in Figure 2.6.

Observing O then means measuring q ∈ N+ traces oxi
(t), i = 1, 2, ..., q, of device’s

side channel (e.g., power consumption) O(t), while processing known data xi. In case
of Rijndael/AES, oxi

might be a trace similar to the one in Figure 2.3 and xi might be
a corresponding plaintext or ciphertext block.

Side-channel attack is then defined as determining the (sub)key k by reconstructing the
words W and using information on L contained in O. For example, the attack may be
performed in these steps:

1. The real leakage function L is unknown, so the attacker assumes a hypothetical

9

2. Background and State of the Art

leakage function L̂ (described in subsection 2.1.3).

2. The attacker makes a guess k̂ ∈ K on the real (sub)key k.

3. Based on the known data X, she computes an intermediate value fk̂(X) within the
Ek computation.

4. The intermediate value implies a guess Wk̂, which in turn implies a guess L̂k̂ =

L̂(Wk̂).

5. Finally, the attacker checks if the guess L̂k̂ is compatible with the observed O.

This attack scenario assumes that the real (sub)key k is fully enumerable in a reasonable
time and space. As shown in section 2.2 and section 2.3, side-channel attacks typically
target a single subkey, e.g., an octet in case of Rijndael/AES.

2.1.3 Leakage Function

Side-channel attacks can be classified into two groups according to approach to the hypo-
thetical leakage function L̂:

◦ Non-profiled attacks, where the attacker only makes use of an explicit leakage
function, which is effective for a range of devices (e.g., based on CMOS technology)
instead of being tailored for a specific one.

◦ Profiled attacks, which consist of a profiling step, where the attacker examines
a duplicate of the device under attack and she creates her own leakage approximation.
Furthermore, her approximation inherently takes noise contained in O into account,
making her empirical model more effective. This model is used for the attack, while
an explicit leakage function may or may not be used during the process.

Besides the differences regarding approach to the hypothetical leakage function, these
two types of attacks also assume a differently powerful attacker: for a profiled attack,
an exact duplicate of the device under attack is required, whereas it is not for a non-
profiled attack.

This subsection briefly introduces widely used explicit leakage functions necessary for
non-profiled attacks which are discussed thereafter in section 2.2. Profiled attacks are
discussed later in section 2.3.

2.1.3.1 Hamming distance and Hamming weight

Hamming distance leakage function for v1, v2 ∈ Bn is defined as a number of bit positions
at which the words v1, v2 differ [29]:

L̂HD(v1, v2) = HD(v1, v2) ∈ L = {0, 1, ..., n}, (2.1)

10

2.2. Non-Profiled Attacks

The function corresponds to the number of bit flips in an n-bit wide register during (v1, v2)
transition. It is a generally applicable model suitable for attacking CMOS logic. Hamming
distance is equal to Hamming weight of XOR of the operands: HD(v1, v2) = HW(v1 ⊕ v2),
where Hamming weight HW is defined as a number of bits in the word that are set to one.

When v1 is a zero vector, the Hamming distance leakage function reduces to Hamming
weight leakage function [111]

L̂HW(v2) = HW(v2) ∈ L = {0, 1, ..., n}, (2.2)

for v2 ∈ Bn. This is often the case when attacking software implementations in microcon-
trollers [83, 125].

Assuming Hamming weight HW(x), x ∈ Bn and uniformly distributed values of n bits in
a word x ∈ Bn, following properties hold for Hamming weight (and consequently Hamming
distance):

HW(x) ∼ Binom(n,
1

2
), (2.3)

E(HW(x)) =
n

2
, Var(HW(x)) =

n

4
. (2.4)

Furthermore, the Binomial distribution can be satisfactorily approximated by the Normal
distribution for p = 1

2
[77] and therefore

HW(x) ≈ N (
n

2
,

√
n

4
). (2.5)

Generalized distance model Less commonly, different weights may be assigned for
0 → 1 and 1 → 0 transitions, resulting in a generalized distance leakage function. E.g.,
weight 1.5 may be used instead of 1 for the 1 → 0 transition to provide a more effective
attack on some platforms [96].

2.1.3.2 Identity

Identity leakage function [58]

L̂id(fk̂(xi)) = fk̂(xi) ∈ L, (2.6)

for xi ∈ X , is equal to the targeted intermediate value within the Ek(xi) computation.
It is the most general leakage function in the sense that it puts no assumptions on the
cryptographic device or technology.

2.2 Non-Profiled Attacks

Non-profiled attacks can be divided into:

11

2. Background and State of the Art

◦ Parametric/Moment-based attacks, which exploit statistical moments (such as
mean or variance). Typical examples include Differential Power Analysis [83] or
Correlation Power Analysis [49, 29].

◦ Non-parametric/Information-theoretic attacks, which exploit the entire un-
derlying statistical distribution. A typical example is Mutual Information Analy-
sis [58].

◦ Machine learning-based attacks, namely the Deep Learning Power Analysis [166].

These attacks are presented in more depth in this section.
Unless stated otherwise, all of the attack descriptions in this section assume the attacker

has already acquired q ∈ N+ traces oxi
(t), i = 1, 2, ..., q, of device’s side channel O(t)

(e.g., power consumption), while processing known data xi (e.g., plaintext), where bits in
xi are uniformly distributed. Usage of uniform plaintext gives a good confidence about
uniformity of intermediate values during the computation, since a cipher where properties
such as diffusion are expected is typically targeted.

The q measured traces can be modeled as q samples from a multivariate random variable
O(t), where the dimension of the variable corresponds to a number of sampling points
within single trace. All the attacks presented in this section, except for the last one,
are univariate, i.e., only a single point in time is examined, which is desirable when the
sensitive intermediate value manifests itself at a single time instant. In this section, unless
stated otherwise, it is assumed that the interesting time instant t = τ is known and only
the single relevant sampling point is considered. The q measured traces are therefore
considered an univariate random variable O(τ).

In practice, when the time instant is unknown, the attack is performed at every time
instant t independently. The final attack evaluation thus typically requires more attention
and skill due to a larger false-result chance. Alignment of the traces is required when
synchronization of the measurements (e.g., using a trigger signal) is not possible.

2.2.1 Differential Power Analysis (DPA)

The Differential Power Analysis [83] attack is performed in these steps:

1. Assume a single bit (n = 1) Hamming weight (or distance) leakage function L̂.

2. Enumerate (sub)key guesses k̂ ∈ K.

3. Compute an intermediate value v2 = fk̂(xi),∀k̂, xi (and the previous state v1 if Ham-
ming distance is used) and consider only a single bit (e.g., the LSB).

4. For every guess k̂, partition measurements oxi
into two groups Ok̂

0 , O
k̂
1 according to

the leakage function L̂:

Ok̂
0 = {oxi

| L̂(v1, fk̂(xi)) = 0}, (2.7)

Ok̂
1 = {oxi

| L̂(v1, fk̂(xi)) = 1}. (2.8)

12

2.2. Non-Profiled Attacks

5. Select the guess k̂ for which the groups’ Ok̂
0 , O

k̂
1 means differ the most.

◦ For wrong guesses k̂, the traces for which L = 0 and the traces for which L = 1
are theoretically uniformly distributed in both groups.

◦ For the right guess k̂, the groups Ok̂
0 , O

k̂
1 should be distinguishable by their mean

value, due to the bias caused by the fixed bit.

In the last step, the original Kocher’s DPA [83] selects the guess k̂ for which the absolute
difference of means between the two groups is greatest. More formally, the hypothesis about
equal means may be examined by using Welch’s t-test or a similar statistic.

Example: Attacking first round of Rijndael/AES

1. Assume Hamming weight or identity single-bit leakage (Hamming weight is equivalent
to identity for n = 1).

2. Select an enumerable key-dependent intermediate value during Rijndael/AES encryp-
tion: fk̂(xi) := Sbox(xi⊕k̂). Sbox is an 8-bit bijection, fk̂(xi) is therefore computable
for each byte independently of the other bytes.

3. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, . . . , 255}, compute the intermediate
value v2 = fk̂(xi),∀k̂, xi and choose, e.g., the LSB.

4. Use the Hamming weight of the LSB as leakage function and partition traces oxi
to

groups Ok̂
0 , O

k̂
1 .

5. Select the subkey guess k̂ for which the two groups differ the most.

Because DPA builds its hypothesis on a single bit value, its assumptions regarding the
leakage are very general. This may be one of the reasons for false results, so-called “ghost
peaks”. The choice of the bit in fk̂(xi) has direct impact on the attack success. These facts
are a motivation for multi-bit DPA as described further [20, 37].

2.2.2 Multi-bit DPA and Partitioning Power Analysis (PPA)

Bevan’s approach to multi-bit extension of the DPA is performing the original DPA inde-
pendently for different bits of intermediate value fk̂(xi) and summing all the independent
differences of means [20]. Then the subkey guess with the greatest summed difference is
selected. This approach reduces the number of traces necessary as well as the chance of
a false result [20].

Messerges’s multi-bit extension of the original DPA suggests using n-bit Hamming
weight or Hamming distance leakage model [111], therefore utilizing the whole fk̂(xi) value.

This time, two sets Ok̂
<, O

k̂
≥ are defined so that

Ok̂
< = {oxi

| L̂(fk̂(xi)) <
n

2
}, (2.9)

13

2. Background and State of the Art

Ok̂
≥ = {oxi

| L̂(fk̂(xi)) ≥
n

2
}, (2.10)

and their difference is examined similarly to the original DPA.
Partitioning Power Analysis [4, 90] is a generalization of the multi-bit DPA. Assuming

an n-bit fk̂(xi) intermediate value and a Hamming weight or Hamming distance leakage

function, the traces oxi
are partitioned into (n+ 1) sets Ok̂

0 , . . . O
k̂
n so that

Ok̂
j = {oxi

| L̂(fk̂(xi)) = j}. (2.11)

The distinguishing statistic (which is a difference of means in the original DPA) is then
defined by using weights aj ∈ R as

n∑
j=0

aj · µOk̂
j
, (2.12)

where µ
Ok̂

j
are means of the aforementioned groups.

The original DPA is a special case of 1-bit PPA where a0 = −1, a1 = 1. Bevan’s 4-bit
DPA is a special case of 4-bit PPA where a0 = −1

8
, a1 = −1

4
, a2 = 0, a3 = 1

4
, a4 = 1

8
.

Messerges’s n-bit DPA is a special case of n-bit PPA where aj = −1 for 0 ≤ j < n
2
, and

aj = 1 for n
2
≤ j ≤ n [90].

2.2.3 Correlation Power Analysis (CPA)

The Correlation Power Analysis [49, 29] attack is performed in these steps:

1. Assume a Hamming weight or Hamming distance leakage function L̂.

2. Enumerate (sub)key guesses k̂ ∈ K.

3. Compute an intermediate value v2 = fk̂(xi),∀k̂, xi (and the previous state v1 if using
Hamming distance).

4. For every key guess k̂, pairs (oxi
, L̂(v1, fk̂(xi))) represent samples from joint distribu-

tion (O, L̂k̂).
1

5. Compute Pearson correlation coefficient ρk̂ =
Cov(O,L̂k̂)

σOσL̂
k̂

for every k̂.

6. Select the guess k̂ for which the value of |ρk̂| is the highest.

Assuming there is a linear dependence between the predicted leakage and the physical
observation, a significant correlation ρk̂ should appear for the right guess k̂, while for
a wrong guess, the ρk̂ should converge to zero.

1In other words, every trace is paired with the predicted Hamming weight/distance.

14

2.2. Non-Profiled Attacks

128

128

round key

ciphertext

S1 S2 S16...

8

Byte permutation
...

Round register

Round register

Figure 2.7: Architecture of Rijndael/AES last round. The scheme is unrolled for illustration
purposes only, both “Round register” blocks depict the same hardware register.

Example: Attacking last round of Rijndael/AES

1. Assume the architecture illustrated in Figure 2.7 and a Hamming distance leakage
(both v1, v2 must be derived). Let Y = Ek(X), i.e., ciphertext.

2. Let v2 = yi. The previous register state is then v1 = fk̂(yi) = Sbox−1(Perm−1(yi⊕k̂)).
Both values are once again enumerable for each byte independently of the other bytes
due to the fact that the MixColumns operation is not performed in the last round.

3. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, ..., 255}, and compute the intermediate
value fk̂(yi),∀k̂, yi.

4. Compute the leakage function L̂HD(fk̂(yi), yi),∀k̂, yi.

5. Compute Pearson correlation coefficient ρk̂ =
Cov(O,L̂k̂)

σOσL̂
k̂

for every k̂.

6. Select the guess k̂ for which the value of |ρk̂| is the highest.

Unlike previously described DPA attacks, which use a partitioning approach, the CPA
attack uses a comparative approach. However, CPA with a single-bit leakage function is
equivalent to the original DPA. Interestingly, CPA is equivalent to normalized PPA with
weights implicitly given by the distribution of bits in fk̂(xi). For a uniform distribution of
bits in fk̂(xi), CPA is equivalent to the Bevan’s multi-bit DPA [90].

The CPA attack assumes a linear relationship between the predicted leakage and the
physical observation. However, this requirement can be relaxed to monotonicity by using

15

2. Background and State of the Art

the Spearman coefficient instead of the Pearson coefficient [14]. Similar to DPA, CPA ex-
ploits statistical moments such as mean or covariance, and therefore requires a “normally”
distributed observation channel. The success of the attack largely depends on the quality
of the leakage approximation and present noise.

2.2.4 Mutual Information Analysis (MIA)

The Mutual Information Analysis [58] attack is performed in these steps:

1. Assume an arbitrary leakage function L̂ ∈ L (with some restrictions, as explained in
subsubsection 2.2.4.1).

2. Enumerate (sub)key guesses k̂ ∈ K.

3. Compute an intermediate value v2 = fk̂(xi),∀k̂, xi (and the previous state v1 if using
Hamming distance).

4. Let L0, . . . , Ll be subsets of L so that the set {L0, . . . , Ll} is a partitioning of L. The
elements Lj, j = 0, . . . , l, are called atoms.

5. Associate inputs xi that leak Lj under key guess k̂ to Lk̂
j :

Lk̂
j = {xi | L̂(v1, fk̂(xi)) ∈ Lj}. (2.13)

Each partition {Lk̂
0, ..., L

k̂
l } induces a subdivision of measurements oxi

.

6. Define conditional distributions {P
O |Lk̂

j
}lj=0 by using the subdivision of O, and let

PO, PLk̂
be probability distributions of O, L̂k̂.

7. Select k̂ with the highest mutual information I(L̂k̂;O).

Unlike DPA or CPA, the Mutual Information Analysis exploits mutual information,
which is defined as

I(X;Y) = DKL(PX,Y ||PX ⊗ PY), (2.14)

where DKL is Kullback-Leibler divergence, i.e., a statistical distance describing probability
distribution difference. Mutual information is directly related to entropy H:

I(X;Y) = H(X)− H(X|Y) = H(X) + H(Y)− H(X,Y) = I(Y;X), (2.15)

where H(X|Y) is conditional entropy, H(X,Y) is joint entropy. Mutual information can
be intuitively interpreted as the amount of information obtained about X by observing Y
or, in other words, the reduction of uncertainty in X obtained by observing Y.

The mutual information computation may go as follows:

1. Using measurements oxi
belonging to Lk̂

j , estimate the conditional distribution P
O |Lk̂

j

and the conditional entropy H̃(O|L̂k̂ = j).

16

2.2. Non-Profiled Attacks

2. Compute the conditional entropy H̃(O|L̂k̂) by using {H̃(O|L̂k̂ = j)}lj=0.

3. By using all of the measurements oxi
, estimate the distribution PO and the entropy

H̃(O).

4. Compute the mutual information Ĩ(L̂k̂;O) = H̃(O)− H̃(O|L̂k̂).

Example: Attacking AES/Rijndael with minimum assumptions

1. Assume an identity leakage function L̂(fk̂), e.g., three MSBs of fk̂(xi) = Sbox(xi⊕ k̂)

2. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, . . . , 255}, and compute the interme-
diate value fk̂(xi),∀k̂, yi.

3. For every subkey guess, associate each oxi
with an atom of {Lk̂

i }7i=0 based on its
input’s predicted leakage.

4. For every subkey guess, estimate the densities PO and PO|L̂k̂
and compute the mutual

information Ĩ(L̂k̂;O).

5. Select k̂ with the highest mutual information Ĩ(L̂k̂;O).

Crucial aspect of Mutual Information Analysis is the estimation of probability densities
PO and PO|L̂k̂

. Some of the choices include:

◦ histogram, i.e., a non-parametric discrete estimate;

◦ kernel density estimate, i.e., a non-parametric continuous estimate; and

◦ finite mixture model, i.e., a (semi-)parametric continuous estimate.

The quality of the estimate has a direct influence on both attack success and compu-
tational complexity [173, 15].

A histogram provides a simple and efficient estimate with the most critical parameter
being the number of bins [173]. The best estimate would require as many bins as there
are values in the domain; however, it would be problematic to get enough values in every
bin for it to be statistically significant. Less bins result in less information, but also lower
susceptibility to noise. The original MIA [58] proposes using l + 1 bins, i.e., as many bins
as there are atoms in the L partitioning.

A kernel density estimate provides better attack results than the histogram [173] at
the cost of its higher computational complexity. In this case, the kernel and bandwidth
are the most critical parameters. Popular kernel choices include Epanechnikov (which is
mean-square-error optimal) and Gaussian (for its convenience). Bandwidth has a similar
role as bins in histograms, and it can be intuitively seen as a “smoothing parameter”.
Generally speaking, the attacker aims to select the bandwidth as small as allowed by

17

2. Background and State of the Art

the data. A “rule-of-thumb” bandwidth estimator can be used alongside the Gaussian
kernel [157].

A finite mixtures model assumes the underlying distribution to be a mixture of dis-
tributions, whose parameters are estimated, e.g., by using the expectation-maximization
algorithm. Typically, a mixture of Gaussians is assumed [92].

Mutual information analysis puts no hard assumptions on the leakage function or the
underlying distributions and provides sound results even with a simple identity leakage
function. It provides a generic and powerful side-channel distinguisher (although it is less
efficient in scenarios well-suited for DPA/CPA) [173, 15, 175].

2.2.4.1 Leakage Function in Partitioning Attacks

Mutual Information Analysis allows for an arbitrary leakage function, giving the attacker
a great degree of freedom. Although Hamming weight or Hamming distance leakage func-
tions may be used when it is possible to predict both v1, v2, their usage inherently leads
to a loss of information. Identity leakage function, which is much more generic, may also
be used. If the Hamming weight/distance estimate is possible, identity is shown to be less
efficient, but still effective [173].

The leakage function must be selected so that a different k̂ must not yield a permutation
of L̂k̂. For example, assume that using the identity of Rijndael/AES bijective S-box output.

Different k̂ then leads to a permutation of {Lk̂
0, . . . , L

k̂
l }, which means that the mutual

information is constant and independent of k̂ [58]. This limitation can be easily overcome,
e.g., by choosing only seven least significant bits of the Sbox output, or by using a Hamming
weight/distance [58].

This problem does not only pertain to MIA, but to every partitioning attack (all the
presented non-profiled attacks except CPA). When fk̂(xi) is an injective function, an attack
using trivial partitioning where each value belongs in its distinct class will always fail [162,
178].

2.2.5 Kolmogorov–Smirnov Analysis (KSA)

The Kolmogorov–Smirnov Analysis [173, 177] attack is performed in these steps:

1.-6. The first six steps are same as for Mutual Information Analysis in subsection 2.2.4.
Define the conditional distributions {P

O |Lk̂
j
}lj=0 and the distribution PO.

7. For every k̂, compute the average Kolmogorov–Smirnov distance between PO and
P
O |Lk̂

j
, optionally further normalized by 1

|O
Lk̂
j

| , where |O
Lk̂
j
| is a size of the measure-

ments set belonging to atom Lk̂
j :

E
j
(

1

|O
Lk̂
j
|
DKS(PO ||P

O |Lk̂
j
)). (2.16)

18

2.2. Non-Profiled Attacks

8. Select the key guess k̂ with the largest average KS-distance.

The Kolmogorov–Smirnov distance between PX and PY is defined as

DKS(PX ||PY) = sup
x

|FX(x)− FY(x)|, (2.17)

where FX is a cumulative density function of X. The Kolmogorov–Smirnov Analysis is
heavily inspired by the Mutual Information Analysis. However, instead of estimating
probability density function, the easier-to-obtain cumulative density function is used.

Alternatively, interclass Kolmogorov–Smirnov Analysis (iKSA) [98] distinguishes the
key guess using the distance between the conditional distributions:

1

2
E
j,j′

(DKS(PO |Lk̂
j
||P

O |Lk̂
j′
)). (2.18)

Other choices for comparison of the distributions include Cramér–von Mises criterion
or different F-divergences [173].

The Kolmogorov–Smirnov Analysis shares some important characteristics with MIA, as
both attacks can be used with an identity leakage function, and therefore without precise
knowledge about the implementation and leakage. It can provide better results for weak
signals than MIA due to its noise robustness [177], and since it utilizes CDF instead of
PDF, it may be more convenient.

2.2.6 Differential Deep Learning Analysis (DDLA)

The Differential Deep Learning Analysis [166] attack is performed in these steps:

1. Assume an arbitrary leakage function L̂ ∈ L.

2. Enumerate (sub)key guesses k̂ ∈ K.

3. Compute an intermediate value v2 = fk̂(xi),∀k̂, xi (and the previous state v1 if using
the Hamming distance).

4. Create labeled training datasets {(oxi
, L̂(v1, fk̂(xi)))}k̂,∀k̂, oxi

. Note that the same
limitations as described in subsubsection 2.2.4.1 apply.

5. Perform Deep Learning classifier training for every dataset.

6. Select the key guess k̂ with the best DL training metrics.

Unlike the previously described attacks in this section, the Differential Deep Learning
Analysis is typically used in a multivariate fashion, not univariate. In other words, the
attack is not performed at a single sampling point/all the sampling points in the trace
independently. Instead, the classifier is fed with the multivariate vectors corresponding to
the entire encryption.

19

2. Background and State of the Art

The Differential Deep Learning Analysis is a partitioning attack, like all the previously
presented attacks except CPA. A key-dependent partitioning of the data is created and then
the distinguishability of the partitions is examined by using the classifier. For the correct
key guess, the classifier should be able to learn distinctive features of differently labeled
data. When a wrong guess is made, the traces are randomly distributed across labels,
and therefore the training metrics should be significantly worse than for the correct guess.
Different training metrics are proposed for the final selection of the key, e.g., by using
sensitivity analysis [166].

Various deep-learning architectures, such as a multilayer perceptron or a convolutional
network may be used for the classifier. Translation-invariance property of convolutional
networks can be exploited to attack desynchronized traces [34, 166], whereas previously
described attacks would require synchronization of the traces during preprocessing, e.g.,
by using autocorrelation, due to their univariate nature. A distinct disadvantage of using
the machine-learning based blackbox approach is limited explainability of the results [171].

2.3 Profiled Attacks

Profiled attacks assume the attacker has a fully-controlled identical copy of the device
under attack at her disposal. She is capable of observing the device’s side channels during
execution of the identical cryptographic implementation. Moreover, she is able to feed the
implementation with arbitrary inputs and keys. Her attack is tailored for a specific device
and therefore more effective and efficient than a non-profiled attack.

Profiled attack consists of two phases:

1. Profiling phase, during which an empirical model of the leakage is created using
the identical copy of the device under attack.

2. Attack phase, during which observations of the device under attack are evaluated
using the previously profiled model.

Unlike non-profiled attacks presented in section 2.2, all the presented profiled attacks
are multivariate, i.e., full traces O(t) are considered, where the dimension (t) corresponds
to a number of sampling points within a single trace.

2.3.1 Template Attack (TA)

The Template attack [40, 143] is performed in these steps:

1. Consider an arbitrary leakage function L̂ ∈ L.

Profiling phase

2. Measure a profiling set of traces o(xi,ki)(t) using desired (typically, but not necessarily
random uniform) inputs (xi, ki).

20

2.3. Profiled Attacks

3. Compute an intermediate value v2 = fki(xi),∀ki, xi (and the previous state v1 if using
Hamming distance).

4. Let L0, . . . , Ll be subsets of L so that the set {L0, . . . , Ll} is a partitioning of L. The
elements Lj, j = 0, . . . , l, are called atoms.

5. Associate measurements o(xi,ki) whose inputs (xi, ki) leak Lj to Oj:

Oj = {o(xi,ki) | L̂(v1, fki(xi)) ∈ Lj}. (2.19)

6. Select points of interest ti within the measurements o(xi,ki)(t), e.g., by using sum of
differences of average traces of each Oj set or by using principal component analysis.
From this moment on, restrict the measurements to these points only.

7. Create empirical models, so-called templates, Tj, e.g., Gaussian probability estimates,
characterizing leakage induced by atoms Lj using traces in set Oj.

Attack phase

8. Measure an attack set of traces oxi
(t) using desired plaintexts xi.

9. Enumerate (sub)key guesses k̂ ∈ K.

10. Compute an intermediate value v2 = fk̂(xi),∀k̂, xi (and the previous state v1 if using
Hamming distance).

11. Associate measurements whose inputs xi leak Lj under key guess k̂ to Ok̂
j :

Ok̂
j = {oxi

| L̂(v1, fk̂(xi)) ∈ Lj}. (2.20)

12. Compute probabilities Pr(O = oxi
|L ∈ Lj), oxi

∈ Ok̂
j that measurements in Ok̂

j leak
Lj using the templates Tj.

13. Select the key guess k̂ with the highest overall probability (product of posterior
probabilities) of the predicted leakage.

The Template attack provides the attacker with a very powerful and universal tool.
The empirical templates Tj are typically multivariate Gaussian models [40]. A creation of
the Gaussian template is demonstrated in the following examples.

Example: Attacking Rijndael/AES using Hamming weight and Gaussian tem-
plates

1. Assume Hamming weight leakage function L̂ and intermediate value fk̂(xi) = Sbox(xi⊕
k̂).

21

2. Background and State of the Art

Profiling phase

2. Measure a profiling set of traces o(xi,ki)(t), using random uniform inputs (xi, ki).

3. Partition measurements o(xi,ki)(t) into nine groups according to the Hamming weight
of S-box output:

Oj = {o(xi,ki)(t) | L̂(fki(xi)) = j}. (2.21)

4. Select sampling points of interest t1, . . . , tm using sum of differences of average traces:

a) Compute the average measurement Mj(t) for every group Oj.

b) Compute the sum of the absolute pairwise differences of these average power
traces:

∑
i,j |Mi(t) − Mj(t)| and select the most deviate points, preferably in

different clock cycles.

Reduce the dimensionality of O(t) and of the average traces Mj(t) to these selected
points only.

5. Define noise measurements as

Nj = {n(xi,ki)(t) |n(xi,ki)(t) = o(xi,ki)(t)−Mj(t) ∧ o(xi,ki)(t) ∈ Oj}, (2.22)

and consider Nj samples from variable Nj.

6. Compute the noise covariance matrices Σj between all the points of the interest for
every group Nj:

Σj =

 Var(Nj(t1)) . . . Cov(Nj(t1),Nj(tm))
...

. . .
...

Cov(Nj(tm),Nj(t1)) . . . Var(Nj(tm))

 (2.23)

7. Tj = (Mj,Σj) is a Gaussian template characterizing leakage L = j, i.e., Hamming
weight of the S-box output.

Attack phase

8. Measure/capture an attack set of measurements oxi
(t), by using random uniform

plaintexts xi.

9. Enumerate byte subkey guesses k̂ ∈ K = {0, 1, . . . , 255} and compute the intermedi-
ate value v2 = fk̂(xi),∀k̂, xi.

10. Partition the traces oxi
(t) into nine groups according to the predicted Hamming

weight, for every subkey guess:

Ok̂
j = {oxi

(t) | L̂(fk̂(xi)) = j}. (2.24)

22

2.3. Profiled Attacks

11. For every measurement oxi
(t) in group Ok̂

j , evaluate the probability of it belonging
in the designated group by evaluating the template Tj = (Mj,Σj):

a) Compute hypothetical noise vector nxi
(t) = oxi

(t)−Mj(t).

b) Compute the probability of observing nxi
(t) by using the multivariate Gaussian

probability distribution:

pj(nxi
(t)) =

1√
(2π)N |Σj|

exp(−1

2
nxi

(t)⊤ Σ−1
j nxi

(t)), (2.25)

where N is number of points of the interest, |Σj| is the determinant of Σj, and
Σ−1

j is its inversion.

12. Select the key guess k̂ with maximum overall probability of the measurements being
partitioned in the correct groups.

Example: Attacking Rijndael/AES using a single measurement

1. Assume identity leakage function L̂ and intermediate value fk̂(xi) = k̂. Assume
an atom Lj for every subkey value, i.e., 256 atoms.

Profiling phase

2. Measure a large amount of traces using uniform plaintexts and keys and create
256 Gaussian templates.

Attack phase

3. Measure a trace using a uniform plaintext and evaluate it against all the templates.
Select the key guess with the highest probability.

Computing the probabilities as described above may lead to numerical instabilities,
which can be solved by using logarithms of probabilities instead [100].

The creation of the model (i.e., the templates) requires a large amount of measurements
in comparison to the actual attack. Efficient and effective templates may require further
evaluation due to potential overfitting: templates too specific for the attacker’s copy might
not work on the device under attack [40].

Various ways to improve the efficiency of the template attack are described in [42], such
as methods for the dimensionality reduction/selection of points of the interest, usage of
pooled covariance matrices, combining multiple traces, etc.

Many use cases and scenarios are possible by using the extend-and-prune approach, i.e.,
starting with small parts of information and increasingly extending the attack. Thanks to
the profiling phase, the attack phase is very effective and efficient.

23

2. Background and State of the Art

2.3.2 Machine Learning-based Attacks

Machine Learning (ML) algorithms are algorithms that learn to solve a problem without
being explicitly programmed to do so. In this context, “to learn” can be perceived as “to
build an empirical model using training data”, whereas “to solve” can be perceived as “to
evaluate real data using the model”. A profiled side-channel attack as described in this
section can be reduced to a classifying task, which is thoroughly studied in the context of
supervised machine learning [87].

Profiled machine learning-based attacks are typically performed in a similar fashion
as the Template attack, and can often be classified as one. They also share many of its
advantages and disadvantages. The crucial difference is in the choice of the empirical
model: instead of Gaussian, a machine learning-based classifier is used.

A Support Vector Machine (SVM) is a machine learning algorithm commonly used for
classification, based on creating an optimal hyperplane between different classes. It was
shown to be more efficient than Gaussian Template attack in some aspects [72, 68, 93],
performing better on noisy measurements and requiring a smaller profiling set. However,
selection of the algorithm parameters, such as the kernel function, may have a significant
impact on its performance [72]. Both binary and multi-class SVM classifiers were suc-
cessfully used to attack Rijndael’s S-box output [13]. Other common classifier choices are
Decision trees, Random forests [93, 94], and others.

Neural network-based deep learning classifiers are a popular choice in side-channel se-
curity [17, 66]. The non-profiled variant of the attack is presented in subsection 2.2.6. Both
multilayer perceptron [103, 102] and convolutional neural network [97, 34] architectures are
suitable for a profiling attack. Whereas a multilayer perceptron classifier must be fed with
aligned power traces, the location and scale invariant convolutional neural network can
extract the features itself and therefore it is capable of processing misaligned or jittered
measurements without prior preprocessing [34]. It is capable of exploiting both univariate
and multivariate leakage, as well as utilizing both Hamming weight/distance or identity
training labels [89].

Hyperparameters of the neural network model include the network architecture (number
of nodes in a layer, number of layers, activation function) and learning parameters (number
of epochs, batch size, optimization algorithm, learning rate). Unfortunately, there does not
seem to be the best model for every scenario (“no free lunch” theorem). Finding a suitable
model is a nontrivial task; however, it is crucial for a successful attack. Class imbalance
may present a significant obstacle [132], especially when Hamming weight is used (e.g., only
a single word value x ∈ Bn leads to HW = 0, in contrast to HW = n

2
). Even though the

neural network can be fed the whole unprocessed and even misaligned traces, it holds that
the higher is the dimension of the data, the higher is the attack complexity and the larger
training sets are required [94]. Similarly to the Template attack, both underfitting and
overfitting of the model during the learning phase may lead to an unsuccessful attack: the
former cannot generalize the observations, whereas the latter learns non-relevant details
and noise [89].

24

2.4. Side-Channel Attack Related Metrics

2.4 Side-Channel Attack Related Metrics

Several metrics related to side-channel attacks are presented in this section. Experimental
metrics Success rate and Guessing entropy are presented in subsection 2.4.1. Theoretical
metrics Confusion coefficient, Distinguishing margin, and their relationship to differential
cryptnalysis are presented in subsection 2.4.2.

Let k̂ ∈ K be a (sub)key guess during an attack and let k∗ ∈ K be the real (secret)

(sub)key. Define a distinguisher Dk̂(ox1 , . . . , oxq ;x1, . . . , xq) as an absolute value of the
statistic that is used to distinguish the correct key during the attack. For example, a dif-
ference of means or t-value in case of DPA (subsection 2.2.1), a correlation coefficient in
case of CPA (subsection 2.2.3), a mutual information in case of MIA (subsection 2.2.4),
a Kolmogorov–Smirnov distance in case of KSA (subsection 2.2.5), probabilities in case of
DDLA (subsection 2.2.6) and TA (subsection 2.3.1). Assume that the higher the value of
Dk̂ is, the higher is the probability of the correct key k̂.

2.4.1 Success Rate and Guessing Entropy

Success rate [164] and Guessing entropy [104, 86] are experimental metrics allowing a com-
parison of different attacks on the same implementation. A simplified definition of these
metrics is presented in this subsection, omitting two parameters: time complexity τ and
memory complexity m [164].

Assume all the key guesses k̂ are sorted according to the value of Dk̂ in descending order,
i.e., the most probable candidate is positioned first, the second most probable candidate is
positioned second, etc. Let #(k̂) be a position of the guess k̂. Success rate is then defined
as the probability of the correct key guess k∗ being on the first position:

SR(q) = Pr(#(k∗) = 1), (2.26)

where q is the number of measurements available. In other words, it is the probability of
the attack revealing the correct key. The n-th order Success rate is defined as

Succn(q) = Pr(#(k∗) ≤ n). (2.27)

Guessing entropy is a related metric defined as the expected position of the correct key
within the previously mentioned sorted guesses:

GE(q) = E(#(k∗)), (2.28)

where q is a number of measurements available. Whereas Success rate characterizes the
probability of the attack being successful, Guessing entropy characterizes the amount of
the remaining work of the attacker when the attack fails to reveal the correct key.

In order for the values of Success rate or Guessing entropy to be trustworthy, a large
number of independent experiments must be performed [164].

25

2. Background and State of the Art

2.4.2 Confusion Coefficient and Distinguishing Margin

Consider a single bit intermediate value fk(x) (as in a DPA attack). Let k∗ be the correct
key and k ∈ K be any key hypothesis. The confusion coefficient κ(k∗, k) is then defined as
a probability of the bit fk(x) having a different value given two different keys [54]:

κ(k∗, k) = Pr(fk∗(x) ̸= fk(x)). (2.29)

It reaches minimum when the two keys are the same: κ(k, k) = 0, and maximum
κ(k∗, k) = 1 iff ∃k ̸= k∗,∀x : fk∗(x) = fk(x). Assuming fk(x) = S(x ⊕ k), the Confusion
coefficient is directly linked to cryptanalytical metrics of Boolean S-box S : Bn → Bm,
namely to its differential uniformity ∆S:

∆S = max
a∈Bm,k∈Bn

|{x ∈ Bn |S(x)⊕ S(x⊕ k) = a}|. (2.30)

Considering m = 1 (f : Bn → Bm being equivalent to {fi : Bn → B}mi=1) [67]:

2−n∆S − 1

2
= max

k ̸=k∗
|κ(k∗, k)− 1

2
|. (2.31)

Let b be one bit of a sensitive variable fk(x) for a perfectly secret encryption algorithm.
Then b is equiprobable, i.e., Pr(b = 1) = Pr(b = 0) = 1

2
[80]. Assume that the bit b is

the one under attack. In such a case, the DPA/CPA and KSA/iKSA distinguishers can be
rewritten in following closed-form expressions [67]:

Dk
CPA = Dk

DPA =
2√

1 + 1/SNR
· |κ(k∗, k)− 1

2
|, (2.32)

Dk
KSA = 2Dk

iKSA = (2Φ(
√
SNR)− 1) · |κ(k∗, k)− 1

2
|, (2.33)

where Φ(x) is a cumulative distribution function of the standard noise N (0, 1). These
equations describe the relationship between the distinguisher and noise. Notice that for
large noise, the first multiplicand in both equations tends to zero.

Let the Distinguishing margin (distance to the nearest rival) be the distance between the
correct key k∗ distinguisher value Dk∗ and the maximum incorrect key guess k̂ distinguisher
value [176]:

DM = Dk∗ −max{Dk̂|k̂ ̸= k∗}. (2.34)

The distinguishing margin characterizes the ability of the attacker to distinguish the
correct key, i.e., her ability to make the attack succeed. For the Kolmogorov–Smirnov
distinguisher, it can be explicitly expressed in terms of Confusion coefficient, and therefore
differential uniformity [67]:

DMKSA = λ (
1

2
−max

k ̸=k∗
|κ(k∗, k)− 1

2
|) = λ(1− 2−n∆S). (2.35)

This equation demonstrates that the attack becomes easier as the distance between κ and 1
2

becomes smaller. It also provides a direct link between S-box properties, i.e., its differen-
tial uniformity, and its susceptibility to side-channel attacks: the harder the differential
cryptanalysis, the easier the side-channel analysis.

26

2.5. Countermeasures Against Attacks

2.5 Countermeasures Against Attacks

Countermeasures against side-channel attacks can be categorized in two basic groups [100]:

◦ Hiding, whose main objective is to “hide” the sensitive variable leakage, ideally to
entirely remove the data dependency of the L → O channel. Hiding countermeasures
generally focus on the signal-to-noise ratio (recall Equation 2.32 and Equation 2.33).
Hiding countermeasures can sometimes be further classified as (1) hiding in ampli-
tude, and (2) hiding in time. Shuffling, which randomizes the algorithm flow, is
sometimes considered a separate category, as it is implemented on the algorithm
level; however, its effect is similar to that of hiding.

◦ Masking randomizes the processed data W while still providing correct results,
therefore making it hard (ideally impossible) for the attacker to predict any inter-
mediate values. The aim is to make the W → L channel appear random, ideally
to remove the data dependency altogether. Unlike hiding countermeasures, masking
typically requires a source of fresh randomness. Security of the masking schemes is
therefore dependent on the used random generator.

Correctly employing the presented countermeasures does not result in an absolutely
secure implementation. The objective is to make the attack infeasible in a real-world
scenario, typically by increasing either the number of measurements necessary or the com-
putational cost of the attack over a limit of resources practically available to the attacker.
Similarly to the classic cryptanalysis, this limit lowers in time as the available computa-
tional capacity increases. Real-world attack examples [95] in 2021 show that protection
against extreme numbers of traces (hundreds of millions or more) is necessary. Attacks on
protected implementations are presented later in section 2.6.

In implementation terms, the countermeasures can further be categorized in three
groups [107]:

◦ Secure logic styles, which incorporate custom logic gates libraries, designed to
minimize the data-dependency. These countermeasures inherently introduce a large
overhead and their implementation is typically expensive. Countermeasures in this
category are generally “hiding in amplitude”.

◦ Additional modules, which are incorporated into the cryptographic design. The
basic advantage of these modules is their universal applicability and lower cost than
that of the secure logic style. Countermeasures in this category are generally hiding
countermeasures, either in amplitude or in time.

◦ Cryptographic module modifications, which aim to alter the encryption itself.
While offering a lower overhead than the previously mentioned categories, they are
often algorithm-specific and may present unforeseen weaknesses. This category con-
tains, most importantly, masking. However, some hiding countermeasures fall within
the category as well.

27

2. Background and State of the Art

Additionally, some types of cryptography were believed to be resistant to SCA by their
nature. For example, chaos cryptography [105, 119] was expected to be hard to attack
because of its unpredictable behaviour [99]. Nevertheless, these beliefs were disproven,
e.g., by a study showing that the chaos-based S-Boxes are similarly vulnerable to SCA as
the AES ones [1]. Similarly, ARX-based cryptography [16, 9] was expected to be more
resistant to SCA, as there is no highly nonlinear element (S-Box) whereas later research
showed the opposite [78, 124].

2.5.1 Secure Logic Styles

The logic gates are typically designed in static CMOS technology, as illustrated in Fig-
ure 2.1. Various logic styles aim to compensate for their data-dependent behavior, often
combining concepts of differential and dynamic logic [137]. Differential logic uses com-
plementary signals (e.g., A and A) at gate inputs and output, implementing differential
pull-down networks to equalize the power consumption of different transitions. Two-phase
dynamic logic introduces clock-driven pre-charge, where the load capacitance is artificially
charged. Combination of the two styles is often referred to as dynamic differential logic or
dual-rail pre-charge logic [107].

Various countermeasures based on secure logic styles were proposed in the literature.
Sense Amplifier-based Logic (SABL) [167] is an example of dynamic differential logic. It
aims to ensure constant consumption of all input and output transitions at the cost of
complicated design (custom logic gates, “Domino” logic), under the assumption that all
interconnections and capacitances are symmetrical (balanced). Simple Dynamic Differen-
tial Logic (SDDL) [168] uses ordinary CMOS gates, implementing the differential logic by
using De Morgan’s law and the pre-charge using AND gates. Wave Dynamic Differen-
tial Logic (WDDL) [168] extends the SDDL by limiting the used logic to AND and OR
gates, thanks to which a “precharge wave” is introduced to reduce overhead. Furthermore,
WDDL promises to be glitch-resistant, as opposed to SDDL, where data-dependent haz-
ards may compromise the countermeasure. Similarly to Sense amplifier-based logic, SDDL
and WDDL require symmetrical interconnections and capacitances. Other extensions of
dynamic differential logic are available in the literature [32, 11, 142].

Adiabatic logic [112] was originally designed for low-power applications with the aim of
reusing energy efficiently instead of it being discharged. It is powered by a clock-controlled
power source, typically trapezoidal. Various logic styles which make use of adiabatic logic
were proposed with the aim of hiding leakage [146, 41].

Other logic style examples include randomized multitopology logic [10] or use of asyn-
chronous logic styles [28, 27, 26].

2.5.2 Additional Modules

Unlike countermeasures based on secure logic styles, the countermeasures presented in this
subsection put no (or minor) assumptions on the cryptographic module.

28

2.5. Countermeasures Against Attacks

Measured SNR can be effectively lowered by employing noise generators inside the
cryptographic device. Different primitives can be utilized to build the generator, including
shift registers, block RAMs, switch boxes [64] or ring oscillators [184]. The design of the
actual cryptographic primitive can be used for correlated noise generation [79, 6].

Current sense-shunt loop-back can be used for active current flattening to hide the
leakage [141, 118]. Similarly, the current can be randomized by using a variable current
source [73]. Decoupling-based countermeasures are based on powering the cryptographic
core from internal capacitors [153, 169, 106] in order to hide the instantaneous consumption.

Hiding in time is typically achieved by employing a specific clock signal or by altering
the cryptographic algorithm. Isolated clock network can be used to deny the attacker the
possibility of using the global clock network for synchronization [130]. The clock signal can
be randomized [64]. Alternatively, dummy operations and data can be inserted randomly
during the computation [44, 33, 74]. Partial dynamic reconfiguration can be used to shuffle
the algorithm execution to hide the leakage in both time and amplitude [108].

2.5.3 Masking

Unlike previously presented countermeasures, masking [39] requires a detailed knowledge
of the cryptographic algorithm. Its implementation is modified so that all intermediate
values are masked by using a random value, making it difficult for an attacker to predict
the leakage and therefore mount an attack. A relevant function (group law) is chosen
for the masking according to the values domain, e.g., an exclusive or (XOR) in case of
Galois field—then the masking is called Boolean. When the sensitive value is multiplied
by a mask, the masking is called multiplicative. Unlike Boolean masking, multiplicative
masking is inherently unable to mask a zero value [56].

Unless stated otherwise, Boolean masking is considered in this subsection. The sensitive
value x is split into d+ 1 shares xi, where

x =
d⊕

i=0

xi. (2.36)

The splitting is done by generating d uniform random masks x1, . . . , xd and by putting
x0 = x⊕ x1 ⊕ . . .⊕ xd. The number of masks d is then called a masking order. Implemen-
tation secured with d-order masking should ideally be secure against attacks up to d-th
order [39, 134] (as defined further in section 2.6). However, the desired security level is
often not reached in practice [101, 113] due to unforeseen imperfections.

A cryptographic algorithm typically consists of several linear and nonlinear operations,
some of which must be altered to function properly when the variable is split. Masking of
a linear operation f is trivial because all of the shares can be processed independently:

f(x) = f(x0 ⊕ . . .⊕ xd) = f(x0)⊕ . . .⊕ f(xd). (2.37)

There are different approaches to dealing with the nonlinear operations. Considering
substitution-permutation network-based ciphers, substitution boxes (S-boxes) are typically
the nonlinear operations.

29

2. Background and State of the Art

Pre-computed masked S-boxes were originally proposed for first-order masked software
implementations [109] and later adapted for hardware [64, 148]. The concept is further
described in subsubsection 2.5.3.1.

A more efficient approach suitable for hardware Rijndael/AES implementations splits
the S-box into an inversion and an affine operation and masks the inversion by using
a multiplicative mask [5]. Even lower overhead can be achieved when the S-box compu-
tation is performed in a composite field [170, 126, 38]. However, these hardware masking
schemes were later shown to be vulnerable against first-order side-channel attacks due
to data-dependent glitches occuring during the S-box computation [101]. An example of
glitch-induced leakage in a masked AND gate is shown in [121, section 4.1].

This issue is solved by glitch-resistant masking schemes, such as Domain oriented mask-
ing [63] or Threshold implementation [121, 122], which is further described in subsub-
section 2.5.3.2. Lower overhead of these schemes can be once again achieved by using
a composite field S-box computation [116, 23].

2.5.3.1 Pre-computed Masked Substitution Boxes

Pre-computed masked S-boxes were originally proposed for first-order masked software
implementations [109] and later utilized in hardware (FPGA) by using Block RAM [64] or
more efficient CFGLUT [148] primitives. In the following paragraphs, the concept will be
described as used for PRESENT [25] encryption. PRESENT is a lightweight substitution-
permutation network-based cipher with a block size of 64 bits and possible key sizes of 80
or 128 bits. Each round consists of a round key addition (XOR), a non-linear substitution
layer (4-bit S-boxes applied 16 times in parallel), and a linear permutation layer. After
31 rounds, the 32nd round key is finally added to produce the ciphertext.

Assuming the PRESENT encryption algorithm accepts plaintext pt masked by XORing
a random mask m:

state′ := pt⊕m, (2.38)

where state′ is the masked cipher state, three round operations/layers must be taken into
account and altered appropriately so that equation

state = state′ ⊕m (2.39)

holds, allowing the ciphertext to be obtained using state′.
The first layer, Round Key Addition, i.e., XOR, is a commutative and associative

operation:
state′ ⊕ rk = (state⊕ rk)⊕m. (2.40)

Therefore, addition of the round key rk does not require any further alteration since the
output of the layer is already equal to the valid cipher state masked by m.

The last layer, the Permutation layer, is a linear transformation P , used to permute
bits of the cipher state. The output of the layer is therefore equal to the valid cipher state
masked by a permuted mask:

P (state′) = P (state)⊕ P (m), (2.41)

30

2.5. Countermeasures Against Attacks

which means the mask that would need to be subtracted to obtain the valid cipher state
changes to P (m).

The middle layer is a non-linear Substitution layer S. The validity of the output is
assured by altering the substitution look-up table into a masked substitution layer S ′

S ′(state′) := S(state′ ⊕m)⊕ P−1(m), (2.42)

which realizes the original substitution upon masked input value and outputs the sub-
stitution result masked by m processed with inverse permutation P−1. This approach
countermands the mask alteration performed by the Permutation layer, since

P (state⊕ P−1(m)) = P (state)⊕ P (P−1(m)). (2.43)

Therefore, S ′ is the only alteration which must be performed for Equation 2.39 to hold.
In this example, the maskm is used through entire encryption, allowing usage of a single

precomputed substitution layer. However, special care must be taken when the round state
is written to a CMOS register holding the previous round state. Assuming the Hamming
distance leakage model, the mask m would get subtracted:

HD(x⊕m, y ⊕m) = HW(x⊕ y ⊕m⊕m) = HD(x, y). (2.44)

One possible solution to this problem is a combination with a register precharge hiding
countermeasure [148], where the working register is doubled and the encryption context is
interleaved with random data.

2.5.3.2 Threshold Implementation

Threshold implementation [121, 122] is a glitch-resistant masking scheme suitable for both
hardware and software implementations [147].

According to the selected masking order d, the input is first split into d + 1 shares
as described in Equation 2.36. Linear operations during computation are performed on
each share independently as described in Equation 2.37. Each non-linear operation f is
split into d+ 1 shared functions f0, . . . , fd over which the following properties are defined:
correctness, non-completeness and uniformity.

Correctness property assures that the correct result of f can be obtained after the
computation:

d⊕
i=0

fi(x0, . . . , xd) = f(
d⊕

i=0

xi). (2.45)

Non-completeness property requires each function fi to be independent of at least one
share of each input variable, e.g.,

f0(x1, x2, . . . , xd),

f1(x0, x2, . . . , xd),

. . .

fd(x0, x1, . . . , xd−1).

(2.46)

31

2. Background and State of the Art

For the masking scheme to protect against higher-order attacks, the property must be
extended to the d–th order non-completeness [22]: any combination of up to d shared
functions fi must be independent of at least one share of each input variable.

Similarly, as the inputs xi are uniformly shared, which is assured by generating uni-
form masks, the uniformity property requires the output of the shared functions fi to be
uniformly shared as well. Unlike previous properties which can be explicitly validated,
uniformity is typically checked by using an exhaustive enumeration and conditional prob-
ability examination. Since uniformity is often hard to achieve directly, remasking with
a fresh randomness may be necessary after the non-linear stage [24].

To eliminate the propagation of glitches, assure non-completeness when consecutive
non-linear operations are considered, and possibly split a single non-linear operation,
pipeline registers must be used between the stages. At least d + 1 shares are required
to implement a function of algebraic degree d (e.g., Rijndael/AES S-box has algebraic de-
gree 7). Splitting the non-linear stage (e.g., decomposing the function or computing the
S-box in a composite field) may result in functions of a smaller algebraic degree, therefore,
a smaller number of shares and lower overall overhead [133, 116].

2.6 Attacks on Protected Implementations

Approaches to attacking protected implementations are presented in this section. Attacks
on hiding countermeasures are summarized in subsection 2.6.1 and attacks on masking are
explained in subsection 2.6.2.

Most of the presented techniques are typically performed as a pre-processing step be-
fore mounting an attack. Moment-based attacks (recall section 2.2) on masking can be
computed in an online and parallel fashion [152], sparing computing resources. Machine
learning-based attacks may even be mounted on protected implementations in a same
fashion as when attacking unprotected implementations [166].

2.6.1 Attacks on Hiding

Different approaches were proposed to deal with hiding in time. Simple time shifts can
be overcome by using autocorrelation, i.e., a correlation of a signal with a delayed copy
of itself. More generally, a pattern near the sensitive operation can be used with match-
ing techniques known from digital signal processing [100] to identify the time shift and
align traces appropriately. These methods are also useful when there is no dependable
synchronization signal for measurements (trigger).

When the leakage is spread in time in a more chaotic manner, e.g., by clock jitter,
a sliding window attack may be used, where a finite number of (consecutive or not) time
samples is summed/integrated to a single value [44]. When attacking implementations
with a hiding in time countermeasure in place, this attack results in better signal-to-noise
ratio. However, because the noise is integrated as well, it is still less efficient than a direct
attack on an unprotected implementation [44].

32

2.6. Attacks on Protected Implementations

Another example of an attack on hiding in time is the use of elastic alignment at-
tack [172], which utilizes dynamic time warping techniques [43] to create well-aligned
traces.

Machine-learning based attacks were shown to successfully break through hiding in
time countermeasures, most importantly convolutional neural networks, thanks to their
location-scale invariance properties [34].

Similarly, different techniques were proposed for attacking hiding in amplitude counter-
measures. Differential logic (such as WDDL) without proper place&route constraints can
be successfully attacked by using electromagnetic analysis [149], as the attacker is able to
measure leakage from only a small part the chip. Various approaches to filter out excessive
noise (such as that created by noise generators) were also proposed [91, 159, 48, 3], e.g.,
based on wavelet transform.

2.6.2 Attacks on Masking

Consider a moment-based non-profiled attack (e.g., DPA or CPA). With a masking coun-
termeasure in place, the intermediate sensitive variable fk(xi) is split into d shares (recall
Equation 2.36). Side-channel attack targeting this intermediate value therefore must con-
sider d mutually independent leakages. Such an attack is then referred to as a higher-order,
or d-th order, attack [83]. The d leakages may manifest themselves at different times, re-
sulting in a multivariate higher-order attack. Similarly, when the leakages manifest at the
same time, a univariate higher-order attack is mounted.

The combining function C is used to combine multiple key-independent noisy distri-
butions to produce a single key-dependent distribution, which is then exploited by the
attack. Two different combining functions are presented in this subsection: absolute dif-
ference combining and product combining. The centralized absolute difference combining
between two time samples oxi

(t1), oxi
(t2) with mean values µo(t1), µo(t2) is defined as [110]

C(oxi
(t1), oxi

(t2)) = | (oxi
(t1)− µo(t1))− (oxi

(t2)− µo(t2)) |, (2.47)

and the centralized product combining between arbitrary number of samples is defined
as [39]

C(oxi
(t1), . . . , oxi

(td)) =
∏

k∈{1,...,d}

(oxi
(tk)− µo(tk)). (2.48)

The centralization, i.e., subtracting the mean, normalizes the Gaussian noise and min-
imizes bias during the combining [135]. Optimal leakage function L̂ to use with combined
leakage is then combining function specific.

Assume attacking a first-order masking scheme, i.e., a second-order attack, using Ham-
ming weight model. Denote the targeted intermediate variable z = fk(xi) ∈ Bn, and let it
be split in two shares s0, s1 ∈ Bn:

s0 = z ⊕m, s1 = m, (2.49)

33

2. Background and State of the Art

where m ∈ Bn is a uniform independent mask. Model the observed leakage during pro-
cessing of each share as:

O0 = δ0 +HW(s0) +B0, O1 = δ1 +HW(s1) +B1, (2.50)

where δ0, δ1 are constant parts of the leakage, and B0, B1 ∼ N (0, σ) are zero-centered
Gaussian noise. For Hamming distance model, assume usage of z′ = z⊕v01⊕v11, m

′ = m⊕v11
instead of z,m, where v01, v

1
1 are previous states of z,m, respectively. The optimal leakage

prediction function L̂ for the centered absolute difference combining is then [135]

21−HW(z) HW(z)

(
HW(z)− 1

⌊HW(z)
2

⌋

)
, (2.51)

i.e., a non-affine function of the Hamming weight. The optimal leakage prediction function
for the centered product combining is [135]

−1

2
HW(z) +

n2 + n

4
+

n

2
(δ1 + δ2) + δ1δ2, (2.52)

i.e., a linear function of the Hamming weight. The centered product combining is therefore
well-suited for a correlation attack (CPA), where simple HW(z) predictions will show up as
a negative correlation. Assuming very noisy observations, the centered product combining
function leads to a more efficient attack than the absolute difference combining [135].
Moreover, a higher-order attack using centered product combining can be computed in
a one-pass and parallel fashion [152], instead of pre-processing the data.

As mentioned earlier, the higher-order attack can be either univariate or multivariate.
Multivariate attack is usually used when attacking masked software implementations [110]
and may require a prior points-of-the-interest analysis (recall the Template attack in sub-
section 2.3.1); otherwise, it may become very expensive in terms of both computational
power and memory. Univariate attack is suitable when the implementation leaks informa-
tion about all of the shares in the same time instant [174], which is usually the case for
hardware implementations. In such cases, the time sample will be combined with itself,
e.g., (oxi

− µo)
2 assuming a second-order attack and product combining. Notice that the

combining result is equal to the second central moment.
Combining the samples also results in an amplification of the noise [39]. The amount

of side-channel information necessary for a successful attack grows exponentially with the
masking order. Assuming variance of a single observation is σ2, variance of k combined
samples is approximately (σ2)k, and to distinguish between two distributions with different
means and (σ2)k variance, approximately (2σ2)k samples are necessary [39]. Therefore
a sufficient noise level is necessary for masking countermeasures to be secure [161].

Mutual Information Analysis is, unlike DPA or CPA, “naturally higher-order” in the
sense of examining the entire underlying distribution instead of statistical moments [15].
For a multivariate attack, there are different methods of combining multiple time samples:
(1) considering them a d-dimensional vector, (2) computing multivariate mutual informa-
tion, or (3) computing total correlation. Multi-dimensional probability density function
must then be estimated.

34

2.7. Leakage Assessment

Machine learning-based attacks were also shown capable of exploiting higher-order leak-
age [166, 59] and successfully breaking masked implementations. Compared with CPA,
a machine-learning based attack might not require any alterations, and it may be per-
formed on both unprotected and protected implementations with no adjustments [166].

2.7 Leakage Assessment

Leakage assessment methodology examines whether the implementation leaks information.
A näıve technique of testing vulnerability against side-channel attacks would be mounting
all the known attacks. Leakage assessment methodologies offer a more general and less
computationally and time demanding approach. Similarly to the non-profiled attacks, the
methods presented in this section are typically based on partitioning the measurements and
examining their distinguishability. Contrary to the attack scenario, the evaluator in this
scenario has full control over the implementation. The described tests can be categorized
as either specific or non-specific tests [62, 151].

The specific tests [62] typically evaluate measurements of random uniform plaintext
encryptions with a fixed key. They partition the measurements into two or more groups
according to a selected intermediate value and leakage function. For example, assuming
single-bit Hamming weight leakage (similarly to DPA in subsection 2.2.1), the measure-
ments are partitioned into two groups according to the value of a bit of S-box output. Con-
sidering Rijndael/AES, this intermediate value provides 128 different partitionings (one for
each bit of the cipher context). Other options for the intermediate value include round
output or XOR of round input and output. Distinguishability of the groups then suggests
the possibility of presence of leakage exploitable by targeting the selected intermediate
value.

The non-specific tests [62, 151] do not target a specific intermediate value. Instead,
e.g., distinguishability between two groups containing measurements of an encryption of
either random uniform plaintext, or of pre-selected fixed plaintext, is tested. Such tests
are referred to as Random vs. Fixed tests. The other choice is a Fixed vs. Fixed test.
In such tests, both groups must be measured in a randomly interleaved fashion during
a single evaluation to prevent false results, e.g., due to environmental noise or varying device
temperature [151]. Distinguishability of the two groups once again suggests information
leakage. Non-specific tests are more sensitive and general than specific tests, and they
provide only limited information about the leakage origin.

Various statistical tools can be used to test the distinguishability of the groups. Method-
ologies based on Welch’s t-test and Pearson’s χ2 test are described in subsection 2.7.1 and
subsection 2.7.2. A deep learning-based approach is described in subsection 2.7.3.

The measurement setup plays a crucial role in leakage evaluation. Test equipment (e.g.,
oscilloscope) with sufficient bandwidth, sampling rate and resolution must be used [62], as
these and other parameters have a direct impact on potential attack success [127]. A pre-
amplifier may be used to ensure the full range of the ADC is utilized.

35

2. Background and State of the Art

Relevant pre-processing should also be performed, especially when evaluating secured
implementations (see section 2.6). The role of evaluator is always creative and non-trivial
in the sense that the evaluator should consider all possible techniques the attacker may
use to increase the chance of attack success. Results of the presented methods must be
interpreted carefully, with possible false positives and false negatives in mind [161].

2.7.1 Welch’s t-test

A two-tailed Welch’s t-test can be used to examine a null hypothesis that two groups’ means
are equal, and can be successfully used in leakage assessment [62, 151]. The univariate
statistic t is computed for the two groups, in every sampling point independently:

t =
X̄1 − X̄2√

s21
N1

+
s22
N2

, (2.53)

where X̄1, X̄2 are sample means, s21, s
2
2 are sample standard deviations and N1, N2 are

cardinalities of the first and the second group, respectively. The number of degrees of
freedom v can be estimated by using

v ≈
(
s21
N1

+
s22
N2

)2

(
s21
N1

)2

N1−1
+

(
s22
N2

)2

N2−1

. (2.54)

Under the null hypothesis, the statistic t follows Student’s t-distribution with v de-
grees of freedom. The null hypothesis is rejected according to the distribution and selected
significance level α. For sufficiently large n, the t-distribution can be satisfactorily ap-
proximated by normal distribution. In side-channel analysis, the threshold ±4.5 or ±5
for the t-value is often considered [62, 161], which roughly corresponds to significance level
α ≤ 10−5. Rejecting the null hypothesis suggests that the two groups have different means,
and therefore an information leakage. Not rejecting the null hypothesis suggests nothing;
most importantly, it does not suggest there is no leakage.

The Welch’s t-test is a univariate moment-based statistic, similar to statistics used in
DPA or CPA attacks (subsection 2.2.1 and subsection 2.2.3). The measurements therefore
must be aligned. To evaluate leakage exploitable by higher-order attacks, e.g., when eval-
uating a higher-order masking scheme, relevant (pre-)processing must be performed [151],
similarly to the attacks. This includes a use of either univariate or multivariate combining
function as described in subsection 2.6.2.

2.7.2 χ2 test

Pearson’s χ2 test of independence tests a null hypothesis that two or more variables are
independent, and is well-suited for leakage assessment [117]. Unlike the t-test, χ2 is a non-
parametric test: instead of statistical moments, whole underlying distributions are consid-
ered. In this subsection, the univariate test is described first, as in case of the t-test, i.e.,
the test is performed at every sampling point independently.

36

2.7. Leakage Assessment

A two-row (r = 2) contingency table F is created by using histograms of both groups
(assuming aligned histograms, i.e., the same range and width of bins), where the number
of columns c corresponds to the number of bins. Columns containing only zeros should
be eliminated to decrease number of degrees of freedom. Let Fi,j be the frequency of each
cell, and N be the number of all measurements. The expected frequency of each cell Ei,j

is then computed as

Ei,j =
(
∑c−1

k=0 Fi,k) · (
∑r−1

k=0 Fk,j)

N
, (2.55)

the χ2 statistic x as

x =
r−1∑
i=0

c−1∑
j=0

(Fi,j − Ei,j)
2

Ei,j

, (2.56)

and the number of degrees of freedom v as

v = (c− 1) · (r − 1). (2.57)

Under the null hypothesis, the statistic x follows χ2 distribution with v degrees of free-
dom. The null hypothesis is rejected according to the distribution and selected significance
level α, similarly to Welch’s t-test (subsection 2.7.1). Once again, rejection of the null
hypothesis suggests information leakage.

Because χ2 is a nonparametric test, univariate higher-order leakage is considered in-
herently. To extend the test to a multivariate case, either the combining function can be
utilized (as in case of the t-test), or a multivariate histogram can be used. The χ2 test also
enables more than two groups to be used in the test, and it can be also used in an attack
scenario similar to the t-test in DPA [117].

2.7.3 Deep Learning Leakage Assessment

The distinguishability of the two groups can also be successfully tested by using a deep
learning-based classifier [114]. Assuming there is exploitable leakage, the classifier should
be able to learn distinctive features of measurements in each group.

First, the measurements get standardized by subtracting the mean value and then
dividing it by the standard deviation, at every sampling point independently. Henceforth,
for the classifier, the measurements are considered multivariate vectors. The data are
split into training and evaluating sets. The leakage assessment only examines leakage in
measurements used in the training stage.

Under a null hypothesis that the classifier did not recognize and learn any features, the
number of its correct guesses on the evaluating set should follow binomial distribution with
probability p = 1

2
. The null hypothesis is rejected once again according to the distribution

and selected significance level.
Deep Learning Leakage Assessment provides a powerful tool thanks to its multivariate

nature, ability to identify distinctive features, and its detection sensitivity, which outper-
forms both Welch’s t-test and χ2 test [114]. It displays similar characteristics as machine
learning-based attacks (subsection 2.2.6, subsection 2.3.2).

37

Chapter 3

Symmetric Cryptography

The work presented in section 3.2 was done in cooperation with Jan Brejńık
(a master’s student) and Stanislav Jeřábek (a Ph.D. student) of Czech Technical
University, Josep Balasch of KU Leuven, and Nele Mentens of KU Leuven and
Leiden University, as a part of the international project CELSA DRASTIC. The
results were presented at the DSD conference [A.2] in 2019 and their extended
version was published in the Microprocessors and Microsystems journal [A.3]
in 2020.

The work in section 3.3 was presented at the DSD conference [A.4] in 2020
and an extended version of the work was published in the Microprocessors and
Microsystems journal [A.5] in 2021.

Many different countermeasures have been proposed to prevent side-channel attacks (see
section 2.5). This chapter focuses on FPGA implementations of symmetric cryptography,
and countermeasures for AES, Serpent and PRESENT are proposed and evaluated.

First, the discussed ciphers are described in section 3.1. Then in section 3.2, a combina-
tion of countermeasures previously proposed for PRESENT in [148] is tailored for AES and
Serpent ciphers and the secured implementations are evaluated regarding the side-channel
leakage and time/area overhead. In section 3.3, a novel approach for securing the symmet-
ric cryptography in FPGAs using high-level synthesis from C is proposed and once again
comprehensively evaluated. Finally, a summary of the results is presented in section 3.4.

3.1 Substitution-Permutation Networks

All the ciphers discussed in this chapter are symmetric block ciphers based on iterated
substitution-permutation networks (SPN). Plaintext is transformed into ciphertext by it-
eratively applying specified operations; each iteration is called a round. Moreover, every
cipher also specifies a method for expanding the secret key into subkeys used in different
rounds; the key expansion algorithm is not discussed in detail in this dissertation thesis.

39

3. Symmetric Cryptography

Plaintext

Round key addition

Substitution layer

Permutation layer

Round key addition

Ciphertext

Round=31?

(a) PRESENT encryption.

Plaintext

Round key addition

Substitution layer

Shif tRows

Ciphertext

Round=9?

MixColumns

Round key addition

Substitution layer

Shif tRows

Round key addition

(b) AES/Rijndael encryp-
tion.

Plaintext

Initial permutation

Round key addition

Substitution layer

Ciphertext

Round=31?

Linear transformation

Round key addition

Substitution layer

Round key addition

Fina l permutation

(c) Serpent encryption.

Figure 3.1: Discussed symmetric encryption algorithms (128-bit key variants).

3.1.1 PRESENT

PRESENT by Bogdanov et al. [25] is a lightweight cipher with a block size of 64 bits
and possible key sizes of 80 or 128 bits. Figure 3.1a depicts the encryption algorithm.
Each round consists of a round key addition (XOR), a non-linear substitution layer (4-bit
S-boxes applied 16 times in parallel), and a linear permutation layer. After 31 rounds, the
32nd round key is finally added to produce the ciphertext. The versions with 80-bit and
128-bit keys differ only in the Key Schedule operation.

3.1.2 AES/Rijndael

Rijndael by Daemen et Rijmen [120, 46], also known as Advanced Encryption Standard
(AES), is a cipher with a block size of 128 bits, key sizes of 128, 192, or 256 bits and
consisting of 10, 12, or 14 rounds (depending on the key length). Figure 3.1b depicts
the encryption algorithm. First, the secret key is XORed with the plaintext, followed by
round transformations. Each round consists of a substitution layer (8-bit S-boxes applied

40

3.2. Combined Countermeasures Utilizing Dynamic Logic Reconfiguration

16 times in parallel), two linear mixing layers (only one mixing layer in the last round),
and an XOR with the round subkey.

3.1.3 Serpent

Serpent by Biham et al. [21] is a cipher with a block size of 128 bits and possible key sizes
of 128, 192, or 256 bits, same as Rijndael (Serpent was another AES finalist). Figure 3.1c
depicts the encryption algorithm. It consists of 32 rounds, where each round consists of
an XOR with the round subkey, a substitution layer (4-bit S-boxes applied 32 times in
parallel; 8 different S-boxes to be used in consecutive rounds) and a linear mixing layer
(replaced by a second XOR in the last round). Furthermore, the initial permutation is
applied prior to round transformations, and the final permutation is applied afterward.

3.2 Combined Countermeasures Utilizing Dynamic Logic
Reconfiguration

A combination of countermeasures implemented using dynamic logic reconfiguration is pro-
posed in [148] and evaluated on the lightweight block cipher PRESENT. In this section,
the work presented in [148] is extended by using dynamic logic reconfiguration to secure
two of the Advanced Encryption Standard (AES) competition finalists, Rijndael and Ser-
pent. The implementations and the non-straightforward way in which the countermeasures
in [148] are tailored to AES and Serpent are described. The side-channel leakage and the
effectiveness of different countermeasures combinations are evaluated.

In subsection 3.2.1, the concept of dynamic logic reconfiguration and CFGLUTs is
described. Then in subsection 3.2.2, the countermeasures which are later implemented are
described, and in subsection 3.2.3, the secured cipher design is proposed. The time and
area requirements are discussed in subsection 3.2.4 and the side-channel leakage assessment
is presented in subsection 3.2.5. The section is summarized in subsection 3.2.7.

3.2.1 Dynamic Logic Reconfiguration using CFGLUTs

Dynamic logic reconfiguration is a concept that allows for efficient on-the-fly modifications
of combinational circuit behavior in both ASIC [7, 47] and FPGA devices. In FPGAs,
combinational circuits are typically implemented using Look-Up Tables (LUTs), i.e., con-
figurable primitives which store truth tables of k-input Boolean functions f : Bk → B.
Dynamic logic reconfiguration allows for the run-time alteration of the circuit behavior by
modifying the content of specific look-up tables, while leaving the routing intact. The re-
configuration of LUTs is done from within the chip itself and can be achieved, e.g., by using
a shift register (allowing for serial programming) and a cascade of addressing multiplexers.
This concept is demonstrated in Figure 3.2.

In Xilinx FPGAs [180], this functionality is provided by k-input Configurable Look-Up
Tables (CFGLUTs) with a serial configuration input and output (allowing to connect CFG-

41

3. Symmetric Cryptography

x0
x1

f(x1,x0)

in out

Figure 3.2: Example of a 2-input reconfigurable look-up table with serial programming
I/O.

LUTs in separate configuration chains). In Xilinx Spartan-6 FPGAs, 5-input CFGLUTs
are available.

In order to implement dynamically reconfigurable Boolean functions f : Bn → B, where
n > k, multiple k-input CFGLUTs are required in combination with addressing multiplex-
ers (using Boole’s expansion, also referred to as the Shannon expansion [30]). Specifically,
to implement an n-input function using k-input CFGLUTs and 2-to-1 multiplexers, we
need 2n−k CFGLUTs and 2n−k − 1 multiplexers.

Multiple-output Boolean functions f : Bn → Bm can be trivially implemented as m
single-output Boolean functions fi : Bn → B.

3.2.2 Countermeasures Combination

To protect AES and Serpent, the countermeasures proposed (and evaluated on PRESENT)
by Sasdrich et al. in [148] are implemented. In this subsection, these countermeasures are
briefly described.

3.2.2.1 S-box Decomposition

Since information leakage often occurs based on changing values in registers, and since the
output of the non-linear substitution layer is a frequent target of side-channel attacks, the
S-box decomposition countermeasure is based on avoiding the storage of the S-box outputs
into such registers. This is done by decomposing the S-box into two bijections R1, R2,
where

S-box(x) = R2(R1(x)), (3.1)

and by placing the register in between the two bijections. The decomposition is demon-
strated in Figure 3.3. The number of possible n-bit bijections for R1 is equal to (2n)!. For
each option, a bijection R2 can be found such that Equation 3.1 holds.

Thanks to dynamic logic reconfiguration, different bijections R1, R2 can easily be used
for every encryption. Starting with R1 being an identity and R2 being the actual S-box

42

3.2. Combined Countermeasures Utilizing Dynamic Logic Reconfiguration

Substitution
layer

(a) Unprotected substitution layer.

Bijection R1 Bijection R2

(b) Substitution layer decomposed into two bijections.

Figure 3.3: S-box Decomposition.

(or vice versa), the bijections for the next encryption are computed by randomly selecting
pair(s) of elements in the R1 mapping, swapping them, and recomputing R2 accordingly.

3.2.2.2 Boolean Masking

In order to randomize intermediate values, a random mask is added (XORed) to the data
prior to encryption, and subtracted (i.e. once again XORed) after the encryption. For
the cipher to produce valid results working with masked data, various alterations must be
done.

Boolean masking can be combined with the previously mentioned bijective S-box de-
composition and can once again take advantage of dynamic logic reconfiguration. Two
different random masks m1,m2 are used for every encryption: mask m1 is used outside the
decomposed S-box, and mask m2 is used inside of it. If the substitution layer were the
only layer in the round, the previously mentioned bijections R1, R2 would get adjusted as
follows:

R′
1(x) = R1(x⊕m1)⊕m2, (3.2)

R′
2(x) = R2(x⊕m2)⊕m1. (3.3)

The function R′
1 first subtracts/removes maskm1, then performs the R1 bijection mapping,

and finally masks this value using m2. The output of this function is stored in the register.
Analogically, the function R′

2 subtracts the mask m2, does the R2 mapping, and masks
the result using m1. This is demonstrated in Figure 3.4. This way, the same CFGLUTs
can be used for both the S-box decomposition and the masking, saving both area and
reconfiguration time.

However, to deal with the linear transformation layers, further alterations to the R′
1, R

′
2

bijections need to be done. A very similar concept was already described in subsubsec-

43

3. Symmetric Cryptography

Unmasking,
Bijection R1,

Masking

Unmasking,
Bijection R2,

Masking

data masked by m2data masked by m1 data masked by m1

Figure 3.4: S-box Decomposition +Masking: all the three operations (unmasking, bijection
and masking) are performed as a single table lookup, therefore unmasked data does not
appear on any wires at any time.

tion 2.5.3.1. We can exploit one of these two facts:

f(x) = f(x⊕ f−1(m))⊕m, (3.4)

f(x) = f(x⊕m)⊕ f(m), (3.5)

which both hold when f is a linear mapping. These give us two different and fairly
straightforward approaches to take linear transformations f into account.

One option is to alter R′
2 function in terms of Equation 3.4 so that m1 processed by

the inverse transformation is used to mask the data, allowing to subtract m1 in R′
1:

R′
1(x) = R1(x⊕m1)⊕m2, (3.6)

R′
2(x) = R2(x⊕m2)⊕ f−1(m1). (3.7)

The second option is to use m1 for masking in R′
2, and to alter R′

1 according to Equa-
tion 3.5, so that m1 processed by the linear transformation gets subtracted:

R′
1(x) = R1(x⊕ f(m1))⊕m2, (3.8)

R′
2(x) = R2(x⊕m2)⊕m1. (3.9)

Notice that further alterations may be required for the first and the last round, de-
pending on the selected approach.

The last obstacle is the subkey XOR layer, which can be considered an affine transfor-
mation. Suppose we have a vector x, which gets XORed with the subkey: x⊕ k. Suppose
we process masked data the same way: (x⊕m)⊕ k, then by subtracting the mask m with
no alterations we have:

((x⊕m)⊕ k)⊕m = x⊕ k. (3.10)

Therefore, no further alterations need to be done to take the XOR layer into account.

3.2.2.3 Register Precharge

Because the same masks are used for the whole encryption (i.e., for every round), the
leakage occurs in the register, since

HD(x⊕m, y ⊕m) = HD(x, y), (3.11)

44

3.2. Combined Countermeasures Utilizing Dynamic Logic Reconfiguration

Unmasking,
Bijection R1,

Masking

Unmasking,
Bijection R2,

Masking

Figure 3.5: S-box Decomposition + Masking + Register Precharge.

where HD(x, y) denotes the Hamming distance between x and y. To avoid this leakage,
the register is duplicated, as shown in Figure 3.5, and the processed data are interleaved
with random data. This technique avoids leakage; however, it reduces the throughput of
the circuit when it is implemented using an architecture that is not fully unrolled.

3.2.3 Proposed Secure Cipher Design

In this subsection, the specifics of both AES/Rijndael and Serpent ciphers are described
and a manner in which these ciphers can be secured against side-channel attacks using the
countermeasures described in subsection 3.2.2 is proposed.

In order for our implementations to fit into a Xilinx Spartan-6 FPGA device, we take
into account that CFGLUTs with at most 5 input bits are available. When a platform
with smaller CFGLUTs is available, the dynamic logic reconfiguration method can be
implemented using the approach described in subsection 3.2.1.

3.2.3.1 AES/Rijndael

Rijndael employs an 8×8 S-box, which can be considered as a function S-boxRijndael : B8 →
B8. Therefore, to implement the Rijndael S-box using reconfigurable logic, 8 · 28−5 = 64
(5-input) CFGLUTs and 8 · (28−5 − 1) = 56 (2-to-1) multiplexers are necessary. Moreover,
the S-box decomposition countermeasure suggests the S-box to be split into two bijections
R1, R2 : B8 → B8, which doubles the amount of CFGLUTs and multiplexers in the secured
version. Since the Rijndael algorithm applies 16 S-boxes in parallel, this brings the total
count up to 2048 (5-input) CFGLUTs and 1792 (2-to-1) multiplexers.

The decomposition into two bijections is done in a similar fashion as described in sub-
section 3.2.2, with the round register being placed in between the two bijections. For the
AES algorithm, we have decided to swap eight pairs of elements in the R1 bijection after
every encryption (in contrast to the PRESENT 4-bit S-box decomposition in [148], where
only a single pair gets swapped).

To implement the Boolean masking countermeasure as described in subsection 3.2.2,
bijections R′

1, R
′
2 (i.e. the decomposed S-box combined with masking) must be altered. We

choose the option where R′
2 adds the mask m1 and R′

1 subtracts m1 processed by the linear
transformations (see Equation 3.8)):

R′
1(x) = R1(x⊕MixColumns(ShiftRows(m1)))⊕m2, (3.12)

R′
2(x) = R2(x⊕m2)⊕m1. (3.13)

45

3. Symmetric Cryptography

R1

R2
0

R2
1

R2
2

R2
7

...

Figure 3.6: Serpent S-boxes decomposition. Notice the demultiplexer, which is necessary
to prevent glitches.

Note that the data are masked by m1 in the second bijection R2 and that this mask is
subtracted in the following round. Therefore prior to the first round, the input data must
be masked properly. Also, the last round of Rijndael omits the MixColumns operation, so
additional unmasking of the output must be done with this in mind.

The implementation of the register precharge requires the register to be duplicated and
the controller to be adjusted appropriately, such that the processed data are interleaved
with random data.

3.2.3.2 Serpent

Unlike Rijndael or PRESENT, Serpent defines eight different 4 × 4 S-boxes. Each S-
box is used in a different round. One way to implement the S-box decomposition is to
decompose each of these S-boxes into two bijections, resulting in 16 bijections in total.
We have decided for an approach where the first bijection R1 is shared among all S-
boxes, while the other eight bijections Ri

2, i ∈ {0, .., 7}, implement the eight S-boxes,
with the correct output being selected by a multiplexer. The eight decomposed Serpent
S-boxes are depicted in Figure 3.6. Notice the demultiplexer, which selects the right Ri

2

bijection, while the other bijections are fed with zeroes. This demultiplexer is necessary
to prevent glitches that lead to information leakage. Since the Serpent S-boxes implement
the functions S-boxiSerpent : B4 → B4, only four CFGLUTs are necessary to implement
the bijection. Given the selected architecture, 4 + 8 · 4 = 36 CFGLUTs are required to
decompose all eight S-boxes. Since the S-box is applied 32 times in parallel, this results in
1152 CFGLUTs in total.

Boolean masking is implemented similarly to the Rijndael algorithm, withm1, processed
by the linear transformation, being subtracted in the R′

1 bijection (see Equation 3.8)).

46

3.2. Combined Countermeasures Utilizing Dynamic Logic Reconfiguration

Table 3.1: Latency and Area Utilization.

Implementation
Area Latency (clock cycles)

Memory (FFs) Logic (LUTs) Encryption Extra Total

Unprotected AES/Rijndael, LUT-based S-Boxes 278 1,304 10 0 10

Protected AES/Rijndael, 2 CFGLUT chains 1,073 2,652 20 4,122 4,142

Protected AES/Rijndael, 32 CFGLUT chains 3,229 7,234 20 282 302

Unprotected Serpent, LUT-based S-Boxes 430 1,660 32 0 32

Protected Serpent, 9 CFGLUT chains 2,945 5,696 64 538 602

Protected Serpent, 144 CFGLUT chains 4,441 9,471 64 58 122

Protected Serpent, 288 CFGLUT chains 6,040 13,211 64 42 106

Suppose the Serpent linear transformation is LSerpent, then:

R′
1(x) = R1(x⊕ LSerpent(m1))⊕m2, (3.14)

R′
2(x) = R2(x⊕m2)⊕m1. (3.15)

Regarding the first round, similarly to the Rijndael approach, appropriate initial masking
of the input data must be performed first. Also, there is no linear transformation in the last
round; therefore, the unprocessed mask m1 gets subtracted during the final unmasking.

Register precharge is once again implemented simply by duplicating the round register
and altering the controller appropriately to interleave the processed data with random
data.

3.2.4 Latency and Area Utilization

For every encryption, new bijections are generated (as described in subsection 3.2.2), as
well as new masks m1,m2. This requires the CFGLUTs configurations to be computed
and loaded prior to every encryption. The reconfiguration of all CFGLUTs can be done
using different levels of parallelism (the CFGLUTs “programming” I/O can be variously
chained, given its shift register nature). The serial reconfiguration of n-input CFGLUT
requires 2n cycles, therefore selected reconfiguration strategy has a direct impact on the
overall latency, as well as on the area utilization.

Table 3.1 presents a comparison of the latency and the area of both unprotected and
protected AES/Rijndael and Serpent encryption implementations. The Flip-Flop (FF) and
the Look-Up Table (LUT) counts are Xilinx ISE post-synthesis statistics for Xilinx Spartan-
6 FPGA. The encryption latency of protected implementations is double due to the register
precharge. The extra latency is caused mostly by the CFGLUT serial programming, and
it can be reduced by using several parallel configuration chains, at the expense of the area.

3.2.5 Side-Channel Leakage Evaluation

In this subsection, we present our experimental setup and a leakage methodology used to
evaluate all combinations of previously described countermeasures.

47

3. Symmetric Cryptography

We choose the Sakura-G board [65] with a Xilinx Spartan-6 FPGA as our evaluation
platform. AES/Rijndael and Serpent VHDL implementations with a 128-bit key are eval-
uated. The power traces evaluated in subsubsection 3.2.5.1 and subsubsection 3.2.5.2 are
measured using a PicoScope 6404D oscilloscope and the power traces evaluated in sub-
subsection 3.2.5.3 are measured using a Tektronix DPO 7254 oscilloscope. The current
consumption of the FPGA core is measured as a voltage drop across a shunt resistor in the
VCCINT path of the FPGA. The voltage drop is furthermore amplified using a built-in
preamplifier before sampling by the oscilloscope. The sample rate used for all the mea-
surements is 625 MS/sec.

3.2.5.1 First-Order Test Vector Leakage Assessment

Leakage is evaluated using the non-specific univariate first-order Welch’s t-test, as described
in section 2.7. This evaluation method consists of two phases. In the active phase, power
traces are collected, each trace measured while encrypting either a random or a (prese-
lected) constant plaintext, resulting in two sets of power traces. In the analytical phase of
the evaluation, Welch’s t-test statistic is computed independently at each time sample. The
Welch’s t-test statistic examines the null hypothesis of equal population means (where one
population consists of random plaintext measurements and the other population consists
of constant plaintext measurements). In our case, the null hypothesis can be formulated in
the sense that the two populations are not distinguishable by their sample means, which
means that the sample means are not data-dependent. The null hypothesis gets rejected
for high values of |t|, the threshold is usually set around 4.5 or 5.

The necessary random data (random pairs to be swapped in the bijection, random
masks, register precharge with random values) are generated externally and sent to the
cryptographic device alongside the plaintext. This approach allows us to enable or disable
specific countermeasures easily.

We evaluate every possible combination of the proposed countermeasures:

(a) Unprotected

(b) Register Precharge

(c) Masking

(d) Masking + Register Precharge

(e) S-box Decomposition

(f) S-box Decomposition + Register Precharge

(g) S-box Decomposition + Masking

(h) S-box Decomposition + Masking + Register Precharge

48

3.2. Combined Countermeasures Utilizing Dynamic Logic Reconfiguration

-800

-600

-400

-200

0

200

400

600

800

0 200 400 600 800 1000 1200 1400

(a) Unprotected.

-400

-300

-200

-100

0

100

200

300

0 200 400 600 800 1000 1200 1400

(b) Register Precharge.

-600

-400

-200

0

200

400

600

0 200 400 600 800 1000 1200 1400

(c) Masking.

-40

-30

-20

-10

0

10

20

30

40

0 200 400 600 800 1000 1200 1400

(d) Masking + Register Precharge.

-400

-300

-200

-100

0

100

200

300

400

0 200 400 600 800 1000 1200 1400

(e) S-box Decomposition.

-200

-150

-100

-50

0

50

100

150

200

0 200 400 600 800 1000 1200 1400

(f) S-box Decomposition + Register Precharge.

-80

-60

-40

-20

0

20

40

60

80

0 200 400 600 800 1000 1200 1400

(g) S-box Decomposition + Masking.

-5

-4

-3

-2

-1

0

1

2

3

4

0 200 400 600 800 1000 1200 1400

(h) S-box Decomposition + Masking + Register
Precharge.

Figure 3.7: Results of the AES/Rijndael t-test, where the t-value is shown on the vertical
axis and the time samples during encryption are shown on the horizontal axis.

49

3. Symmetric Cryptography

-1500

-1000

-500

0

500

1000

0 500 1000 1500 2000 2500 3000 3500 4000

(a) Unprotected.

-600

-400

-200

0

200

400

600

0 500 1000 1500 2000 2500 3000 3500 4000

(b) Register Precharge.

-600

-400

-200

0

200

400

600

0 500 1000 1500 2000 2500 3000 3500 4000

(c) Masking.

-100

-80

-60

-40

-20

0

20

40

60

80

0 500 1000 1500 2000 2500 3000 3500 4000

(d) Masking + Register Precharge.

-800

-600

-400

-200

0

200

400

600

0 500 1000 1500 2000 2500 3000 3500 4000

(e) S-box Decomposition.

-200

-150

-100

-50

0

50

100

150

200

0 500 1000 1500 2000 2500 3000 3500 4000

(f) S-box Decomposition + Register Precharge.

-400

-300

-200

-100

0

100

200

300

400

0 500 1000 1500 2000 2500 3000 3500 4000

(g) S-box Decomposition + Masking.

-6

-4

-2

0

2

4

6

0 500 1000 1500 2000 2500 3000 3500 4000

(h) S-box Decomposition + Masking + Register
Precharge.

Figure 3.8: Results of the Serpent t-test, where the t-value is shown on the vertical axis
and the time samples during encryption are shown on the horizontal axis.

50

3.2. Combined Countermeasures Utilizing Dynamic Logic Reconfiguration

For every combination, one million power traces are measured and processed using
a non-specific first-order t-test, as described earlier. Figure 3.7 depicts the t-values during
the AES encryption and Figure 3.8 depicts the t-values during the Serpent encryption.
The sensitive information leakage is the most prominent for the unprotected versions, as
expected.

It is also visible that different countermeasures and their combinations have various
influence on the significance of the detected leakage. Figures 3.7c and 3.8c show that
a countermeasure based on masking protects solely the first round of the cipher, while,
starting from the second round, the leakage is comparable to the unprotected version (cf.
Figures 3.7a and 3.8a). Figures 3.7d and 3.8d suggest that masking becomes more effective
in combination with register precharge (which is expected, as discussed in subsection 3.2.2).

Figures 3.7h and 3.8h show results with all three countermeasures combined. As can
be seen, no significant first-order leakage is detected when evaluating these fully protected
implementations. However, the used Test Vector Leakage Assessment (TVLA) methodol-
ogy is merely a first step in the evaluation of a side-channel security of the implementations
and the results do not provide any guarantee of a security level [161]. This is not only
because of a high risk of both false positives and false negatives, but also because only
univariate statistics is considered in this methodology.

3.2.5.2 Second-Order Test Vector Leakage Assessment

Protected implementations which make use of Boolean masking (i.e., splitting a working
variable into d shares) are typically vulnerable to higher-order DPA attacks [110, 39, 134],
i.e., attacks which exploit leakage from several variable shares, either by combining multi-
ple time samples together (multivariate), or by analyzing higher statistical moments at a
single time sample (univariate). Since a first-order masking scheme is used to protect our
implementations, we assume them to be vulnerable against second-order DPA.

We evaluate the second-order leakage of our implementations using Welch’s t-test, sim-
ilar to the first-order leakage evaluation in subsubsection 3.2.5.1. The first phase of the
methodology stays the same – therefore, we can use the same sets of power traces obtained
for the first-order analysis. To analyze the second statistical moment, the power traces
are preprocessed, at each time sample independently, by making every sample mean-free
squared:

x′ = (x− X̄)2, (3.16)

where X̄ is sample mean at a given time sample. Then the Welch’s t-test statistic is
computed, same as in case of the first-order leakage evaluation.

We evaluate one million previously captured power traces with all the proposed coun-
termeasures enabled (S-box Decomposition + Masking + Register Precharge). Figure 3.9
depicts (univariate) second-order t-values during AES and Serpent encryption. For AES,
there is a single peak reaching as high as 6 halfway the encryption, as can be seen in
Figure 3.9a. Second-order leakage is more prominent during Serpent encryption, as can be
seen in Figure 3.9b, where the absolute t-value reaches as high as 15.

51

3. Symmetric Cryptography

-4

-3

-2

-1

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400

(a) AES/Rijndael second-order t-test.

-20

-15

-10

-5

0

5

10

15

0 500 1000 1500 2000 2500 3000 3500 4000

(b) Serpent second-order t-test.

Figure 3.9: Results of the univariate second-order t-test with all the countermeasures
enabled (S-box Decomposition + Masking + Register Precharge), where the t-value is
shown on the vertical axis and the time samples during encryption are shown on the
horizontal axis.

It is fair to assume that with more than one million power traces available, the second-
order leakage would get more prominent and easier to detect. As shown in [39], the amount
of power traces required to successfully mount a higher-order side-channel attack increases
exponentially with the masking order.

3.2.5.3 Second-Order Attacks

To provide more confidence about the AES/Rijndael implementation resilience, we attempt
at breaking the fully protected implementation using second-order attacks [110]. The mea-
sured power traces are first preprocessed in the same fashion as in the case of the univariate
second-order leakage assessment, as described in subsubsection 3.2.5.2. Afterward, we per-
form the DPA attack [83] (using t-test distinguisher) and the CPA attack [29], targeting
the first and the last cipher round, and considering both Hamming weight and Hamming
distance leakage.

First, we target the AES S-box output in the first round, i.e., si = S-box(xi⊕k̂i) for some
index 1 ≤ i ≤ 16, key hypothesis k̂i ∈ [0, 255] and plaintext byte xi. Second, we target the
AES S-Box input in the last round by predicting values si = S-box-1(yi⊕ k̂i) for some index
1 ≤ i ≤ 16, key hypothesis k̂i ∈ [0, 255] and ciphertext byte cti. These predictions are used
directly when assuming the Hamming weight leakage. For the Hamming distance leakage
model, these predictions are furthermore XORed with the corresponding input/output
bytes.

We mount the attacks on a set of 1.25 million power traces. The results of the DPA
attack (using t-test distinguisher) are shown in Figure 3.10. Figures 3.10a and 3.10c show
the case when targeting S-box output in the first round, while Figures 3.10b and 3.10d
show the case when targeting the S-box input in the last round. In all cases, the correct
key byte value (in black) is not distinguishable from the other candidates (in grey), so the
attack fails in recovering the key.

Running the CPA attack yields similar results, as shown in Figures 3.11a and 3.11c when
targeting the first round, and in Figures 3.11b and 3.11d when targeting the last round.

52

3.2. Combined Countermeasures Utilizing Dynamic Logic Reconfiguration

(a) AES/Rijndael, Hamming weight DPA (t-
test) first round.

(b) AES/Rijndael, Hamming weight DPA (t-
test) last round.

(c) AES/Rijndael, Hamming distance DPA (t-
test) first round.

(d) AES/Rijndael, Hamming distance DPA (t-
test) last round.

Figure 3.10: Second-order DPA attack (using t-test distinguisher) on first and last round
AES/Rijndael subkey (byte #1), where the t-value is shown on the vertical axis and the
time samples during the relevant encryption rounds are shown on the horizontal axis.

Note that for these experiments, we process only samples in the interval corresponding to
the first (resp. last) round, rather than the whole encryption.

3.2.6 Further Experiments

In this subsection, we present additional experiments regarding the proposed countermea-
sures and the cipher design, and we summarize our results.

3.2.6.1 Importance of Mask m2

The value stored in the round register is protected by both S-box Decomposition and
Boolean Masking (using mask m2, see Figure 3.4). Considering the CFGLUT based ar-
chitecture, this masking does not require any extra resources. However, to provide more
insight about the necessity of masking inside the decomposed S-box, we have measured
one million power traces without it (fully protected encryption, except that mask m2 is
set to zeroes), and performed the test vector leakage assessment as described earlier. In
the case of AES/Rijndael, both first-order and second-order t-tests turn out very similar
to the previously presented results. However, in the case of Serpent without the m2 mask,
we have encountered worsening, where the first-order t-test values reach as high as 10
(second-order t-test, however, still yields results similar to those presented earlier).

53

3. Symmetric Cryptography

(a) AES/Rijndael, Hamming weight CPA
(Pearson) first round.

(b) AES/Rijndael, Hamming weight CPA
(Pearson) last round.

(c) AES/Rijndael, Hamming distance CPA
(Pearson) first round.

(d) AES/Rijndael, Hamming distance CPA
(Pearson) last round.

Figure 3.11: Second-order CPA attack on first and last round AES/Rijndael subkey (byte
#1), where the correlation coefficient is shown on the vertical axis and the time samples
during the relevant encryption rounds are shown on the horizontal axis.

3.2.6.2 Necessary Randomness

The serial configuration I/O of CFGLUTs allows for various reconfiguration strategies (as
mentioned in subsection 3.2.4). Furthermore, a particular number of pairs get swapped
when recomputing the S-box decompositions (as mentioned in subsubsection 3.2.2.1). Se-
lected strategy may significantly affect the amount of resources necessary. In this experi-
ment, we compare implementations where:

◦ either all S-boxes are reconfigured in parallel based on same random data, or every
S-box is reconfigured separately based on its own random data,

◦ the decomposed S-boxes get modified by swapping either one or eight pairs of ele-
ments in the bijection mapping.

All four combinations, for both ciphers, perform equally in test vector leakage assess-
ment based on 300,000 measured power traces.

3.2.7 Summary

In this section, we described and evaluated side-channel attack protected AES and Serpent
implementations, which are based on an approach demonstrated by Sasdrich et al. [148] for

54

3.3. High-Level Synthesis of Masking Countermeasure

the PRESENT cipher. These implementations utilize dynamic logic reconfiguration, which
can be easily deployed in both FPGA and ASIC designs. We describe a method by means
of which a generic substitution-permutation network can be protected against side-channel
attacks, and we tailor the approach to a Xilinx Spartan-6 FPGA for the protection of both
AES and Serpent.

We demonstrate the effectiveness of the implemented countermeasures by evaluating the
side-channel leakage using Welch’s t-test, with different combinations of countermeasures
in place. We did not detect any significant first-order leakage from the protected versions
of both AES and Serpent encryption implementations using one million power traces.
Using the same power traces, we detected apparent second-order leakage from Serpent
encryption, while AES encryption second-order leakage is barely detectable. Furthermore,
to provide more confidence about the implementation resilience, we attempted at breaking
the protected AES implementation using second-order DPA and CPA attacks targeting
both first and last round. All these attacks fail with 1.25 million power traces available.

3.3 High-Level Synthesis of Masking Countermeasure

Traditional and widely adopted hardware design methodology is based on the Register-
Transfer Level (RTL) approach, i.e., modeling the digital system by registers, data signals,
and logical operations between them. Such a system is usually described using concur-
rent languages like VHDL or Verilog. Emerging trends, however, lean to a system-level
approach [69, 182], which brings many advancements, including more abstract design flow,
optimal hardware/software co-design, simplified verification, validation and co-simulations,
and many more. The system-level description may end up compiled into machine code or
synthesized into hardware implementation. High-level synthesis is a process of translating
the C, C++, or SystemC algorithmic description to a clock-timed RTL or gate-level model,
allowing further mapping onto final architecture/technology, e.g., an FPGA.

The high-level synthesis approach draws attention lately, partially thanks to machine
learning acceleration frameworks [51, 123], and also thanks to FPGA-based cloud platforms
such as Amazon EC2 F1 or Microsoft Project Catapult, which make acceleration using
FPGAs easily accessible to a broad community of users. However, usage of multi-tenant
FPGA chips, e.g., running multiple cloud computing instances in the same chip, introduces
novel security challenges. In such a scenario, the ability to perform side-channel attacks
from the inside of the chip [150, 183, 60] allows for remote side-channel attacks, and calls
for novel countermeasures such as active fences hiding [88].

In this section, we propose a novel dynamic logic reconfiguration-based masking coun-
termeasure approach to secure a substitution-permutation network-based encryption, de-
scribed at the system level in C language, against side-channel attacks. We synthesize our
implementations of PRESENT, AES/Rijndael, and Serpent using high-level synthesis and
we compare the area and time performance. We further evaluate the proposed counter-
measures using both specific and non-specific leakage assessment methodologies. We show
that in the case of PRESENT, our protected high-level implementation successfully ob-

55

3. Symmetric Cryptography

Verification

High-Level

Synthesis

IP Core

C/RTL

Co-Simulation

Verification

Algorithm in CTestbench in C

Constraints

Satisfied?

Figure 3.12: Example of a design flow using high-level synthesis.

scures the first-order side-channel leakage while managing to keep reasonable area and time
overhead. We further discuss the results of AES/Rijndael and Serpent, and we identify
the limitations of the system-level approach and the high-level synthesis.

3.3.1 FPGA Design using High-Level Synthesis

In this work, we choose Xilinx Vivado Design Suite as our high-level synthesis tool-
chain [181], which provides synthesis from C, C++, or SystemC code to an IP core. For
the code to be synthesizable, only a subset of the C language must be used (similar to the
VHDL language in case of the RTL design), with most of the basic constructs available,
such as variables, arrays, loops, or conditions. Extra features like arbitrary-width integer
types allow for better optimization. Furthermore, additional constraints and optimiza-
tions may be set using pragma directives, e.g., advising loops to be pipelined or unrolled,
partitioning of arrays, selecting memory primitives, and more. Designers may also define
the resulting I/O protocol, including various handshakes or bus interfaces like AXI. The
final implementation is synthesized using a selected strategy based on the constraints and
metrics such as area, throughput, and latency, allowing to explore possible design space
quickly. Figure 3.12 depicts the workflow using high-level synthesis.

There are limited research resources regarding usage of high-level synthesis in the cryp-
tographic domain [69, 81], dealing mostly with time and area performance. The effects of
various high-level synthesis parameters on the power side-channel are discussed in [182].
Techniques reducing side-channel vulnerabilities such as imbalanced code branches are pre-

56

3.3. High-Level Synthesis of Masking Countermeasure

sented in [85]. Information flow enforcement [75, 76] introduces prevention against threats
such as exploitable I/O and buffer errors, unprivileged access, or timing attacks.

3.3.2 Alternating Masks Scheme

We propose implementation of the precomputed masked S-boxes as described in subsubsec-
tion 2.5.3.1 with some further alterations. The leakage on the working register is propor-
tional to the Hamming distance between the old and a new value, which is, by definition,
independent of any mask XORed to both values. To solve this issue, we propose a usage
of two independent random masks, m1, m2, and we alternate these masks in consecutive
rounds. This successfully masks the Hamming distance leakage, since

HD(x⊕m1, y ⊕m2) = HW (x⊕ y ⊕m1 ⊕m2). (3.17)

This approach is only sufficient if the implemented encryption algorithm operates at most
one round per clock cycle, or, if partially unrolled, an odd number of rounds per clock
cycle.

To implement this masking, we propose using two different altered substitution layers,
S ′
0 and S ′

1, to be used alternatingly in odd rounds:

S ′
1(state

′) := S(state′ ⊕m1)⊕ P−1(m2), (3.18)

and even rounds:
S ′
0(state

′) := S(state′ ⊕m2)⊕ P−1(m1), (3.19)

where P is the PRESENT permutation.
Assuming the PRESENT encryption with 31 rounds, as described in section 3.1, this

results in one mask being used for masking the plaintext, with the output ciphertext being
masked using the other mask. Two sets of masked 4-bit S-boxes are implemented using
dynamic logic reconfiguration.

For AES/Rijndael encryption with 10, 12, or 14 rounds, one mask is being used for
both plaintext and ciphertext, with the other one being used internally only. Two sets of
masked 8-bit S-boxes are implemented.

Serpent encryption with 32 rounds specifies eight different S-boxes to be used in con-
secutive rounds. This allows for more efficient implementation of the proposed masking
scheme, since only a single set of eight different four-bit S-boxes needs to be implemented,
and no replication is necessary (unlike AES or PRESENT). The total number of imple-
mented S-boxes is summarized in Table 3.2.

Two different masks are generated for every encryption. This masking scheme can be
easily described purely algorithmically using C language and, as shown further, is well
suitable for FPGA high-level synthesis.

3.3.3 Proposed Secure Cipher Design

We implemented the masking scheme proposed in subsection 3.3.2 in C for Xilinx Vi-
vado High-Level Synthesis. For simplicity, we only describe the implementation of the

57

3. Symmetric Cryptography

Table 3.2: Total S-box count.

Algorithm Unprotected Alternating Masks Scheme

PRESENT (4-bit S-box) 16 32

AES/Rijndael (8-bit S-box) 16 32

Serpent (4-bit S-box) 256 256

Listing 3.1: Top-level function.
p r e s e n t b l o c k t encrypt (p r e s e n t b l o c k t p l a in t ex t , p r e s en t k ey t key ,

p r e s e n t b l o c k t maskIn , p r e s e n t b l o c k t maskOut) {
r e c on f i g u r e (maskIn , maskOut) ;
p r e s e n t b l o c k t s t a t e = p l a i n t e x t ;
p r e s en t k ey t roundKey = key ;
s t a t e = addRoundKey(s tate , roundKey) ;
f o r (i n t round = 1 ; round < 32 ; round++) {

#pragma HLS p i p e l i n e
roundKey = updateKey (roundKey , round) ;
s t a t e = sLayer (s ta te , round) ;
s t a t e = pLayer (s t a t e) ;
s t a t e = addRoundKey(s tate , roundKey) ;

}
r e turn s t a t e ;

}

Listing 3.2: Substitution layer.
s t a t i c p r e s en t sbox t sBoxMasked [2] [SBOXCOUNT] [SBOXRANGE] ;

p r e s e n t b l o c k t sLayer (p r e s e n t b l o c k t s ta te , p r e s en t r ound idx t round) {
p r e s e n t b l o c k t newState ;
f o r (i n t i =0; i <16; i++){

#pragma HLS un r o l l
newState (i ∗4 + 3 , i ∗4) = sBoxMasked [round%2][i] [s t a t e (i ∗4 + 3 , i ∗ 4)] ;

}
r e turn newState ;

}

PRESENT encryption in this subsection. The AES/Rijndael and Serpent implementa-
tions are very similar; all the implementations can be found at [158].

Listing 3.1 shows the top-level function, which determines I/O of the final IP core
and defines the PRESENT encryption algorithm. First, the masked substitution layers
S ′
0 and S ′

1 are computed using function reconfigure(). After that, 31 encryption rounds
are performed, as described in section 3.1. Notice the pragma pipeline directive, which in
this case assures a single cycle iteration latency. All the functions, but reconfigure(), get
inlined during the synthesis process.

The substitution layer is described in Listing 3.2. Notice the pragma unroll directive,
which causes the loop iterations to be scheduled in parallel. Also, notice the bit-slicing
indexing of variables.

Listing 3.3 describes an area-optimized version of the dynamic logic reconfiguration
of the substitution layers. Pragma RESOURCE directive specifies a memory primitive

58

3.3. High-Level Synthesis of Masking Countermeasure

Listing 3.3: Reconfiguration of S-boxes.
void r e c on f i g u r e (p r e s e n t b l o c k t maskIn , p r e s e n t b l o c k t maskOut) {

#pragma HLS RESOURCE va r i ab l e=sBoxMasked core=RAM 1P LUTRAM
#pragma HLS ARRAY PARTITION va r i ab l e=sBoxMasked complete dim=2
p r e s e n t b l o c k t mask1 [2]={maskOut , maskIn } ;
p r e s e n t b l o c k t mask2InvP [2]={ pInvLayer (maskIn) , pInvLayer (maskOut) } ;
L1 : f o r (i n t i = 0 ; i < 2 ; i++){

#pragma HLS un r o l l
L2 : f o r (i n t j = 0 ; j < SBOXRANGE; j++){

#pragma HLS p i p e l i n e
L3 : f o r (i n t k = 0 ; k < SBOXCOUNT; k++){

#pragma HLS un r o l l
p r e s en t sbox t idx = mask1 [i] (4∗ k+3, 4∗k) ˆ j ;
p r e s en t sbox t va l = sBoxClean [j] ˆ mask2InvP [i] (4∗ k+3, 4∗k) ;
sBoxMasked [i] [k] [idx] = va l ;

}
}

}
}

used to implement a variable, in this case, LUTRAM, i.e., a single-port distributed RAM.
When the memory primitive is not explicitly set, synthesis chooses one automatically to
satisfy the elaborated read/write schedule, taking both latency and resource utilization
into account (this may, however, result in a nonoptimal solution, such as using 16 18K
block RAMs).

Pragma ARRAY PARTITION specifies partitioning of an array into smaller arrays,
partially or completely, in the specified dimension. This results in using more instances
of the underlying memory primitive, i.e., multiple smaller memories instead of one large
memory, and it therefore also increases the number of R/W ports. In this case, the multi-
dimensional sBoxMasked array (declared in Listing 3.2) is partitioned completely in the
second dimension, resulting in 16 memory instances (S-boxes) addressed using five bits
(round%2 and 4-bit input value). The 16 S-boxes, forming the substitution layer, are
configured in parallel (loop L3), one input value at a time (loop L2). Even rounds and
odd rounds substitution layers reconfigurations are constrained to be performed in parallel
(loop L1); however, given the array partitioning and resulting access conflicts, they are
scheduled sequentially by the synthesis tool. This version of dynamic logic reconfiguration
is further referred to as Version 1.

In order to reduce the reconfiguration time complexity, the sBoxMasked array may be
further partitioned in the first dimension, resulting in 32 memory instances addressed using
the 4-bit S-box input value. Swapping loops L1 and L2 now allows for parallel reconfigu-
ration of both even rounds and odd rounds substitution layer S-boxes, resulting in lower
time complexity at the expense of the area. This version of dynamic logic reconfiguration
is further referred to as Version 2.

Unrolling all the three loops (and letting the synthesis resolve occurring read/write
conflicts) results in even lower latency; this version is further referred to as Version 3.

59

3. Symmetric Cryptography

Table 3.3: Post-RTL-synthesis area and timing estimates comparison.

Implementation
Area Timing

FF LUT CC CP [ns] TP [Mb/s]

PRESENT

1 RTL, Näıve/Unprotected 150 223 32 2.371 843.5

2 HLS, Näıve/Unprotected 229 226 33 2.625 738.8

3 HLS, Protected, Version 1 392 420 33+37 3.056 299.1

4 HLS, Protected, Version 2 442 598 33+19 3.006 409.4

5 HLS, Protected, Version 3 439 771 33+16 3.784 345.2

6 [148] RTL, Protected 601 1,508 62+32 n/a n/a

AES/Rijndael

7 RTL, Näıve/Unprotected 296 1,365 11 5.479 2,124

8 HLS, Näıve/Unprotected 435 1,436 12 3.696 2,886

9 HLS, Protected, Version 1 747 3,159 12+517 3.555 68.06

10 HLS, Protected, Version 2 861 3,248 12+259 4.195 112.5

11
RTL, Protected

2 CFGLUT chains
1,073 2,652 20+4,122 n/a n/a

12
RTL, Protected

32 CFGLUT chains
3,229 7,234 20+282 n/a n/a

Serpent

13 RTL, Näıve/Unprotected 403 1,403 33 5.598 692.9

14 HLS, Näıve/Unprotected 1,177 1,860 36 3.955 899.0

15 HLS, Protected, Version 1 1,814 2,764 36+144 4.703 151.2

16 HLS, Protected, Version 2 2,645 4,391 36+18 5.094 465.3

17 HLS, Protected, Version 3 2,650 5,103 36+16 5.094 483.2

18
RTL, Protected

2 CFGLUT chains
2,945 5,696 64+538 n/a n/a

19
RTL, Protected

144 CFGLUT chains
4,441 9,471 64+58 n/a n/a

20
RTL, Protected

288 CFGLUT chains
6,040 13,211 64+42 n/a n/a

3.3.4 Latency, Throughput and Area Utilization

Table 3.3 compares area and latency of various FPGA implementations of PRESENT,
AES/Rijndael and Serpent encryption algorithms:

◦ Unprotected VHDL implementation for register-transfer level synthesis,

◦ Unprotected C implementation for high-level synthesis,

◦ Alternating Masks Scheme C implementation for high-level synthesis, as proposed in
this section,

◦ Protected register-transfer level implementation implementing S-box decomposition,
Boolean masking and register precharge countermeasures combination, and utiliz-

60

3.3. High-Level Synthesis of Masking Countermeasure

ing a similar concept of dynamic logic reconfiguration using CFGLUT primitives.
The concept was proposed for PRESENT by Sasdrich et al. [148] and extended for
AES/Rijndael and Serpent in section 3.2.

The proposed implementations are synthesized for Xilinx Kintex-7, and their results
are Vivado’s post-RTL synthesis utilization statistics, except for implementations 6, 11, 12,
and 18-20 (results reported in [148] and section 3.2), which were synthesized for Spartan-6.
All implementations use look-up table S-boxes. Note that both Kintex-7 and Spartan-6
FPGAs utilize similar 6-input LUT primitives, making the area results comparable. The
table summarizes flip flop count (FF), look-up tables count (LUT), clock cycle count (CC,
encryption+reconfiguration), achievable clock period (CP) and final throughput (TP). It
is essential to say that the work by Sasdrich et al. [148] and the work in section 3.2 both
combine three countermeasures: S-box Decomposition, Boolean Masking, and Register
Precharge, while our proposed scheme may be considered equivalent to using Boolean
Masking + Register Precharge only.

The results presented for unprotected näıve implementations (implementations 1, 2, 7,
8, 13, 14) show that high-level synthesis is well capable of competing with the traditional
register-transfer level synthesis, with reasonable overhead considering the advantages of
the system-level approach. The C implementations further pipeline the round loop and
its prologue/epilogue, compared to our RTL designs, which results in more clock cycles
and larger area, but allows for higher throughput in the end. While similar results could
be obtained with VHDL implementations as well, the RTL approach requires significantly
more work and skill, and is therefore more time and human resource consuming.

Regarding the protected PRESENT (implementations 3-5), the single encryption clock
cycle latency of our implementation is almost half of that reported by Sasdrich et al. [148]
(implementation 6), since we do not use register precharge and we utilize two masks instead,
making total latency of our implementations lower in all cases. The Version 2 of the
proposed masking scheme achieves the best throughput.

Similar results can be observed for AES/Rijndael (implementations 9, 10) and Serpent
(implementations 15-17). In the case of protected AES/Rijndael, only Versions 1 and
2 are available because of the synthesis tool limitations (there are too many operations
to be scheduled in parallel when all the loops are unrolled). In comparison with results
reported in section 3.2 (implementations 11, 12, 18-20), only implementation 11 reaches
lower LUT count; the implementations described in this section exhibit better area and
timing performance in all other cases. The results also confirm that our approach is more
efficient for algorithms with smaller S-boxes: while Serpent, despite its worse clock period,
is able to achieve throughput comparable to PRESENT, the performance of AES/Rijndael
is significantly reduced.

Presented results demonstrate that a reasonable area overhead can be achieved when
using the high-level synthesis. Furthermore, the system-level approach allows for quick
exploration of the design space, evaluating the area and latency trade-off.

61

3. Symmetric Cryptography

3.3.5 Side-Channel Leakage Evaluation

We evaluate side-channel leakage using both specific and non-specific t-test leakage as-
sessment methodology (see section 2.7). The protected high-level implementations are
synthesized and implemented with Xilinx Vivado 2019.2 tools using the default synthesis
strategy. We evaluate all the versions of PRESENT, AES/Rijndael, and Serpent encryp-
tion. The implementations run on a dedicated side-channel evaluation board Sakura-X
(i.e., a commercial version of SASEBO-GIII [70]), equipped with Xilinx Kintex-7 FPGA
(28 nm), clocked by an external 200MHz crystal oscillator, which gets divided by an inter-
nal MMCM module down to 15 MHz, used to clock the encryption IP core. The FPGA
design receives plaintexts and random masks from an external source (the controlling PC)
and sends out the ciphertext using the UART interface. The power consumption is mea-
sured using PicoScope 6404D oscilloscope and Langer EMV-Technik PA 303 preamplifier.
Voltage over the FPGA core is sampled in the VCCINT path, using 1Ω shunt resistor
(Sakura-X originally uses 0.1Ω resistor), with the preamplifier acting as a DC blocker, and
with 25MHz bandwidth limiter enabled on the oscilloscope. The sampling frequency used
for all the measurements is 1.25 GS/s (i.e., 0.8 ns sampling period). Power traces are
captured during every encryption, i.e., while the encryption IP core is active.

For all three encryption algorithms, both protected and unprotected versions (unpro-
tected encryption is measured by setting both masks to all zeroes, so that S = S ′

0 = S ′
1),

two sets of traces are captured: (1) during encryptions of uniform random plaintexts, and
(2) during encryptions of either uniform or fixed constant plaintexts, in a randomly inter-
leaved fashion. In every data set, one million power traces are measured. The first set of
traces is used for the specific t-test, and the second one for the non-specific t-test.

3.3.5.1 Specific t-test

For the specific leakage assessment, the data sets with random plaintexts are used. The
data set is split into two disjoint groups according to a bit in a chosen intermediate cipher
value. We choose the output of the substitution layer (S-boxes outputs) in the first round
(i.e., 64 different models for PRESENT and 128 different models for both AES/Rijndael
and Serpent) and XOR of consecutive (second and third) rounds inputs (working register
leakage) (i.e., another 64 or 128 different models). For every model independently, Welch’s
t-test statistic is computed, at every sampling point independently. The null hypothesis
is that the two groups’ means are equal, i.e., the groups are indistinguishable by their
sample means. The hypothesis gets rejected for high values of |t| according to Student’s
t-distribution and selected significance level. In side-channel leakage assessment, the value
4.5 or 5 is often considered a reasonable threshold for the |t| value, to reject the hypothesis.
This has to be done with the possibility of both false positives and false negatives in
mind [161].

62

3.3. High-Level Synthesis of Masking Countermeasure

3.3.5.2 Non-specific t-test

For the non-specific leakage assessment, we use the data sets measured with either random
or fixed plaintexts, in a randomly interleaved fashion. The data set is split into groups
containing power traces measured using either random or fixed plaintexts, and the Welch’s
t-test statistic is computed once again at every sampling point independently, for the same
null hypothesis, i.e., the encryptions of random or fixed plaintexts are indistinguishable by
their sample means.

Unlike the specific t-test, the non-specific leakage assessment methodology is much more
sensitive and less informative. Even though rejecting the null hypothesis indicates first-
order leakage, its exploitability remains an open question and requires further investigation.

3.3.5.3 Results for Version 1

This subsubsection presents leakage evaluation results for the Version 1, i.e., the area-
optimized implementations with less (and larger) memory primitives and longer reconfig-
uration times in comparison with Versions 2 and 3. Since no leakage occurs during the
reconfiguration phase, it is cropped off the presented plots.

Figures 3.13, 3.14, and 3.15 show results of PRESENT evaluation, figures 3.16, 3.17,
and 3.18 show results of AES/Rijndael evaluation, and figures 3.19, 3.20, and 3.21 show
results of Serpent evaluation. Figures 3.13 and 3.14, 3.16 and 3.17, 3.19 and 3.20 show
results of the specific t-tests based on the substitution layer (S-boxes) output and round
register transitions (xor of consecutive rounds inputs), respectively. The specific test plots
depict 64 or 128 overlaid curves: one for each model derived from a bit value in the cipher
state. Figures 3.15, 3.18, and 3.21 show results of the non-specific t-tests. Subfigures
(a) show results of the unprotected version, subfigures (b) show results of the protected
version, and subfigures (c) show a comparison of the t-value progress of both unprotected
and protected implementations.

All tests detect leakage of all the unprotected implementations as can be seen in (a) sub-
figures 3.13a-3.21a. While specific tests aim at a single round, non-specific tests detect
leakage during the entire encryption.

Protected PRESENT encryption successfully passes both specific tests, as can be seen
in Figures 3.13b and 3.14b. In the non-specific test depicted in Figure 3.15b, there is only
a single peak reaching the rejection threshold using one million power traces. However,
observing the results by the naked eye, multiple potential points where non-specific leakage
may occur can be suspected. A significant improvement over the unprotected version can
be seen in Figure 3.15c.

Protected AES/Rijndael encryption successfully passes the specific test aimed at the
round register, as can be seen in Figure 3.17b. The specific test aimed at the substitution
layer fails, as can be seen in Figure 3.16b, with multiple points reaching over the rejection
threshold; its improvement over the unprotected version can be seen in Figure 3.16c. The
non-specific test for AES/Rijndael fails during a large part of the encryption, as can be

63

3. Symmetric Cryptography

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.13: PRESENT specific t-test results of 64 models based on substitution layer
output (S-boxes outputs). (a) and (b) show the t-value on the vertical axis and the time
samples during the encryption on the horizontal axis. (c) shows maximum reached absolute
t-value on the vertical axis and the number of power traces on the horizontal axis, where the
upper curve corresponds to the unprotected encryption, and the lower curve corresponds
to the protected encryption.

seen in Figure 3.18b, with the most prominent peak observable at the beginning of the
encryption.

Protected Serpent encryption exhibits similar behavior as the AES/Rijndael: the spe-
cific test aimed at the round register passes, as can be seen in Figure 3.20b, while the test
aimed at the substitution layer detects leakage, as can be seen in Figure 3.19b. Similar
to AES/Rijndael, the non-specific test detects leakage during the entire encryption, with
a significant peak at the beginning. However, a significant improvement compared to the
unprotected version can be seen in both Figures 3.21b and 3.21c.

3.3.5.4 Results for Versions 2 and 3

This subsubsection presents leakage evaluation results for the Versions 2 and 3, i.e., the
implementations with more (and smaller) memory primitives and shorter reconfiguration
times in comparison with Version 1.

The specific t-test aimed at the round register leakage (XOR of consecutive round
inputs) passed the assessment for all the implementations, same as in the case of the
Version 1 implementation.

The results of the specific t-test aimed at the substitution layer (S-boxes outputs), for
Version 1 and Version 2, are compared in Figure 3.22. Although the protected PRESENT
Version 1 implementation passed this test, the Version 2 implementation failed with the t-

64

3.3. High-Level Synthesis of Masking Countermeasure

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.14: PRESENT specific t-test results of 64 models based on round register leakage
(xor of consecutive rounds inputs). (a) and (b) show the t-value on the vertical axis and the
time samples during the encryption on the horizontal axis. (c) shows maximum reached
absolute t-value on the vertical axis and the number of power traces on the horizontal axis,
where the upper curve corresponds to the unprotected encryption, and the lower curve
corresponds to the protected encryption.

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.15: PRESENT non-specific t-test results. (a) and (b) show the t-value on the
vertical axis and the time samples during the encryption on the horizontal axis. (c) shows
maximum reached absolute t-value on the vertical axis and the number of power traces on
the horizontal axis, where the upper curve corresponds to the unprotected encryption, and
the lower curve corresponds to the protected encryption.

65

3. Symmetric Cryptography

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.16: AES/Rijndael specific t-test results of 128 models based on substitution layer
output (S-boxes outputs). (a) and (b) show the t-value on the vertical axis and the time
samples during the encryption on the horizontal axis. (c) shows maximum reached absolute
t-value on the vertical axis and the number of power traces on the horizontal axis, where the
upper curve corresponds to the unprotected encryption, and the lower curve corresponds
to the protected encryption.

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.17: AES/Rijndael specific t-test results of 128 models based on round register
leakage (xor of consecutive rounds inputs). (a) and (b) show the t-value on the vertical
axis and the time samples during the encryption on the horizontal axis. (c) shows maxi-
mum reached absolute t-value on the vertical axis and the number of power traces on the
horizontal axis, where the upper curve corresponds to the unprotected encryption, and the
lower curve corresponds to the protected encryption.

66

3.3. High-Level Synthesis of Masking Countermeasure

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.18: AES/Rijndael non-specific t-test results. (a) and (b) show the t-value on the
vertical axis and the time samples during the encryption on the horizontal axis. (c) shows
maximum reached absolute t-value on the vertical axis and the number of power traces on
the horizontal axis, where the lower curve corresponds to the unprotected encryption, and
the upper curve corresponds to the protected encryption.

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.19: Serpent specific t-test results of 128 models based on substitution layer output
(S-boxes outputs). (a) and (b) show the t-value on the vertical axis and the time samples
during the encryption on the horizontal axis. (c) shows maximum reached absolute t-value
on the vertical axis and the number of power traces on the horizontal axis, where the upper
curve corresponds to the unprotected encryption, and the lower curve corresponds to the
protected encryption.

67

3. Symmetric Cryptography

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.20: Serpent specific t-test results of 128 models based on round register leakage
(xor of consecutive rounds inputs). (a) and (b) show the t-value on the vertical axis and the
time samples during the encryption on the horizontal axis. (c) shows maximum reached
absolute t-value on the vertical axis and the number of power traces on the horizontal axis,
where the upper curve corresponds to the unprotected encryption, and the lower curve
corresponds to the protected encryption.

(a) t-values during unprotected encryption. (b) t-values during protected encryption.

(c) t-value progress.

Figure 3.21: Serpent non-specific t-test results. (a) and (b) show the t-value on the ver-
tical axis and the time samples during the encryption on the horizontal axis. (c) shows
maximum reached absolute t-value on the vertical axis and the number of power traces on
the horizontal axis, where the upper curve corresponds to the unprotected encryption, and
the lower curve corresponds to the protected encryption.

68

3.3. High-Level Synthesis of Masking Countermeasure

(a) PRESENT. (b) AES/Rijndael.

(c) Serpent.

Figure 3.22: Results of the specific t-tests based on substitution layer output (S-boxes
outputs), where the maximum reached absolute t-value is shown on the vertical axis and
the number of power traces is shown on the horizontal axis. In (a) and (c), the lower curve
corresponds to the Version 1 and the upper curve corresponds to the Version 2 protected
encryption implementations. In (b), the upper curve corresponds to the Version 1 and the
lower curve corresponds to the Version 2.

value reaching as high as 5.5. While the AES/Rijndael’s t-value reaches lower for Version 2
than for Version 1, it still fails the test. A significant worsening can be seen for the Serpent
implementation in Figure 3.22c. We suspect this difference to be caused by the eight
Serpent S-boxes being more vulnerable to glitches, as opposed to Rijndael’s single S-box.

The results of the non-specific t-tests exhibit very similar results as the ones aimed at
the substitution layer. The Version 2 PRESENT non-specific t-test fails with the t-value
reaching as high as 15, compared to approximately 5 for the Version 1. The Version 2 of the
Serpent encryption once again exhibits a significant worsening with the t-value reaching
as high as 500, compared to approximately 40 for the Version 1.

The Version 3 implementations of PRESENT and Serpent exhibit very similar behavior
as the Version 2 implementations.

3.3.6 Discussion and Future Work

The presented results show that Version 1 of our protected PRESENT encryption imple-
mentation passes the specific leakage assessment, suggesting that it is not vulnerable to the
first-order non-profiled side-channel attacks (such as DPA or CPA) using one million mea-
surements and the straightforward leakage model. It subtly fails the non-specific leakage
assessment in a single time instant only, giving a reasonable confidence about its resistance

69

3. Symmetric Cryptography

against first-order side-channel attacks using at most one million measurements.
While AES/Rijndael and Serpent pass the specific tests aimed at the round register,

the presented results suggest an exploitable leakage when aiming the tests at the substitu-
tion layer (S-boxes) output. Also, their non-specific leakage assessment results suggest an
exploitable leakage during entire encryptions.

Note that while the proposed countermeasures work quite well for PRESENT, their
performance is worse on the “full-sized” ciphers AES/Rijndael and Serpent. We believe
this is caused by more complex linear layers that are more vulnerable to glitches, which
are known to cause side-channel leakage in masked circuits. Similarly, we believe that the
Version 2 and 3 implementations are more vulnerable to glitches because of the additional
logic due to smaller memory primitives. While the leakage caused by glitches may not be
as trivially exploitable, a successful attack may still be feasible [101]. The AES/Rijndael,
Serpent and Version 2 and 3 PRESENT failing the non-specific leakage assessment also
suggest that attacks assuming a more powerful adversary (such as Template attacks, see
subsection 2.3.1) might be feasible.

Leakage sources such as glitches are mitigated by more complex higher-order glitch-
resistant masking schemes, such as Threshold implementation (see subsubsection 2.5.3.2)
or Domain oriented masking [63]. However, these schemes typically require a more precise
control over the FPGA design than provided by the high-level synthesis (e.g., placement of
pipeline registers). These implementation necessities make these schemes less suitable for
high-level synthesis, where the data path design and control is offloaded to the synthesis
tools.

Another possible approach might be altering the high-level synthesis process so that
a glitch-free circuit is synthesized. An algorithm for formal verification of higher-order
masking schemes is presented in [12], and a side-channel analysis of a source code at com-
pilation time was recently proposed in [31]. System-level FPGA design introduces many
novel challenges, including automated side-channel leakage assessment and verification.

3.3.7 Summary

In this section, we showed that the high-level synthesis is well capable of competing with the
traditional RTL design when it comes to the unprotected cryptographic implementations.
We implemented PRESENT, AES/Rijndael and Serpent encryption for FPGA in both
C and VHDL, and we compared the results, demonstrating the benefits of the high-level
synthesis such as rapid prototyping and easy design space exploration.

We further proposed a Boolean masking scheme, utilizing dynamic logic reconfigura-
tion, and suitable for high-level synthesis from the C language algorithmic description.
The Alternating Masks Scheme was proposed as an alternative to the masking and register
precharge combination to deal with Hamming distance leakage. In addition to a purely
algorithmic description, the proposed scheme also allows for higher throughput than a com-
bination of masking and register precharge.

We implemented PRESENT, AES/Rijndael, and Serpent encryption with the proposed
side-channel countermeasures in C language, and we synthesized the protected implementa-

70

3.4. Summary

tions for Xilinx FPGA. We have evaluated the area/latency trade-off, and we compared our
results with unprotected implementations and with an existing state-of-the-art dynamic
reconfiguration-based protected implementation. We showed that the overhead brought in
by high-level synthesis is reasonable considering both area and latency while allowing for
fast design space exploration.

To evaluate the effectiveness of the proposed side-channel countermeasure, we per-
formed a specific t-test leakage assessment using one million power traces, focusing on the
substitution layer output and the XOR of consecutive rounds inputs, and a non-specific
t-test leakage assessment using fixed vs. random plaintext methodology. Our results
show that the proposed masking scheme successfully conceals the first-order side-channel
leakage of PRESENT encryption; however, we were able to detect leakage of AES/Rijn-
dael and Serpent implementations. We discussed the leakage assessment results and their
consequences, and we identified the related limitations of the system-level approach and
high-level synthesis.

3.4 Summary

In this chapter, the countermeasures for symmetric cryptography in FPGA were proposed
and evaluated. All the proposed countermeasures were implemented for Xilinx FPGAs and
their time/area performance was comprehensively evaluated. The countermeasures effec-
tiveness was evaluated using a state-of-the-art leakage assessment methodology. Counter-
measures based on dynamic logic reconfiguration for AES and Serpent were discussed in
section 3.2 and thoroughly summarized in subsection 3.2.7. A novel approach for high-level
synthesis of side-channel countermeasures for PRESENT, AES and Serpent was presented
in section 3.3 and thoroughly summarized in subsection 3.3.7.

71

Chapter 4

Asymmetric Cryptography

The work presented in this chapter was done in cooperation with David Pokorný
(a master’s student supervised by the thesis author until 2021, now a Ph.D.
student) of Czech Technical University. The work in section 4.2 was presented
at the DATE conference [A.6] in 2021. The work presented in section 4.3 was
published in the Electronics journal [A.7] in 2022.

One of the significant threats to asymmetric cryptographic algorithms is quantum com-
putation, which is expected to effectively break RSA and ECC cryptosystems. This is due
to Shor’s algorithm [155], which allows prime factorization and discrete logarithm solv-
ing in polynomial time, compared to exponential time on a classical computer. For this
reason, the National Institute of Standards and Technology (NIST) of the United States
Department of Commerce has initiated a process to standardize quantum-resistant public
key cryptographic algorithms. The digital signature candidates in the third round were
CRYSTALS-Dilithium [52], FALCON [55], both lattice-based schemes, and Rainbow [50],
a multivariate quadratic scheme. The Rainbow algorithm, as proposed, was unfortunately
found insecure [18] in 2022. Both lattice-based signatures have been currently recom-
mended for standardization, with some multivariate quadratic candidate expected to be
further evaluated. In this chapter, we focus on the multivariate quadratic signature scheme
Rainbow, as most of the work was done prior to it being broken. However, the presented
work is also applicable to other multivariate quadratic schemes, which, besides Rainbow,
also include the Unbalanced Oil and Vinegar (UOV) [82] and LUOV [19] schemes.

First, section 4.1 describes the Rainbow algorithm, a generalization of the oil and vine-
gar scheme (which is a single-layered Rainbow). Then in section 4.2, a side-channel attack
on the 32-bit reference implementation of the Rainbow, which was submitted to the NIST
standardization process, is described and evaluated. In section 4.3, a novel countermeasure
for multivariate quadratic signature schemes is proposed, analyzed and evaluated regarding
side-channel leakage and time/memory overhead. Finally in section 4.4, a summary of the
results is given.

73

4. Asymmetric Cryptography

4.1 Rainbow Multivariate Quadratic Signature

Rainbow is a post-quantum digital signature, a generalization of the oil and vinegar signa-
ture scheme [50]. Its security depends on the fact that solving m quadratic equations for
n variables becomes very difficult. These equations are defined by a central map F , which
consists of multivariate quadratic polynomials. The central map is structured so that it is
possible to solve F (x1, . . . , xn) = (y1, . . . , ym) using a linear equation solver. In a public
key, the special structure of the central map is hidden by two linear maps, S and T , applied
on an input and an output of the central map. The central map is layered, where each layer
defines two types of variables: vinegar variables for known variables (randomly generated
or computed from the prior layer) and oil variables for unknown variables (to be computed
using polynomials in the given layer). In this thesis, we used the version of the Rainbow
algorithm as defined in the submission to the NIST competition [139].

Let F be a finite field and v1, o1, o2 ∈ N the parameters of the two-layered version
of Rainbow. The parameters define the number of variables and the sizes of the layers.
The first layer consists of o1 quadratic polynomials with v1 vinegar variables with indices
V1 = {1, 2, . . . , v1} and o1 oil variables with indices O1 = {v1 +1, . . . , v1 + o1}. The second
layer contains o2 quadratic polynomials with v2 = v1 + o1 vinegar variables with indices
V2 = {1, 2, . . . , v2} and o2 oil variables with indices O2 = {v2 +1, . . . , v2 + o2}. Overall, we
have m = o1 + o2 polynomials with n = v1 + o1 + o2 variables.

The central map F = (f (v1+1), f (v1+2), . . . , f (n)) is an m-tuple of n-variate quadratic
polynomials. These polynomials, indexed by k ∈ O1 ∪O2, are defined as:

f (k)(x1, . . . , xn) :=
∑
i,j∈Vl
i≤j

α
(k)
i,j xixj +

∑
i∈Vl
j∈Ol

β
(k)
i,j xixj +

∑
i∈Vl∪Ol

γ
(k)
i xi + δ(k), (4.1)

where α
(k)
i,j , β

(k)
i,j , γ

(k)
i , δ(k) ∈ F are term coefficients and l ∈ {1, 2} is such that k ∈ Ol.

For simplicity, we changed the notation in Equation 4.1 in the following sense:

◦ We restricted the polynomials, omitting the linear and absolute parts of the poly-
nomials in the central map, resulting in quadratic forms. These coefficients are not
necessary for the security of Rainbow, but add more complexity. The reference imple-
mentation submitted to the standardization process considers these coefficients in the
documentation, but they were not implemented in the code. Nevertheless, the coun-
termeasure discussed later in section 4.3 can be applied to the original polynomials
defined in Equation 4.1 as well.

◦ Sometimes, we unite the α and β coefficients into the λ coefficients for simplicity of
notation and also include zero coefficients as described in Equation 4.2. We do not
allow setting any (by definition) zero coefficient to a non-zero value, so there is no

74

4.1. Rainbow Multivariate Quadratic Signature

change from the original definition.

λ
(k)
i,j :=



α
(k)
i,j (k ∈ O1), (i, j ∈ V1), (i ≤ j),

β
(k)
i,j (k ∈ O1), (i ∈ V1), (j ∈ O1),

α
(k)
i,j (k ∈ O2), (i, j ∈ V2), (i ≤ j),

β
(k)
i,j (k ∈ O2), (i ∈ V2), (j ∈ O2),

0 otherwise.

(4.2)

Applying our changes, we obtain a simple notation of the central map polynomials,
equivalent to Equation 4.1:

f (k)(x) =
∑
i,j∈n̂

λ
(k)
i,j · xi · xj, (4.3)

where k ∈ O1 ∪O2, n̂ = {1, 2, . . . , n} and x = (x1, . . . , xn).
In Rainbow, the structure of the central map F (described in Equation 4.1) is hidden

using two random invertible affine maps S : Fm → Fm and T : Fn → Fn. Similar to
the linear and absolute parts of the central map polynomials, we also omitted translations
of the affine maps. Therefore, we used two linear maps represented by regular matrices
S ∈ Fm×m,T ∈ Fn×n. This is also consistent with the reference implementation.

4.1.1 Matrix Multiplication in the Reference Implementation

Three variants of the Rainbow signature scheme are proposed in the NIST competition, and
their reference implementations are available. The Cyclic variant is motivated by Petzoldt’s
cyclic Rainbow scheme [131], the Compressed variant stores the private key in the form
of a 512-bit seed, and the Classic variant stores plain matrices. For the demonstration in
this subsection, we will discuss the Classic variant Ia with parameters selected to fit NIST
security categories I and II.

This two-layered (u = 2) variant uses m = 64 quadratic polynomials with n = 96
variables over F = GF (22

2
) = GF (16). Layers are structured as (v1, v2, v3) = (32, 64, 96)

and (o1, o2) = (32, 32). This variant uses matrices S and T of the form

S = S−1 =

(
I S ′

O I

)
, (4.4)

T =

 I T (1) T (2)

O I T (3)

O O I

 , T−1 =

 I T (1) T (4)

O I T (3)

O O I

 , (4.5)

where S ∈ F64×64, T ∈ F96×96, their submatrices are elements of F32×32, O is zero matrix, I
is identity matrix, and T (4) := T (1) · T (3) − T (2). In the following text, we denote y, h ∈ F64

and z, x ∈ F96, where y = S−1 · h and z = T−1 · x
Each element of GF (22

2
) is identified by 4 bits, while the considered reference imple-

mentation uses a 32-bit word. A suitable Galois field was selected so that multiplication of

75

4. Asymmetric Cryptography

a vector by one element can be performed using simple bit operations, allowing for word-
level data parallelism. Consequently, a vector of eight elements can be multiplied by one
element using only a few instructions.

E.g., consider a computation of y = S−1 ·h. First, the product S ′ ·h33:64 is computed in
column-wise order. Using word-level parallelism, each matrix column is processed as four
vectors of eight elements (i.e., the external loop iterates across all columns, and the internal
loop iterates across four vectors). Finally, the matrix-vector product y = S−1 ·h is obtained
by addition of the h vector, to take the identities I in S−1 into account: y1:32 = S ′ ·h33:64+
h1:32, y33:64 = h33:64.

4.1.2 Central Map in Matrix Representation

For compact writing, we rewrite the quadratic forms in the central map as a product of
matrix–vector multiplication for k ∈ O1 ∪O2:

f (k)(x) = x⊺F(k)x = x⊺

F
(k)
1,1 F

(k)
1,2 F

(k)
1,3

0 F
(k)
2,2 F

(k)
2,3

0 0 0

x,

F
(k)
1,1 = {λ(k)

i,j }i,j∈V1 ,

F
(k)
1,2 = {λ(k)

i,j }i∈V1,j∈O1 ,

F
(k)
1,3 = {λ(k)

i,j }i∈V1,j∈O2 ,

F
(k)
2,2 = {λ(k)

i,j }i,j∈O1 ,

F
(k)
2,3 = {λ(k)

i,j }i∈O1,j∈O2 .

(4.6)

The quadratic form f (k)(x) can be expressed using a matrix F(k). This matrix is

partitioned according to the structure of the central map. Submatrices F
(k)
1,1,F

(k)
2,2 are upper

triangulars and correspond to alpha coefficients. Submatrices F
(k)
1,2,F

(k)
1,3,F

(k)
2,3 correspond to

beta coefficients. Specifically for the first layer, we obtain:

(k ∈ O1) =⇒ F(k) =

F
(k)
1,1 F

(k)
1,2 0

0 0 0
0 0 0

 . (4.7)

The central map can be expressed as a vector of m matrices (representing quadratic
forms):

F =


F(v1+1)

F(v1+2)

...
F(n)

 . (4.8)

76

4.2. Side-Channel Attack on the 32-bit Reference Implementation of the Rainbow

4.1.3 Secret and Public Keys

Secret key SK can be expressed and stored as:

SK := (S−1, F, T−1) ↔ (S−1,F,T−1), (4.9)

where

F : Fn → Fm

x 7→ y = F (x) =


f (v1+1)(x)
f (v1+2)(x)

...
f (n)(x)

 =


x⊺F(v1+1)x
x⊺F(v1+2)x

...
x⊺F(n)x

 .
(4.10)

The public key PK := (P) contains only a quadratic map P defined as

P := S ◦ F ◦ T. (4.11)

4.1.4 Signing and Verification Process

For document d, random salt r, and a secret key SK = (S−1, F, T−1), we define

h := hash (hash (d) || r) ,
y := S−1(h),

x := F−1(y),

z := T−1(x),

(4.12)

where h,y ∈ Fm and x, z ∈ Fn. The pair (z, r) is called a signature.
The signature (z, r) of the document d is valid iff h = h′, where

h := hash (hash (d) || r) ,
h′ := P (z).

(4.13)

4.2 Side-Channel Attack on the 32-bit Reference Imple-
mentation of the Rainbow

In this section, we propose a CPA attack (see subsection 2.2.3) on the 32-bit reference
implementation of Rainbow from the NIST competition’s second round, which has been
submitted as a candidate for NIST post-quantum digital signature standardization. The
proposed attack is an extension of the work presented in [129]. We propose a way to
extract the private key from the device and evaluate our attack on an STM32F3 ARM
microcontroller.

77

4. Asymmetric Cryptography

The signing process is described in subsection 4.1.4. The S−1 map is applied first,
followed by the inverse of central map F , and finally applying the T−1 map. Vinegar
variables for the first layer are generated randomly at the beginning of the algorithm.

With matrices S−1 and T−1 known, we can reveal the central map F easily with knowl-
edge of public key PK = (P). Therefore, we aim our attack at the linear parts S and T
only. Note that S = S−1 and T−1 can be computed from T and vice versa. We cannot
choose the input of the S matrix multiplication directly due to salting, but we can compute
its value as we supply d and know s from the resulting signature.

4.2.1 Attack on S Map

In the first signing step, a matrix-vector product y = S−1 · h is computed (detailed in
subsection 4.1.1). Our attack is aimed at the computation of y1:32 = S ′ · h33:64 + h1:32,
where h is a known vector and S ′ is a part of the private key.

4.2.1.1 Attack I

Our CPA attack therefore is row-oriented. Each element i of the final product can be
expressed as

yi =
32∑
j=1

(S ′
i,j · hj+32) + hi. (4.14)

In the reference implementation, vector yi is initialized with zeroes, then h is multiplied
with S ′ iteratively, and finally hi is added due to the identity submatrices in Equation 4.4.
This is one of the differences compared to [129], where hi is added first, making their
attack substantially easier to mount. Our predictions are based on a Hamming weight
of the intermediate sum value for j ∈ {2, . . . , 32}. Table 4.1 summarizes intermediate
values for Attack I.

Table 4.1: Attack I: Revealing a matrix row.

Target Intermediate value
S ′
i,1 and S ′

i,2 S ′
i,1 · h33 + S ′

i,2 · h34

S ′
i,3

∑2
j=1(S

′
i,j · hj+32) + S ′

i,3 · h35

S ′
i,4

∑3
j=1(S

′
i,j · hj+32) + S ′

i,4 · h36

...
...

S ′
i,32

∑31
j=1(S

′
i,j · hj+32) + S ′

i,32 · h64

In the first step, we target both S ′
i,1 and S ′

i,2 subkeys. Since the attacked 4-bit subkeys
can have 16 different values, and there are 32 subkeys in the first matrix column, targeting
only S ′

i,1 would not lead to a useful solution. Using these predictions, multiple subkeys
are found in the first step since the targeted intermediate value does not correspond to
a unique input value. To resolve this, we further process these subkeys independently.

78

4.2. Side-Channel Attack on the 32-bit Reference Implementation of the Rainbow

Another problem arises if S ′
i,2 = 0. The power predictions would then be the same as

targeting only S ′
i,1:

S ′
i,1 · h33 + S ′

i,2 · h34 = S ′
i,1 · h33 + 0 · h34 = S ′

i,1 · h33. (4.15)

The same problem occurs for each zero element in the row. This problem can be overcome
for columns with index k > 2. Knowing S ′

i,j, j ∈ {1, . . . , k − 1}, our attack considers only
non-zero values, i.e., Si,k ∈ {1, . . . , 15}. If no significant correlation with any of these
15 hypotheses is found, the element is assumed to be a zero.

Furthermore, each row is multiplied by the same vector h33:64, and therefore, even if
we find the whole row, we are not able to directly distinguish the row’s index. We obtain
S ′
i,1:32 for some i ∈ {1, . . . , 32}.

4.2.1.2 Attack II

After revealing elements of the entire row, the row index must be further identified. This
is accomplished by Attack II, targeting the final addition of vector h1:32. The used power
predictions are described in Table 4.2. Using Attack I and Attack II, we are able to reveal
28 rows1 out of 32 on average.

Table 4.2: Attack II: Row identification.

Target Intermediate value

k ∈ {1, . . . , 32} in hk

∑32
j=1(S

′
i,j · hj+32) + hk

4.2.1.3 Attack III

The last step is revealing the remaining rows. To do so, we exploit the word-level parallelism
described in subsection 4.1.1. All the matrix rows are partitioned into sets based on this
parallelism, i.e., the rows that are processed together are in their respective sets. For
each row we attack, the subkey hypotheses are considered together with the other (already
known) rows in the set. The power predictions are then based on the Hamming weight of
the whole word. We define the aforementioned partitions and a hypothesis H l

j for every
column j and a certain set l ∈ {1, 2, 3, 4} as

Setl := {8 · (l − 1) + 1, . . . , 8 · l}, (4.16)

H l
j :=

∑
i∈Setl

HW(

j∑
k=1

(S ′
i,k · hk+32)). (4.17)

Considering leakage hypotheses of the entire set allows for a more precise prediction based
on the processed word. For simplicity, we consider zeroes instead of the unknown elements
in S ′.

1Probability of non-zero values in the first two columns is (15/16)2, the average number of these rows
in a submatrix such as S′ is Mean(BinomialDistribution(32, (15/16)2)) = 28.125.

79

4. Asymmetric Cryptography

Attack III for i-th row, where l is such that i ∈ Setl, uses power predictions described
in Table 4.3. The predictions are based on a sum of the most probable hypotheses for the
other rows determined by previous attacks, and on a hypothesis for the i-th row. In case
there are multiple missing rows in the set, the row index must be identified. We accomplish
this using the last power prediction in Table 4.3. The attack is then repeated until the
entire matrix S ′ is revealed. Attack III is only necessary for revealing the first two row
elements S ′

i,1 and S ′
i,2. The following row elements can be revealed using either Attack III,

or using Attack I and Attack II.

Table 4.3: Attack III: Revealing remaining rows.

Target Intermediate value I Power prediction
S ′
i,1 and S ′

i,2 S ′
i,1 · h33 + S ′

i,2 · h34 H l
2 +HW(I)

S ′
i,3

∑2
j=1(S

′
i,j · hj+32) + S ′

i,3 · h35 H l
3 +HW(I)

S ′
i,4

∑3
j=1(S

′
i,j · hj+32) + S ′

i,4 · h35 H l
4 +HW(I)

...
...

...

S ′
i,32

∑31
j=1(S

′
i,j · hj+32) + S ′

i,32 · h64 H l
32 +HW(I)

k ∈ Setl
∑32

j=1(S
′
i,j · hj+32) + hk HW(I)

4.2.2 Attack on T Map

Matrix T−1 has three non-trivial sub-matrices T (1), T (4) and T (3). We attack them sepa-
rately, but similarly. First, we express the matrix-vector multiplication described in sub-
section 4.1.1 using equations

x1:32 + T (1) · x33:64 + T (4) · x65:96 = z1:32,

x33:64 + T (3) · x65:96 = z33:64,

x65:96 = z65:96.

(4.18)

As this multiplication is performed at the end of the signing, we know the output z,
but not the input x. This is the main difference compared to attacking the S matrix.

4.2.2.1 Attack on T (3)

To reveal T (3), we use the Attacks I, II as described for S, since we know the vector used
in multiplication:

T (3)︸︷︷︸
secret key

· z65:96︸ ︷︷ ︸
known

+ x33:64︸ ︷︷ ︸
unknown

= z33:64︸ ︷︷ ︸
known

. (4.19)

Unfortunately, we cannot use the final addition to determine the row indices in this case.
Instead, we use the right side of the Equation 4.19 and the fact that

32∑
j=1

(T
(3)
i,j · zj+65) + zi+32 = xi+32. (4.20)

80

4.2. Side-Channel Attack on the 32-bit Reference Implementation of the Rainbow

Similarly to the S matrix attack, we use Attack III to reveal elements from rows beginning
with zeroes. When T (3) is found, we can compute

x33:64 = T (3) · z65:96 + z33:64. (4.21)

4.2.2.2 Attack on T (4)

Attacking T (4) is performed in the same manner as attacking T (3), using equation

x1:32 + T (1) · x33:64︸ ︷︷ ︸
unknown

+ T (4)︸︷︷︸
secret key

· z65:96︸ ︷︷ ︸
known

= z1:32︸︷︷︸
known

. (4.22)

The submatrix T (4) is multiplied by a known vector z65:96. We use the right side z1:32 of
the Equation 4.22 for the row index determination.

4.2.2.3 Attack on T (1)

Attacking T (1) is performed in the same fashion as attacking T (3) and T (4):

x1:32 + T (1) · x33:64 + T (4) · z65:96 = z1:32,

x1:32︸︷︷︸
unknown

+ T (1)︸︷︷︸
secret key

·x33:64︸ ︷︷ ︸
known

= z1:32 + T (4) · z65:96︸ ︷︷ ︸
known

. (4.23)

The secret submatrix is multiplied by a known vector x33:64 computed using Equation 4.21.
The right side of the Equation 4.23 is used for row index determination.

4.2.3 Extraction of the Central Map F

There are two possible approaches to extraction of the central map F with knowledge of
S and T . The first one is extracting the central map F by eliminating T and S maps from
the public key P . The second approach finds the central map F via known Rainbow inputs
and outputs, using a system of linear equations. In this case, knowledge of the public key
is not needed. Enough input and output data should be obtained while attacking the S
and T maps.

4.2.4 Experimental Evaluation

We evaluate the proposed attack on a ChipWhisperer-Lite side-channel evaluation plat-
form with a 32-bit STM32F303 microcontroller based on ARM Cortex-M4 core as a target.
ChipWhisperer-Lite features an integrated 10-bit ADC with 105MS/s sampling rate and
uses a synchronous sampling technique [127] for measurements of the target power con-
sumption. We are attacking the implementation proposed in the NIST competition second
round, with random data generated by a controlling PC.

81

4. Asymmetric Cryptography

For side-channel attack evaluation, we use the success rate (see subsection 2.4.1), i.e.,
the expected probability of attack successfully distinguishing the correct subkey. The pre-
sented results are based on 33 independent experiments and further averaged over 32 ran-
dom subkey elements/rows.

Attack I targets a single 4-bit subkey and is directly applicable to non-zero subkeys
only as described in subsection 4.2.1. Its success rate is therefore based on attacking non-
zero subkeys only. Attack II is then used to distinguish between up to 32 matrix rows
revealed by Attack I. Subkeys which Attacks I and II fail to reveal are then discovered
using Attack III, which makes more precise predictions of a processed 32-bit word using
previously discovered subkeys.

Attacks I and II (both targeting 4-bit value) have a success rate of 0.75/0.95 using
approx. 280/475 power traces. Attack III has a success rate of 0.75/0.95 with one, three,
or seven other known subkeys (i.e., targeting eight, 16, or 32 bits) using approx. 150/240,
90/140, or 40/70 power traces, respectively.

Attack III exhibits a better success rate than Attacks I and II, which is expected thanks
to better signal-to-noise ratio given more precise power predictions.

4.2.5 Summary

In this section, we presented a side-channel attack on the Rainbow digital signature, NIST’s
third round candidate for post-quantum standard. We analyzed the 32-bit reference imple-
mentation and proposed a combined Correlation Power Analysis attack allowing extraction
of a full secret key. We evaluated the proposed attack on a 32-bit microcontroller with
ARM Cortex-M4 core and successfully extracted the secret key. Finally, we proposed an ex-
tension of a known masking scheme, that allows randomization of intermediate values used
in the signing process, including the non-linear part, with no significant time or memory
overhead.

4.3 Equivalent Keys as a Side-Channel Countermeasure
for Multivariate Quadratic Signatures

In this section, we propose a novel side-channel countermeasure for multivariate cryptog-
raphy based on private key randomization. We continue the work presented in [179] and
introduce the concept of equivalent private keys, i.e., a class of private keys with the same
public key. We propose a new private key to be generated prior to every signing. The
adversary would then be forced to target the whole class instead of a fixed private key,
making it difficult to mount a side-channel attack. We demonstrate our approach on the
Rainbow algorithm. Since the UOV is a special (single-layered) case of Rainbow, our work
is applicable to different multivariate cryptography algorithms as well.

82

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

4.3.1 Equivalent Key

The main idea of the equivalent key is to change the secret key SK into some other SK,
which is equivalent to the original one, i.e., SK and SK both have the same public key.
This equivalency was previously used for storage, computation, and randomness reduction,
where only the normal form of the key was generated [179]. Our countermeasure is based on
the generation of the equivalent key before each signing process. We therefore substituted
a fixed key with an equivalence class containing a huge number (as shown in Equation 4.40)
of different, but equivalent, keys.

In our work, the equivalent key can be derived from the original key using two linear
maps A and B, represented as matrices A and B, which change all three maps contained
in a secret key without changing their composition:

P = S ◦ F ◦ T,
P = S ◦ (A−1 ◦ A) ◦ F ◦ (B ◦B−1) ◦ T,
P = (S ◦ A−1) ◦ (A ◦ F ◦B) ◦ (B−1 ◦ T).

(4.24)

With this in mind, we define the secret key SK derived from SK as

SK = (S−1, F, T−1),

SK = (A ◦ S−1, A ◦ F ◦B, T−1 ◦B).
(4.25)

The pair (A,B) is called Gauss sustaining transformation, where the representing ma-
trices A and B cannot be chosen arbitrarily. They are composed with the central map F ,
which must maintain its special structure.

The necessary constraint is the invertibility of these matrices due to the signing process,
where the inverse central map must be computed. Therefore, A and B must be regular;
thus, det(A) ̸= 0 and det(B) ̸= 0. The compositions A◦S−1 and T−1 ◦B can be computed
simply as AS−1 and T−1B. The composition A ◦ F ◦ B is discussed in the following
subsubsections.

4.3.1.1 Composition A ◦ F

Let A : Fm → Fm,h 7→ A(h) = Ah, whereA ∈ Fm×m is a regular matrix. The composition
A ◦ F is then

(A ◦ F)(x) = A


f (v1+1)(x)
f (v1+2)(x)

...
f (n)(x)

 =


∑m

i=1A1,if
(v1+i)(x)∑m

i=1A2,if
(v1+i)(x)

...∑m
i=1Am,if

(v1+i)(x)

 , (4.26)

and ∀k ∈ {1, . . . ,m} :

[A ◦ F]k(x) =
m∑
i=1

Ak,i · f (v1+i)(x) =
m∑
i=1

Ak,i · (x⊺F(v1+i)x) = x⊺
m∑
i=1

(Ak,i ·F(v1+i))x. (4.27)

83

4. Asymmetric Cryptography

The composition is equivalent to a linear combination of F matrices. In the following
equation, we show how arbitrary A affects the structure of the central map:

m∑
i=1

Ak,i · F(v1+i) =
m∑
i=1

Ak,i ·

F
(v1+i)
1,1 F

(v1+i)
1,2 F

(v1+i)
1,3

0 F
(v1+i)
2,2 F

(v1+i)
2,3

0 0 0

 . (4.28)

To maintain the special structure for the first layer (k ∈ {1, . . . , o1}), as described in
Equation 4.7, we must fulfill the following restrictions:

m∑
i=1

Ak,i · F(v1+i)
1,3 = 0,

m∑
i=1

Ak,i · F(v1+i)
2,2 = 0,

m∑
i=1

Ak,i · F(v1+i)
2,3 = 0.

(4.29)

Since, ∀i ∈ O1 : F
(i)
1,3,F

(i)
2,2,F

(i)
2,3 are zero matrices, Equation 4.29 can be rewritten as

m∑
i=o1+1

Ak,i · F(v1+i)
1,3 = 0,

m∑
i=o1+1

Ak,i · F(v1+i)
2,2 = 0,

m∑
i=o1+1

Ak,i · F(v1+i)
2,3 = 0.

(4.30)

This restriction can be trivially satisfied by the following condition:

(∀k ∈ {1, . . . , o1})(∀i ∈ {o1 + 1, . . . ,m}) : Ak,i = 0. (4.31)

Regarding the second layer, the arbitrary A maintains its polynomial structure by itself,
and therefore, no further restrictions are necessary.

An applicable matrix A ∈ Fm×m is therefore

A =

(
A1,1 0
A2,1 A2,2

)
, (4.32)

where A1,1 ∈ Fo1×o1 ,A2,1 ∈ Fo2×o1 ,A2,2 ∈ Fo2×o2 . Matrix A must be regular; therefore,
A1,1 and A2,2 are arbitrary regular matrices and A1,2 is an (possibly singular) arbitrary
matrix.

From the matrix A, we deduce that the linear combination is performed separately in
layers (A1,1 and A2,2), and quadratic polynomials from the first layer can be combined into
the second layer (A2,1).

84

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

4.3.1.2 Composition F ◦B

Let B : Fn → Fn,x 7→ B(x) = Bx, where B ∈ Fn×n is a regular matrix. The composition
F ◦B is then

(F ◦B)(x) = F ◦ (Bx) =


f (v1+1)(Bx)
f (v1+2)(Bx)

...
f (n)(Bx)

 , (4.33)

and, ∀k ∈ {1, . . . ,m}:

[(F ◦B)]k(x) = f (v1+k)(Bx) = (Bx)⊺F(v1+k)Bx = x⊺(B⊺F(v1+k)B)x. (4.34)

This composition changes every quadratic polynomial separately. Before we consider
the restrictions on the matrix B, let us first introduce the following lemma.

Lemma 4.3.1. Every quadratic form can be represented as an upper triangular matrix.

Proof. Let q ∈ F[x] be a quadratic form represented by matrix Q, then U is an upper
triangular representation of q, where U is

∀i, j ∈ {1, . . . , n} : Ui,j =


Qi,i i = j,

Qi,j +Qj,i i < j,

0 otherwise.

(4.35)

Then,

q(x) = x⊺Qx =
∑

i,j∈{1,...,n}

Qi,jxixj =
∑

i∈{1,...,n}

Qi,ix
2
i +

∑
i,j∈{1,...,n}

i<j

(Qi,j +Qj,i)xixj = x⊺Ux.

(4.36)

Let : Fn×n → Fn×n;Q 7→ U be a function, where U is an upper triangular matrix, such
that ∀x ∈ Fn : x⊺Qx = x⊺Ux.

In Equation 4.37, we show how matrix B changes the structure of a polynomial in
the central map. We used the same partitioning of the matrix B as we used for the
matrix F(k). Size compatibility for the matrix multiplication is guaranteed thanks to the
symmetry of block sizes. We further applied the function , as it does not change the
concerned polynomial and it helps us with the wanted structure. It ensures the upper

85

4. Asymmetric Cryptography

triangular submatrices on the diagonal, which are required by the definition of Rainbow.

B =

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

 ,

k ∈ O1 : (B⊺F(k)B) =

F
′(k)
1,1 F

′(k)
1,2 0

0 0 0
0 0 0

 ,

k ∈ O2 : (B⊺F(k)B) =

F
′(k)
1,1 F

′(k)
1,2 F

′(k)
1,3

0 F
′(k)
2,2 F

′(k)
2,3

0 0 0

 .

(4.37)

Solving this system of equations with matrix B as a variable for arbitrary central map
F, where the right sides of the equations are zeroes, we obtain:

B =

B1,1 0 0
B2,1 B2,2 0
B3,1 B3,2 B3,3

 , (4.38)

where non-zero submatrices are arbitrary submatrices, except that matrix B must be
regular, and therefore, submatrices B1,1,B2,2,B3,3 must be regular.

For an insight into what is happening to the vector x (which elements are the variables
in the central map), we can partition x into three different types of variables: vinegar
variables of the first layer (xv

1 ∈ Fv1), oil variables of the first layer (xo
1 ∈ Fo1), and oil

variables of the second layer (xo
2 ∈ Fo2). If we apply matrix B to the vector x, we obtain:

Bx =

B1,1 0 0
B2,1 B2,2 0
B3,1 B3,2 B3,3

xv
1

xo
1

xo
2

 =

 B1,1x
v
1

B2,1x
v
1 +B2,2x

o
1

B3,1x
v
1 +B3,2x

o
1 +B3,3x

o
2

 . (4.39)

In this situation, the variables to solve are not defined only by vector x, but the vector
Bx. To be able to sign, it is necessary not to mix the vinegar variable with the oil variables
of each layer. At the beginning of the signing process, we used B1,1x

v
1 instead of xv

1. Vector
xv
1 is randomly generated, thus known. We can easily compute B1,1x

v
1. Next, the first layer

is solved, where we computed B2,1x
v
1+B2,2x

o
1 instead of xo

1. We can immediately substitute
B2,1x

v
1, which is already known. We still obtain a system of the linear equations that has

only variables of the vector xo
1. In the end, the second layer is solved. We can first

substitute B3,1x
v
1 +B3,2x

o
1, and again, we obtain only a system of linear equations. No oil

and vinegar variables (of the same layer) are mixed. This was only an insight into why
the inversion of the central map can be still computed. In the implementation, matrix B
is incorporated in the central map (as a generator of the equivalent key).

4.3.1.3 Analysis of an Equivalent Key

In this subsubsection, we discuss the basic properties of the equivalent key. We concentrate
only on equivalent keys that can be generated according to Equation 4.25, with the maps A

86

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

and B defined in Equation 4.32 and Equation 4.38. We start with the number of equivalent
keys, and we calculate entropy where applicable. Then, we state the benefits of our masking
scheme. For the analysis in this section, we considered two sets of Rainbow parameters:

◦ Ia (128-bit security): Fq = GF (16), v1 = 36, o1 = o2 = 32;

◦ Vc (256-bit security): Fq = GF (256), v1 = 96, o1 = 36 and o2 = 64.

We note that these parameters, while suggested in the NIST standardization process,
are probably already inadequate due to the recently presented attacks [18].

Lemma 4.3.2. Let Ml,s(Fq) = {l × s matrices over Fq} be a set. The cardinality of the
set is |Ml,s(Fq)| = ql·s.

Lemma 4.3.3. Let Mn(Fq) = {n × n matrices over Fq}, with the matrix multiplication,
be the full linear monoid. The order of the monoid is |Mn(Fq)| = qn

2
.

Lemma 4.3.4. Let GLn(Fq) = {n× n invertible matrices over Fq}, with the matrix mul-
tiplication, be the general linear group. The order is |GLn(Fq)| =

∏n−1
k=0(q

n − qk) =

qn
2
(q−n; q)n.

2

The proofs of these three lemmas are well known [165].

Theorem 4.3.5. The number of different equivalent keys, over a fixed secret key SK, is

qv1(v1+o1+o2)+2(o21+o1o2+o22)(q−v1 ; q)v1((q
−o1 ; q)o1)

2((q−o2 ; q)o2)
2. (4.40)

This is an exact number, where the left part q(...) describes the number of different combi-
nations of matrices A and B. The remaining part counts for the cases where A and B are
regular. For GF(16), its value is ≈ 0.7092, and for GF(256) it is ≈ 0.9805. This value is
dependent on the values v1, o1, o2, but it converges with these parameters extremely fast.
For GF(16), the difference between v1 = o1 = o2 = 10 and v1 = o1 = o2 = 1000 is less then
10−12.

Proof. (Number of different equivalent keys) We show that the number of equivalent keys
is the number of possible non-equal matrices A multiplied by the number of possible non-
equal matrices B. This holds because both matrices are applied to different parts of the
secret key (maps S and T), so they cannot interfere with each other, and they are both
generated independently. We discuss the number of keys for matrix A only, and the same
procedure can be applied to matrix B. Let A be the set of matrices with the structure
defined in Equation 4.32 and a regular matrix S ∈ GLm(Fq) be the representation of the
linear map S.

2q-Pochhammer symbol: (a; q)n :=
∏n−1

k=0(1 − aqk), n > 0, defined inter alia in [8]. For example: the
number of 10 × 10 regular matrices over GF(16) is |GL10(F16)| ≈ 0.9336 · 16100, where (16−10; 16)10 ≈
0.9336. Symbol (q−n, q)n denotes the ratio between regular matrices n×n and all matrices n×n over Fq.

87

4. Asymmetric Cryptography

First, we show that the lower bound of the number of equivalent keys generated by A
is equal to the cardinality of the set A. This is because a regular matrix S is multiplied
by regular matrices from the set A. Thus, two distinct matrices A,A′ ∈ A ⊂ GL cannot
generate the same product matrix:

∀A,A′ ∈ GLm(Fq) : A ̸= A′ =⇒ AS ̸= A′S. (4.41)

Therefore, each distinct matrix in A generates a different equivalent key; hence, the
cardinality of the set A is the lower bound of the number of different equivalent keys
generated by A.

Second, we show that the cardinality of the set A is also the upper bound of the number
of different equivalent keys generated by A, since every equivalent key can be reached by
a multiplication with a single A ∈ A. Let us examine a product of two matrices A,A′ ∈ A:

AA′ =

(
A1,1A

′
1,1 0

A2,1A
′
1,1 +A2,2A

′
2,1 A2,2A

′
2,2

)
. (4.42)

The matrix AA′ has the same structure as the matrices A and A′. On the diagonal,
we have the products of the elements of GL, which also result in an element of the GL, and
the submatrix [AA′]2,1 can be an arbitrary matrix, thus AA′ ∈ A. In other words, every
key reachable by subsequent multiplications with two matrices from A can be reached by
a single multiplication with some matrix from A:

(∀A,A′ ∈ A)(∃A′′ ∈ A) : A′(AS) = A′′S. (4.43)

Therefore, the upper bound of the number of equivalent keys generated by A is the size
of the set A.

The previous statements imply that the number of equivalent keys generated by A is
equal to the size of the set A. Every matrix A ∈ A has four parts: two submatrices from
GL, one from Mo1,o2(Fq), and a zero submatrix. All matrices are independent, so the total
number of matrices is the product of the numbers of different submatrices:

|GLo1(Fq)| · |GLo2(Fq)| · |Mo1,o2(Fq)| · 1 =

= q(o
2
1+o22+o1o2)(q−o1 ; q)o1(q

−o2 ; q)o2 .
(4.44)

The number of different matrices B can be computed in a similar fashion:

|GLv1(Fq)| · |GLo1(Fq)| · |GLo2(Fq)| · |Mv1,o1(Fq)| · |Mv1,o2(Fq)| · |Mo1,o2(Fq)| =
= q(v

2
1+o21+o22+v1o1+v1o2+o1o2)(q−v1 ; q)v1(q

−o1 ; q)o1(q
−o2 ; q)o2 .

(4.45)

By multiplying the results in Equation 4.44 and Equation 4.45, we obtain the total
number of equivalent keys, as stated in Equation 4.40.

The number of equivalent keys is approximately 169744 · 0.7097 ≈ 238976 and 25634208 ·
0.9805 ≈ 2273664 for the Ia and Vc parameters, respectively. If the matrices A and B are

88

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

generated from a uniform distribution, the entropy of the generated equivalent key for the
Ia and Vc parameters is ≈ 38976 Sh and ≈ 273664 Sh, respectively.

The beneficial property of an equivalent key scheme is an option to forget the original
key and keep only an equivalent key. We were able to generate an equivalent key from an
already-computed equivalent key. The equivalent key (or more of them) can be generated
and prepared at any time prior to the signing process. The signing process itself then has
no overhead.

4.3.2 Efficient Implementation

In subsection 4.3.1, we discuss the equivalent key defined by matrices A and B. However,
we propose choosing only a subset of these matrices with respect to:

◦ Calculation performance;

◦ Amount of fresh randomness necessary;

◦ Entropy of the generated equivalent key;

◦ Implementation size and simplicity;

◦ Total number of keys equivalent to each public key.

With respect to the aforementioned desires, we propose using the following submatrices
to generate the equivalent keys:

Mn :=


M =


1 m1 0 . . . 0
0 1 m2 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

mn 0 0 . . . 1

 | det(M) ̸= 0


, (4.46)

where m1, . . . ,mn ∈ Fq, and the condition for regularity is

det(M) ̸= 0 ⇐⇒
n∏

i=1

mi ̸= (−1)n+1. (4.47)

The equivalent key generator is a tuple (A,B) defined as

A :=

(
A(1) 0
0 A(2)

)
, B :=

B(1) 0 0
0 B(2) 0
0 0 B(3)

 , (4.48)

89

4. Asymmetric Cryptography

where A(1),B(2) ∈ Mo1 ,A
(2),B(3) ∈ Mo2 ,B

(1) ∈ Mv1 . The proposed generator form is
further justified in subsubsection 4.3.2.1. The generator matrices are defined as

Ak,l =


1 k = l,

ak (k ∈ {1, . . . , o1}) ∧ (l = |k + 1|o1),
ak (k ∈ {o1 + 1, . . . ,m}) ∧ (l = |k − o1 + 1|o2 + o1),

0 otherwise,

Bk,l =



1 k = l,

b
(1)
k (k ∈ {1, . . . , v1}) ∧ (l = |k + 1|v1),
b
(2)
k−v1

(k ∈ {v1 + 1, . . . , v2}) ∧ (l = |k − v1 + 1|o1 + v1),

b
(3)
k−v2

(k ∈ {v2 + 1, . . . , n}) ∧ (l = |k − v2 + 1|o2 + v2),

0 otherwise,

(4.49)

where |a|b := (a − 1 mod b) + 1 is the modulo operation with offset3. Matrices A and B
can be stored as vectors of their non-trivial values:

(a1, a2, . . . , am), (b
(1)
1 , . . . , b(1)v1

, b
(2)
1 , . . . , b(2)o1

, b
(3)
1 , . . . , b(3)o2

). (4.50)

For further analysis, in Equation 4.51, we show the probability that the randomly
generated matrix from the definition in Equation 4.46 (i.e., the matrix with generated
values m1, . . . ,mn) over Fq is regular. In Equation 4.51, we omit the set {1, . . . , n} in all
quantifiers ∀i ∈ {1, . . . , n} and ∃i ∈ {1, . . . , n} since it is always identical, and we write
only ∀i and ∃i for simplicity.

P(det(M) ̸= 0 | M ∈ Mn) =

= P

(
∃i : mi = 0 ∨

(
∀i : mi ̸= 0 ∧

n∏
i=1

mi ̸= (−1)n+1

))

= P (∃i : mi = 0) + P

(
∀i : mi ̸= 0 ∧

n∏
i=1

mi ̸= (−1)n+1

)

= 1− P(∀i : mi ̸= 0) + P

(
n∏

i=1

mi ̸= (−1)n+1
∣∣∣ ∀i : mi ̸= 0

)
· P(∀i : mi ̸= 0)

= 1−
(
q − 1

q

)n

+

(
q − 2

q − 1

)(
q − 1

q

)n

= 1−
(

1

q − 1

)(
q − 1

q

)n

.

(4.51)

The non-zero values of the submatrices in A and B are to be generated independently
from a uniform random distribution, so we can easily express the probability, e.g., a ran-

3E.g., it holds that |m|m = m and |m + 1|m = 1. Indexing from zero would result in using a regular
modulo operation instead.

90

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

domly generated matrix M32 over GF (16) is regular with probability 99.15% and matrix
M64 over GF (256) with probability 99.69%.

Using the regularity probability, we can express the cardinality of Mn. This can be
performed by multiplying the number of all possible matrices by the probability of each
matrix over Fq being regular:

|Mn| = qn − (q − 1)n−1. (4.52)

4.3.2.1 Justification of the Selected Generators

In this subsubsection, we justify the proposed form of our efficient equivalent key generators
with respect to the desires mentioned in subsection 4.3.2.

We propose the form of generators in Equation 4.46, i.e., the ones on the diagonal
and the only non-trivial elements adjacent to it, so that vector–matrix (and analogically,
matrix–matrix) multiplication can be efficiently performed as described by formula:

M ∈ Mn : M


g1
g2
...
gn

 = (I+ M̃)


g1
g2
...
gn

 =


g1
g2
...
gn

+


m1g2
m2g3
...

mng1

 . (4.53)

Based on Equation 4.53, the vector–matrix multiplication M · g can be performed
simply by copying the vector g to the result variable, then cyclically shifting the vector g
and adding an elementwise product of the vector g and the vector of non-trivial values of
the matrix M (as listed in Equation 4.50).

Next, we discuss a number of different equivalent keys for our efficient generators. This
is equal to the number of possible distinct linear maps of generators, in other words, the
number of different matrices that can be obtained by multiplying matrices in Mn by each
other. We believe that these matrices generate the whole group GLn for n > 2, but we
were not able to prove this claim in general4. Assuming that the following formula holds
over a fixed Fq and for every integer n > 2:

∀M ∈ GLn,∃k ∈ N,∃M1, . . . ,Mk ∈ Mn :
k∏

i=1

Mi = M

=⇒ card({matrices generated from Mn}) = ord(GLn),

(4.54)

the number of equivalent keys using the proposed efficient generators, with the possibility
of generating an equivalent key from another equivalent key, would be

N = qv
2
1+2o21+2o22(q−v1 ; q)v1(q

−o1 ; q)2o1(q
−o2 ; q)2o2 . (4.55)

4We managed to prove the claim for matrices 3× 3, 4× 4, 5× 5 over Z2, then for 3× 3, 4× 4 over Z3,
and also, for matrices 3× 3 over Z5 by brute force.

91

4. Asymmetric Cryptography

For parameters Ia and Vc, respectively, the number of transitively reachable equivalent
keys (i.e., generating the equivalent key from another equivalent key) would be approxi-
mately 165392 · 0.7092 ≈ 221567 and 25620000 · 0.9805 ≈ 2160000, respectively.

The number of possible distinct equivalent keys after one generating process is |Mv1| ·
|Mo1|2 · |Mo2|2; for parameters Ia and Vc, respectively, the number of possible equivalent
keys after one generation is approximately 2656 and 22368, respectively. Assuming the
equivalent key generators are sampled from a uniform distribution, the entropy of the
next-generated equivalent key is approximately 656 Sh and 2368 Sh, respectively. Given
this entropy, we believe that the probability of the signer using the same equivalent key
multiple times is negligible. The number of distinct equivalent keys is summarized in
Table 4.4.

Table 4.4: Summary of equivalent key variants.

Generator
Log2 of Number of Equivalent Keys

Single Generated Key Transitively Reachable
Ia Vc Ia Vc

General 38,976 273,664 38,976 273,664
Efficient 656 2368 21,567 160,000

We further discuss the number of distinct linear maps generated in equivalent keys, as
these are typical targets in a side-channel attack scenario (section 4.2, [129]). The number
of distinct maps S generated by the proposed efficient generator A over a single class of
equivalent keys is

qo
2
1+o22(q−o1 ; q)o1(q

−o2 ; q)o2 . (4.56)

For parameters Ia and Vc, respectively, the number of transitively reachable linear
maps S is approximately 162048 · 0.8716 ≈ 28192 and 2565392 · 0.9922 ≈ 243136, respectively.
After one generating process, the number of different linear maps S is |Mo1| · |Mo2|, that
is almost 2256 for the Ia parameters and almost 2800 for the Vc parameters.

Lastly, we discuss the required fresh randomness. The generators A and B defined in
Equation 4.32 and 4.38 use a quadratic number of random elements in regard to parameters
m and n. For Rainbow parameters Ia and Vc, respectively, this corresponds to ≈ 39 kb
and ≈ 274 kb of fresh randomness, respectively. The number of required random elements
is linear for our efficient generators defined in Equation 4.48, leaving us with only 656 bits
and 2368 bits of fresh randomness, respectively. This amount of randomness refers to the
case when the matrices A and B are successfully generated according to the requirements,
i.e., the generated matrices are regular5.

5The probability of the randomly generated matrices A and B being regular is 96 % for the Ia
parameters and 98.4 % for the Vc parameters.

92

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

4.3.2.2 Efficient Computation of Equivalent Keys

Compositions A · S−1 and T−1 ·B can be computed in the same way as the multiplication
in Equation 4.53.

The composition of A ◦ F , where A is represented as A in Equation 4.48, is:

∀k ∈ {1, . . . , o1} : [A ◦ F]k ↔ F(v1+k) + akF
(v1+|k+1|o1), (4.57)

∀k ∈ {o1 + 1, . . . ,m} : [A ◦ F]k ↔ F(v1+k) + akF
(v1+|k−o1+1|o2+o1). (4.58)

The composition of F ◦B, where B is represented as B in Equation 4.48, is

k ∈ {v1, . . . , n} : [F ◦B]k ↔ (B⊺F(k)B) =

=


(
(B(1))⊺F

(k)
1,1B

(1)
)

(B(1))⊺F
(k)
1,2B

(2) (B(1))⊺F
(k)
1,3B

(3)

0
(
(B(2))⊺F

(k)
2,2B

(2)
)

(B(2))⊺F
(k)
2,3B

(3)

0 0 0

 .
(4.59)

Upper triangular matrices
(
(B(1))⊺F

(k)
1,1B

(1)
)
and

(
(B(2))⊺F

(k)
2,2B

(2)
)
in Equation 4.59

can be efficiently evaluated as described in subsubsection 4.3.2.3. The remaining parts of
Equation 4.59 consist of matrix multiplications (B(u))⊺F

(k)
u,vB(v), where (u, v) ∈ {(1, 2),

(1, 3), (2, 3)}. This expression can be computed as:

[(B(u))⊺F(k)
u,vB

(v)]r,c =

=[F(k)
u,v]r,c + b

(u)
|r−1|s [F

(k)
u,v]|r−1|s,c + b

(v)
|c−1|w [F

(k)
u,v]r,|c−1|w + b

(u)
|r−1|sb

(v)
|c−1|w [F

(k)
u,v]|r−1|s,|c−1|w ,

(4.60)

where B(u) ∈ Ms, B
(v) ∈ Mw, and F

(k)
u,v ∈ Fs×w is an arbitrary matrix. If the elements

are stored sequentially by index k, the computation can be accelerated using word-level
parallelism and vector processing.

93

4. Asymmetric Cryptography

4.3.2.3 Algorithm for Upper Triangular Matrices’ Evaluation

Algorithm 4.1 Computation of [
(
(B(u))⊺F

(k)
u,uB(u)

)
]r,c.

input: matrix B(u) ∈ Ms as vector (b1, . . . , bs), u ∈ {1, 2}
upper triangular matrix F

(k)
u,u ∈ Fs×s, k ∈ O1 ∪O2

integers r, c ∈ {1, . . . , s}, where r ≤ c

output: element [
(
(B(u))⊺F

(k)
u,uB(u)

)
]r,c

1: Fi,j := [F
(k)
u,u]i,j,∀i, j ∈ {1, . . . , s} (for brevity)

2: m := c− r
3: r1 := |r − 1|s
4: c1 := |c− 1|s
5: t := Fr,c + br1bc1(r ̸= 1 ? Fr1,c1 : Fc1,r1)
6: if m ̸= s− 1 then
7: t := t+ br1(r ̸= 1 ? Fr1,c : Fc,s)
8: else if char(F) ̸= 2 then
9: t := t+ 2bsFs,s

10: end if
11: if m > 1 then
12: t := t+ bc1Fr,c1

13: else if m = 1 ∧ char(F) ̸= 2 then
14: t := t+ 2brFr,r

15: end if
16: return t

Algorithm 4.1 was deduced as described in the following text. First, we rewrote output(
(B(u))⊺F

(k)
u,uB(u)

)
, without writing free variables u and k, as (B⊺FB), where F is an

upper triangular matrix in Fs×s and B is a matrix from the setMs ⊂ Fs×s, which is defined
using the vector of its non-trivial values (b1, . . . , bs). Then,

[(B⊺FB)]r,c =


[B⊺FB]r,r r = c,

[B⊺FB]r,c + [B⊺FB]c,r r < c,

0 r > c.

(4.61)

By expanding matrix multiplication, we obtain

[B⊺FB]r,c = Fr,c + b|r−1|sF|r−1|s,c + b|c−1|sFr,|c−1|s + b|r−1|sb|c−1|sF|r−1|s,|c−1|s . (4.62)

Specifically, for r = c, we obtain

[B⊺FB]r,r = Fr,r + b|r−1|s(F|r−1|s,r + Fr,|r−1|s) + b2|r−1|sF|r−1|s,|r−1|s . (4.63)

94

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

One term of (F|r−1|s,r + Fr,|r−1|s) is zero, as matrix F is upper triangular and |r − 1|s ̸= r.
The second part of Equation 4.61 with the condition r < c is

[B⊺FB]r,c + [B⊺FB]c,r = Fr,c + b|r−1|s(F|r−1|s,c + Fc,|r−1|s)+

+ b|c−1|s(Fr,|c−1|s + F|c−1|s,r) + b|r−1|sb|c−1|s(F|r−1|s,|c−1|s + F|c−1|s,|r−1|s). (4.64)

In all sets of parentheses, there is at least one term equal to zero (note that F is an
upper triangular matrix), except for two cases. The exception is iff the indices are the
same. The first case is when |r − 1|s = c =⇒ c = r + s − 1. This condition can occur
only when r = 1 ∧ c = s:

[B⊺FB]1,s + [B⊺FB]s,1 = F1,s + 2bsFs,s + bs−1(F1,s−1 + Fs−1,1) + bsbs−1(Fs,s−1 + Fs−1,s) =

= F1,s + 2bsFs,s + bs−1F1,s−1 + bsbs−1Fs−1,s.

(4.65)

The second case is when r = |c− 1|s =⇒ c = r + 1:

[B⊺FB]r,r+1 + [B⊺FB]r+1,r =

=Fr,r+1 + b|r−1|s(F|r−1|s,r+1 + Fr+1,|r−1|s) + 2brFr,r + b|r−1|sbr(F|r−1|s,r + Fr,|r−1|s).
(4.66)

In the last parenthesis in Equation 4.64, there is no possibility of the same indices, i.e.
|r − 1|s = |c − 1|s, because r < c. In the case of char(F) = 2, we were able to skip the
computation of 2bsFs,s and 2brFr,r.

The result can be summarized as:

[(B⊺FB)]r,c =



Equation 4.63 r = c,

Equation 4.66 r = c− 1,

Equation 4.65 r = 1 ∧ c = s,

0 r > c,

Equation 4.64 otherwise.

(4.67)

Equation 4.67 for the condition r ≤ c can be rewritten as Algorithm 4.1.

4.3.3 Side-Channel Leakage Evaluation

We describe our key-vs.-key t-test methodology in subsubsection 4.3.3.1, and then, we
present our results in subsubsection 4.3.3.2. We used an attack-independent test vector
leakage assessment methodology (see section 2.7). We were not able to detect any statis-
tically significant leakage from the protected implementation.

4.3.3.1 Methodology

We implemented Rainbow with the proposed equivalent key scheme (using the unpro-
tected reference implementation) on a 32-bit STM32F303 microcontroller based on the

95

4. Asymmetric Cryptography

ARM Cortex-M4 core. To allow for a thorough and feasible side-channel evaluation of the
proposed countermeasure, we chose Rainbow parameters Fq = GF (16), v1 = o1 = o2 = 8
to shorten the signing algorithm runtime compared to the Ia or Vc variants. We used the
proposed efficient implementation of the equivalent keys scheme. The microcontroller was
mounted in a ChipWhisperer C308 stand-alone evaluation board powered by an external
5 V laboratory power supply and clocked by a 7.37 MHz crystal.

The embedded Rainbow implementation receives a random seed from a controlling PC,
which is then expanded using a linear congruential generator. The microcontroller then
performs multiple signings without any external communication. Based on the generated
pseudorandom numbers, the implementation generates the digests to be signed and also
chooses one of four predefined private keys. This way, the microcontroller signs multiple
randomly generated digests, each one using one of four randomly chosen private keys. The
randomly interleaved private keys are a necessary prerequisite for our leakage evaluation
methodology, as described later. When the signings are done, the microcontroller sends
a checksum of the signatures back to the controlling PC, and the whole process is re-
peated as many times as necessary. This approach allows for a significant speedup of the
measurement process.

Voltage drops over the core were amplified using the Langer EMV-Technik PA303
preamplifier and sampled using the Picoscope 6404D oscilloscope. A 10Ω shunt resistor
was used. The oscilloscope had a 25 MHz bandwidth limiter enabled, and the measurement
channel was set in DC 50 Ω mode (since the preamplifier acts like a DC blocker). The
sampling rate was 312 MS/s, in our case resulting in over 4 million samples per trace. The
measured traces were then decimated 1:10 to 31.2 MS/s to allow for a feasible evaluation
while maintaining a good signal-to-noise ratio [127].

The voltage was sampled during each signing, which lasted approximately 13.8 ms.
Each decimated power trace consisted of 430,560 samples. The unprotected and protected
implementations were evaluated independently. For the unprotected implementation, one
of the four original private keys was randomly chosen in every signing. For the protected
implementation, an equivalent key of one of the four original private keys was randomly
chosen, and the next equivalent key was generated from the previous one.

The side-channel leakage was then evaluated using a fixed-fixed t-test methodology
(see section 2.7). The measured power traces were partitioned into four groups based on
the original private key used during the signing. Welch’s t-statistic was then computed
between every two groups (six evaluations in total), in every sampling point independently.
The null hypothesis was that the two groups’ means are equal, i.e., the original keys are
indistinguishable by the mean power consumption. The hypothesis was rejected for high
values of the |t|-statistic according to the Student’s distribution and selected significance
level. In side-channel leakage evaluation, the threshold of 4.5 or 5 is typically considered
for the |t|-statistic, which must be further evaluated carefully with the possibility of both
positive and negative false results in mind.

96

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

(a) Unprotected.

(b) Protected.

Figure 4.1: Results of the t-tests. Each graph contains six overlaid curves. The t-value is
depicted on the vertical axis, and time is on the horizontal axis.

4.3.3.2 Results

Figure 4.1 depicts the results of the leakage evaluations. Figure 4.1a depicts the results
of the evaluation on the unprotected implementation, where every t-test was performed
using approximately 40,000 power traces. Figure 4.1b depicts the results for the protected
implementation, where every t-test was performed using approximately one million power
traces. Each graph contains six overlaid curves, one for each key-vs.-key t-test. As can be
seen in Figure 4.1a, many peaks reach t-value of 200 and some even exceed 300, in contrast
to Figure 4.1b, where the threshold of 4.5 (marked by red horizontal lines) is not surpassed
by the protected implementation. Therefore, we did not detect any statistically significant
side-channel leakage from our protected implementation during the signing.

4.3.4 Time Evaluation

We evaluated the time performance on three different platforms:

◦ The STM32F303 ARM microcontroller (a single-core Cortex-M4);

◦ A Raspberry Pi 3 B+ single-board computer equipped with the Broadcom BCM2837
ARM microprocessor (a four-core Cortex-A53);

97

4. Asymmetric Cryptography

Table 4.5: Time overhead comparison.

Implementation Unprotected Protected Slowdown

STM32F303 13.8 ms 13.8 + 33.28 =
47.08 ms1

3.41×

RPi 7.72 ms 7.72 + 19.87 =
27.59 ms1

3.57×

PC 116 µs 116 + 420 = 536 µs1 4.62×

Countermeasure
from [154]

162, 821 cycles 539, 338 cycles 3.31×

1 Our equivalent key can be precomputed any time prior to the signing, and then, the signing itself has

no overhead.

◦ A desktop computer equipped with an Intel Core i5-2400 processor (four cores).

On the STM32F303 microcontroller, we used the same parameters as for the leakage
assessment, i.e., v1 = o1 = o2 = 8, where the secret key size is 1776 bytes. On the
Raspberry Pi and desktop computer, we used the parameters v1 = o1 = o2 = 32, where the
secret key size is 95,520 bytes. The Rainbow algorithm runtime was measured including
random number generating using a linear congruent generator, excluding hashing. All the
implementations were compiled with GCC without any optimizations enabled.

On the STM32F303 microcontroller, the time to sign a document was 13.8 ms, and the
average time to generate the equivalent key was 33.28 ms. The whole signing including the
equivalent key generation was 3.41-times slower compared to the unsecured signing.

On the Raspberry Pi 3 single-board computer, the average time to sign a document
was 7.72 ms, and the average time to generate the equivalent key was 19.87 ms. The
whole signing including the equivalent key generation was 3.57-times slower compared to
the unsecured signing.

On the desktop computer, the average time to sign a document was 116 µs, and the
average time to generate the equivalent key was 420 µs. The whole signing including the
equivalent key generation was 4.62-times slower compared to the unsecured signing.

For comparison, the randomization countermeasure of Rainbow proposed in [154] re-
sulted in 3.31-times slower signing. Table 4.5 summarizes the time overhead comparison.
However, our equivalent key can be precomputed any time prior to the signing, and then,
the signing itself has no overhead.

Figure 4.2 shows the calculation time of the individual generation components. Det is
the time of the (A,B) tuple generation including the regularity verification. T−1 ◦B, A◦S−1

and A ◦ F correspond to the calculation of T−1B, AS−1, and A ◦F , respectively. The time
of F◦B diag refers to Algorithm 4.1, and F◦B norm refers to Equation 4.60. The time of
the signing itself is also included for comparison.

98

4.3. Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic
Signatures

(a) STM32F303 ARM microcontroller, v1 = o1 = o2 = 8.

(b) Raspberry Pi 3 single-board computer, v1 = o1 = o2 = 32.

0

50

100

150

200

250

300

Signing Det T⁻¹∘B F∘B diag F∘B norm A∘S⁻¹ A∘F

T
im

e
[μ

s]

(c) Desktop computer, v1 = o1 = o2 = 32.

Figure 4.2: Execution times of the components in equivalent key generation.

99

4. Asymmetric Cryptography

4.3.5 Memory Evaluation

From the memory perspective, the generating of the equivalent key is not an in-place
algorithm due to the matrix multiplication in Equation 4.59. As the key structure is the
same as for the unprotected version, we further describe only the extra variables needed
for the generation of the equivalent key. The generating of the equivalent key does not
need a dynamically allocated memory (as we assumed predefined parameters), and the
biggest heap variable is the (A,B) two-tuple itself, which only takes (n+m) · log2(q) bits,
where log2(q) is the size of an element of Fq in bits. Other local variables are negligible.
Additionally, one can split each part of the mask to be applied separately. This can further
reduce extra memory needs to max(n,m) · log2(q) bits.

The implementation submitted to NIST uses a special case of the secret key, where
matrices S and T are specifically selected for memory effectiveness. After the generating
of the equivalent key, this special format is no longer possible. As a consequence, we
obtained a slightly larger secret key, where the size difference was (v21 +2o21 +2o22) · log2(q)
bits. For the Ia parameters, the difference was 2560 bytes, resulting in a key that was
approximately 2.6% larger. Our countermeasure also requires a minor modification of the
submitted implementation.

Fresh random bits are needed during the generation and even during the signing process.
The amount of randomness is deterministic, except the case where singular matrices are
generated and need to be generated again. For the equivalent key generation, the mode
(most common value) of the required bits of randomness is (n +m) · log2(q), and for the
signing process, it is v1 · log2(q) (excluding the hashing salt). The mode is also a minimum
number of required bits.

4.3.6 Summary

In this section, we proposed a side-channel countermeasure for multivariate quadratic sig-
nature schemes. We used the Rainbow signature scheme as our use case. However, the
proposed countermeasure is applicable to other schemes such as unbalanced oil and vinegar
as well (UOV is equivalent to a single-layer Rainbow).

We proposed an equivalent private key scheme, in which a precomputed randomly
generated equivalent key is used for signing instead of the original fixed private key. We
examined the scheme in general and described its restrictions and security properties from
the theoretical point of view. These include the number of different equivalent keys or
reached entropy. We showed that the number of equivalent keys is enormous, and given
that, we believe the probability of using the same equivalent key twice is negligible in
practice. This efficiently prevents the attacker from mounting attacks such as differential
or correlation power analysis.

We further proposed an efficient equivalent key scheme. Our scheme requires signif-
icantly less fresh randomness (bounded by the O(n)) than the general equivalent key
(bounded by the O(n2)) and allows for faster and more efficient computation. We de-

100

4.4. Summary

scribed its properties, similar to the general case. We described an efficient algorithm for
the generation of the equivalent key.

We evaluated our proposed countermeasure using attack-independent side-channel leak-
age assessment with one million power traces, and we were not able to detect any statisti-
cally significant information leakage. Lastly, we described the time and memory require-
ments of the countermeasure. The overhead of our countermeasure is comparable to other
relevant countermeasures. Moreover, our equivalent key can be precomputed any time
prior to the signing, and then, there is no overhead at the time of signing.

4.4 Summary

In this chapter, side-channel security of the post-quantum candidate for digital signa-
ture Rainbow was discussed. Even though the Rainbow algorithm was proven unsecure
in 2022 [18], the presented work is, with some changes, applicable to other multivariate-
quadratic algorithms, such as UOV, as well. An attack on the reference 32-bit software
implementation of Rainbow was presented and evaluated in section 4.2 and is thoroughly
summarized in subsection 4.2.5. A novel countermeasure for multivariate-quadratic signa-
ture schemes, based on a concept of equivalent keys and applicable in both software and
hardware implementations, was presented, discussed, and evaluated in section 4.3 and is
thoroughly summarized in subsection 4.3.6.

101

Chapter 5

Conclusion

Side-channel analysis poses a serious threat to the security of embedded devices. Since
approximately 25 years ago, when its basics were laid, it has become a widely recognized
and studied research field. Unlike classical cryptanalysis, side-channel attacks exploit im-
plementation weaknesses of cryptography, both symmetric and asymmetric. Both software
and hardware implementations are endangered and various countermeasures against such
attacks must be implemented, with overall cost in mind.

In Chapter 2, the current state of the art in the field of passive non-invasive side-channel
analysis was presented. Attacks based on various principles were described, including non-
profiled and profiled attacks using classical statistics, as well as those based on machine
learning. Various categories of countermeasures were also presented, followed by methods
of overcoming these at the additional computational cost. Metrics related to side-channel
security were also described. Finally, leakage assessment methodologies were presented.

Countermeasures tailored for FPGAs for protection against side-channel attacks were
proposed in Chapter 3. A combination of masking and hiding countermeasures, based on
dynamic logic reconfiguration, previously proposed for PRESENT, was modified for AES
and Serpent. The result was thoroughly evaluated, including effects of specific countermea-
sures and their combinations. Furthermore, a novel approach for improving side-channel
security of AES, PRESENT, and Serpent hardware implementations using high-level syn-
thesis was proposed and evaluated.

Asymmetric cryptography is discussed in Chapter 4, namely the multivariate-quadratic
signature scheme Rainbow. The signature scheme was a candidate for the post-quantum
standard in the NIST competition until its third round. A side-channel attack on the refer-
ence 32-bit implementation of Rainbow was proposed and evaluated. Finally, a novel coun-
termeasure for multivariate-quadratic signature schemes, based on the concept of equivalent
private keys, was proposed and thoroughly discussed and evaluated. Unfortunately, the
Rainbow scheme was found to be insecure in 2022 [18], and the focus of the cryptographic
community has moved back to algorithms such as Unbalanced Oil and Vinegar (UOV).
Luckily, since the Rainbow algorithm is a generalization of UOV, the work presented in
Chapter 4 is applicable to UOV and its different variants as well.

103

5. Conclusion

5.1 Summary of Contributions

In section 3.2, we described and evaluated side-channel attack-protected AES and Serpent
implementations, based on an approach previously proposed for PRESENT by Sasdrich
et al. [148]. The countermeasures comprise both hiding and masking approaches and
can be easily deployed in both FPGA and ASIC designs. We tailored the approach to
a Xilinx Spartan-6 FPGA, and we described an approach to secure a generic permutation-
substitution network cipher. We evaluated the latency and area utilization for different
reconfiguration strategies. We demonstrated the effectiveness of the implemented counter-
measures by evaluating side-channel leakage using one million power traces, with different
combinations of countermeasures in place, demonstrating their practical contribution. We
have not detected any exploitable side-channel leakage in our fully protected implementa-
tions.

In section 3.3, we proposed a first side-channel attack-resistant design of PRESENT,
AES, and Serpent using high-level synthesis. We showed that the high-level synthesis is
well capable of competing with the traditional RTL design when it comes to unprotected
implementations, and we evaluated the effectiveness and efficiency of the protected imple-
mentations as well. We showed that the area/latency overhead brought in by high-level
synthesis is reasonable considering its other advantages and compared to other similarly
protected implementations. We performed a side-channel leakage assessment using one
million power traces, showing that our proposed masking scheme successfully conceals the
first-order leakage of PRESENT implementation. However, we were able to detect leakage
of AES and Serpent implementations, which is consistent with the results presented in
the previous section, where different combinations of countermeasures were examined. We
discussed the consequences of the system-level approach and high-level synthesis and the
related limitations.

In section 4.2, we extended a previously published attack to the 32-bit Rainbow signa-
ture scheme implementation, submitted to the NIST post-quantum standardization compe-
tition. We overcame several practical obstacles, and we described our attack. We evaluated
the proposed attack on a 32-bit microcontroller with an ARM Cortex-M4 core and suc-
cessfully extracted the secret key. The work aimed to contribute to the standardization
process.

In section 4.3, we proposed a countermeasure against side-channel attacks applicable
to multivariate-quadratic signature schemes such as Rainbow. We described a concept of
equivalent private keys and proposed an approach to randomize these in order to avoid
exploitable side-channel leakage. We provided a formal analysis of the proposed equivalent
keys, showing a number of different keys and their entropy. Then we proposed a more
efficient implementation of the countermeasure with respect to calculation performance,
the amount of fresh randomness necessary, the entropy of the generated equivalent key,
implementation size and simplicity, and the total number of keys equivalent to each public
key. We evaluated the proposed countermeasures regarding both time/memory require-
ments and side-channel leakage. We were not able to detect any statistically significant
side-channel leakage from our protected implementation using one million measurements.

104

5.2. Future Work

All the results were presented and discussed within the scientific community. The
works contained in this thesis were published in three conference proceedings and four
journal articles. Also, the presented works have already received a considerable amount of
citations.

5.2 Future Work

The author of the dissertation thesis suggests following future work:

◦ We suggest implementation of more complex glitch-resistant side-channel counter-
measures for FPGA using high-level synthesis. Domain oriented masking for high-
level synthesis was already proposed in [145], where our original research is cited.

◦ More research on system-level countermeasures for hardware implementations, using
high-level synthesis, would be beneficial. Specifically, countermeasures for AI accel-
erators, such as those generated by HLS4ML [53], are necessary. These are typically
employed in cloud FPGA platforms, where IP theft using side-channel attacks poses
a serious threat.

◦ The side-channel attack on the Rainbow signature scheme could be extended to other
Rainbow variants, such as cyclic Rainbow. However, since the Rainbow signature
scheme was found to be insecure, this is not of great interest anymore. Therefore,
the attack could instead be evaluated on the original UOV scheme.

◦ Our countermeasure for multivariate quadratic signatures, implemented and evalu-
ated on the Rainbow, could be tailored for other signature schemes, such as UOV
and its variants.

105

Bibliography

[1] Mehmet Şahin Açikkapi, Fatih Özkaynak, and Ahmet Bedri Özer. Side-channel
analysis of chaos-based substitution box structures. IEEE Access, 7:79030–79043,
2019.

[2] Ali Afzali-Kusha, Makoto Nagata, Nishath K Verghese, and David J Allstot. Sub-
strate noise coupling in soc design: Modeling, avoidance, and validation. Proceedings
of the IEEE, 94(12):2109–2138, 2006.

[3] Juan Ai, Zhu Wang, Xinping Zhou, and Changhai Ou. Improved wavelet transform
for noise reduction in power analysis attacks. In 2016 IEEE International Conference
on Signal and Image Processing (ICSIP), pages 602–606. IEEE, 2016.

[4] Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, and Didier Moyart. Power
analysis, what is now possible... In International Conference on the Theory and
Application of Cryptology and Information Security, pages 489–502. Springer, 2000.

[5] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of des and aes,
secure against some attacks. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 309–318. Springer, 2001.

[6] Amir Alipour, Athanasios Papadimitriou, Vincent Beroulle, Ehsan Aerabi, and David
Hély. On the performance of non-profiled differential deep learning attacks against
an aes encryption algorithm protected using a correlated noise generation based
hiding countermeasure. In 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 614–617. IEEE, 2020.

[7] Mythri Alle, Keshavan Varadarajan, Alexander Fell, Nimmy Joseph, Saptarsi Das,
Prasenjit Biswas, Jugantor Chetia, Adarsh Rao, SK Nandy, and Ranjani Narayan.
Redefine: Runtime reconfigurable polymorphic asic. ACM Transactions on Embedded
Computing Systems (TECS), 9(2):1–48, 2009.

107

Bibliography

[8] George E. Andrews and Bruce Berndt. Ramanujan’s Lost Notebook. Springer New
York, 2005. doi:10.1007/0-387-28124-x.

[9] Jean-Philippe Aumasson and Daniel J Bernstein. Siphash: a fast short-input prf.
In Progress in Cryptology-INDOCRYPT 2012: 13th International Conference on
Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings 13, pages
489–508. Springer, 2012.

[10] Moshe Avital, Hadar Dagan, Osnat Keren, and Alexander Fish. Randomized multi-
topology logic against differential power analysis. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 23(4):702–711, 2014.

[11] Karthik Baddam and Mark Zwolinski. Divided backend duplication methodology for
balanced dual rail routing. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 396–410. Springer, 2008.

[12] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 457–485. Springer, 2015.

[13] Timo Bartkewitz and Kerstin Lemke-Rust. Efficient template attacks based on prob-
abilistic multi-class support vector machines. In International Conference on Smart
Card Research and Advanced Applications, pages 263–276. Springer, 2012.

[14] Lejla Batina, Benedikt Gierlichs, and Kerstin Lemke-Rust. Comparative evaluation
of rank correlation based dpa on an aes prototype chip. In International Conference
on Information Security, pages 341–354. Springer, 2008.

[15] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-
Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual information analysis: a
comprehensive study. Journal of Cryptology, 24(2):269–291, 2011.

[16] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The simon and speck lightweight block ciphers. In Proceedings
of the 52nd annual design automation conference, pages 1–6, 2015.

[17] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas.
Deep learning for side-channel analysis and introduction to ascad database. Journal
of Cryptographic Engineering, 10(2):163–188, 2020.

[18] Ward Beullens. Breaking rainbow takes a weekend on a laptop. Cryptology ePrint
Archive, Report 2022/214, 2022. https://ia.cr/2022/214.

[19] Ward Beullens and Bart Preneel. Field lifting for smaller uov public keys. In Inter-
national Conference on Cryptology in India, pages 227–246. Springer, 2017.

108

https://doi.org/10.1007/0-387-28124-x
https://ia.cr/2022/214

Bibliography

[20] Régis Bevan and Erik Knudsen. Ways to enhance differential power analysis. In
International Conference on Information Security and Cryptology, pages 327–342.
Springer, 2002.

[21] Eli Biham, Ross Anderson, and Lars Knudsen. Serpent: A new block cipher proposal.
In International Workshop on Fast Software Encryption, pages 222–238. Springer,
1998.

[22] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Ri-
jmen. Higher-order threshold implementations. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 326–343.
Springer, 2014.

[23] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rij-
men. A more efficient aes threshold implementation. In International Conference on
Cryptology in Africa, pages 267–284. Springer, 2014.

[24] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Ri-
jmen. Trade-offs for threshold implementations illustrated on aes. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 34(7):1188–
1200, 2015.

[25] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
Present: An ultra-lightweight block cipher. In International workshop on crypto-
graphic hardware and embedded systems, pages 450–466. Springer, 2007.

[26] Fraidy Bouesse, Marc Renaudin, and Gilles Sicard. Improving dpa resistance of
quasi delay insensitive circuits using randomly time-shifted acknowledgment signals.
In Vlsi-Soc: From Systems To Silicon, pages 11–24. Springer, 2007.

[27] Fraidy Bouesse, Gilles Sicard, and Marc Renaudin. Path swapping method to im-
prove dpa resistance of quasi delay insensitive asynchronous circuits. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 384–398.
Springer, 2006.

[28] G Fraidy Bouesse, Marc Renaudin, Sophie Dumont, and Fabien Germain. Dpa on
quasi delay insensitive asynchronous circuits: Formalization and improvement. In
Design, Automation and Test in Europe, pages 424–429. IEEE, 2005.

[29] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In International workshop on cryptographic hardware and embedded
systems, pages 16–29. Springer, 2004.

[30] Frank Markham Brown. Boolean reasoning: the logic of Boolean equations. Springer
Science & Business Media, 2012.

109

Bibliography

[31] Nicolas Bruneau, Charles Christen, Jean-Luc Danger, Adrien Facon, and Sylvain
Guilley. Security evaluation against side-channel analysis at compilation time. In
International Conference on Algebra, Codes and Cryptology, pages 129–148. Springer,
2019.

[32] Marco Bucci, Luca Giancane, Raimondo Luzzi, and Alessandro Trifiletti. Three-
phase dual-rail pre-charge logic. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 232–241. Springer, 2006.

[33] Marco Bucci, Raimondo Luzzi, Michele Guglielmo, and Alessandro Trifiletti. A
countermeasure against differential power analysis based on random delay insertion.
In 2005 IEEE International Symposium on Circuits and Systems, pages 3547–3550.
IEEE, 2005.

[34] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural networks
with data augmentation against jitter-based countermeasures. In International Con-
ference on Cryptographic Hardware and Embedded Systems, pages 45–68. Springer,
2017.

[35] Giovanni Camurati, Aurélien Francillon, and François-Xavier Standaert. Under-
standing screaming channels: From a detailed analysis to improved attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 358–401,
2020.

[36] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and Aurélien
Francillon. Screaming channels: When electromagnetic side channels meet radio
transceivers. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 163–177, 2018.

[37] Cécile Canovas and Jessy Clédière. What do s-boxes say in differential side channel
attacks? IACR Cryptol. ePrint Arch., 2005:311, 2005.

[38] David Canright and Lejla Batina. A very compact “perfectly masked” s-box for aes.
In International Conference on Applied Cryptography and Network Security, pages
446–459. Springer, 2008.

[39] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. Towards sound
approaches to counteract power-analysis attacks. In Annual International Cryptology
Conference, pages 398–412. Springer, 1999.

[40] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 13–28.
Springer, 2002.

[41] Byong-Deok Choi, Kyung Eun Kim, Ki-Seok Chung, and Dong Kyue Kim. Sym-
metric adiabatic logic circuits against differential power analysis. ETRI journal,
32(1):166–168, 2010.

110

Bibliography

[42] Omar Choudary and Markus G Kuhn. Efficient template attacks. In International
Conference on Smart Card Research and Advanced Applications, pages 253–270.
Springer, 2013.

[43] Selina Chu, Eamonn Keogh, David Hart, and Michael Pazzani. Iterative deepening
dynamic time warping for time series. In Proceedings of the 2002 SIAM International
Conference on Data Mining, pages 195–212. SIAM, 2002.

[44] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential power
analysis in the presence of hardware countermeasures. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 252–263. Springer, 2000.

[45] Joan Daemen and Vincent Rijmen. The block cipher rijndael. In International Con-
ference on Smart Card Research and Advanced Applications, pages 277–284. Springer,
1998.

[46] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced en-
cryption standard. Springer Science & Business Media, 2013.

[47] Saptarsi Das and SK Nandy. A flexible crypto-system based upon the redefine poly-
morphic asic architecture. Defence Science Journal, 62(1):25–31, 2012.

[48] Nicolas Debande, Youssef Souissi, M Abdelaziz El Aabid, Sylvain Guilley, and Jean-
Luc Danger. Wavelet transform based pre-processing for side channel analysis. In
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture Work-
shops, pages 32–38. IEEE, 2012.

[49] Bert den Boer, Kerstin Lemke, and Guntram Wicke. A dpa attack against the
modular reduction within a crt implementation of rsa. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 228–243. Springer, 2002.

[50] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In International Conference on Applied Cryptography and Network Security,
pages 164–175. Springer, 2005.

[51] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Ben-
jamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan Tran, et al.
Fast inference of deep neural networks in fpgas for particle physics. Journal of In-
strumentation, 13(07):P07027, 2018.

[52] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gre-
gor Seiler, and Damien Stehlé. Crystals-dilithium: Algorithm specifications and
supporting documentation. Submission to the NIST’s post-quantum cryptography
standardization process, 35, 2019.

111

Bibliography

[53] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo Jindar-
iani, Nhan Tran, Luca P Carloni, Giuseppe Di Guglielmo, Philip Harris, Jeffrey
Krupa, et al. hls4ml: An open-source codesign workflow to empower scientific low-
power machine learning devices. arXiv preprint arXiv:2103.05579, 2021.

[54] Yunsi Fei, Qiasi Luo, and A Adam Ding. A statistical model for dpa with novel al-
gorithmic confusion analysis. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 233–250. Springer, 2012.

[55] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang. Falcon: Fast-fourier lattice-based compact signatures over ntru. Submission
to the NIST’s post-quantum cryptography standardization process, 36(5), 2018.

[56] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain. Affine
masking against higher-order side channel analysis. In International Workshop on
Selected Areas in Cryptography, pages 262–280. Springer, 2010.

[57] Philippe Gaubert and Akinobu Teramoto. Carrier mobility in field-effect transistors.
Different Types of Field-Effect Transistors: Theory and Applications, pages 2–25,
2017.

[58] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual informa-
tion analysis. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 426–442. Springer, 2008.

[59] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based attack on a
masked implementation of aes. In 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 106–111. IEEE, 2015.

[60] Dennis RE Gnad, Jonas Krautter, Mehdi B Tahoori, Falk Schellenberg, and Amir
Moradi. Remote electrical-level security threats to multi-tenant fpgas. IEEE Design
& Test, 37(2):111–119, 2020.

[61] Dennis RE Gnad, Fabian Oboril, Saman Kiamehr, and Mehdi B Tahoori. Analysis
of transient voltage fluctuations in fpgas. In 2016 International Conference on Field-
Programmable Technology (FPT), pages 12–19. IEEE, 2016.

[62] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing method-
ology for side-channel resistance validation. In NIST non-invasive attack testing
workshop, volume 7, pages 115–136, 2011.

[63] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order. In Pro-
ceedings of the 2016 ACM Workshop on Theory of Implementation Security, pages
3–3, 2016.

112

Bibliography

[64] Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for reconfig-
urable devices. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 33–48. Springer, 2011.

[65] Hendra Guntur, Jun Ishii, and Akashi Satoh. Side-channel attack user reference ar-
chitecture board sakura-g. In Consumer Electronics (GCCE), 2014 IEEE 3rd Global
Conference on, pages 271–274. IEEE, 2014.

[66] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Applications of machine learn-
ing techniques in side-channel attacks: a survey. Journal of Cryptographic Engineer-
ing, 10(2):135–162, 2020.

[67] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. A theoretical study of
kolmogorov-smirnov distinguishers. In International Workshop on Constructive Side-
Channel Analysis and Secure Design, pages 9–28. Springer, 2014.

[68] Annelie Heuser and Michael Zohner. Intelligent machine homicide. In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages 249–264.
Springer, 2012.

[69] Ekawat Homsirikamol and Kris Gaj. Can high-level synthesis compete against a
hand-written code in the cryptographic domain? a case study. In 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14), pages 1–8.
IEEE, 2014.

[70] Yohei Hori, Toshihiro Katashita, Akihiko Sasaki, and Akashi Satoh. Sasebo-giii: A
hardware security evaluation board equipped with a 28-nm fpga. In The 1st IEEE
Global Conference on Consumer Electronics 2012, pages 657–660. IEEE, 2012.

[71] Paul Horowitz, Winfield Hill, and Ian Robinson. The art of electronics, volume 2.
Cambridge university press Cambridge, 1989.

[72] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and
Joos Vandewalle. Machine learning in side-channel analysis: a first study. Journal
of Cryptographic Engineering, 1(4):293, 2011.

[73] Gerardus TM Hubert. Current source for cryptographic processor, August 4 2009.
US Patent 7,571,492.

[74] Stanislav Jeřábek, Jan Schmidt, Martin Novotný, and Vojtěch Mǐskovský. Dummy
rounds as a dpa countermeasure in hardware. In 2018 21st Euromicro Conference
on Digital System Design (DSD), pages 523–528. IEEE, 2018.

[75] Zhenghong Jiang, Steve Dai, G Edward Suh, and Zhiru Zhang. High-level synthesis
with timing-sensitive information flow enforcement. In 2018 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

113

Bibliography

[76] Zhenghong Jiang, Hanchen Jin, G Edward Suh, and Zhiru Zhang. Designing secure
cryptographic accelerators with information flow enforcement: A case study on aes.
In Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6,
2019.

[77] Norman L Johnson, Adrienne W Kemp, and Samuel Kotz. Univariate discrete dis-
tributions, volume 444. John Wiley & Sons, 2005.

[78] Mabin Joseph, Gautham Sekar, and R Balasubramanian. Side channel analysis of
speck. Journal of Computer Security, 28(6):655–676, 2020.

[79] Najeh Kamoun, Lilian Bossuet, and Adel Ghazel. Correlated power noise genera-
tor as a low cost dpa countermeasures to secure hardware aes cipher. In 2009 3rd
International Conference on Signals, Circuits and Systems (SCS), pages 1–6. IEEE,
2009.

[80] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
press, 2020.

[81] Ayesha Khalid, Goutam Paul, and Anupam Chattopadhyay. High level synthesis for
symmetric key cryptography. In Domain Specific High-Level Synthesis for Crypto-
graphic Workloads, pages 51–90. Springer, 2019.

[82] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar sig-
nature schemes. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 206–222. Springer, 1999.

[83] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual
international cryptology conference, pages 388–397. Springer, 1999.

[84] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

[85] ST Choden Konigsmark, Deming Chen, and Martin DF Wong. High-level synthesis
for side-channel defense. In 2017 IEEE 28th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 37–44. IEEE, 2017.

[86] Boris Köpf and David Basin. An information-theoretic model for adaptive side-
channel attacks. In Proceedings of the 14th ACM conference on Computer and com-
munications security, pages 286–296, 2007.

[87] Sotiris B Kotsiantis, I Zaharakis, P Pintelas, et al. Supervised machine learning:
A review of classification techniques. Emerging artificial intelligence applications in
computer engineering, 160(1):3–24, 2007.

114

Bibliography

[88] Jonas Krautter, Dennis RE Gnad, Falk Schellenberg, Amir Moradi, and Mehdi B
Tahoori. Active fences against voltage-based side channels in multi-tenant fpgas. In
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–8. IEEE, 2019.

[89] Takaya Kubota, Kota Yoshida, Mitsuru Shiozaki, and Takeshi Fujino. Deep learning
side-channel attack against hardware implementations of aes. Microprocessors and
Microsystems, page 103383, 2020.

[90] Thanh-Ha Le, Jessy Clédière, Cécile Canovas, Bruno Robisson, Christine Servière,
and Jean-Louis Lacoume. A proposition for correlation power analysis enhancement.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages
174–186. Springer, 2006.

[91] Thanh-Ha Le, Jessy Clédière, Christine Servière, and Jean-Louis Lacoume. Noise
reduction in side channel attack using fourth-order cumulant. IEEE Transactions on
Information Forensics and Security, 2(4):710–720, 2007.

[92] Kerstin Lemke-Rust and Christof Paar. Gaussian mixture models for higher-order
side channel analysis. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 14–27. Springer, 2007.

[93] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis attack:
an approach based on machine learning. International Journal of Applied Cryptog-
raphy, 3(2):97–115, 2014.

[94] Liran Lerman, Romain Poussier, Olivier Markowitch, and François-Xavier Standaert.
Template attacks versus machine learning revisited and the curse of dimensionality
in side-channel analysis: extended version. Journal of Cryptographic Engineering,
8(4):301–313, 2018.

[95] Oleksiy Lisovets, David Knichel, Thorben Moos, and Amir Moradi. Let’s take it
offline: Boosting brute-force attacks on iphone’s user authentication through sca.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 496–
519, 2021.

[96] Hongying Liu, Guoyu Qian, Satoshi Goto, and Yukiyasu Tsunoo. Aes key recov-
ery based on switching distance model. In 2010 Third International Symposium on
Electronic Commerce and Security, pages 218–222. IEEE, 2010.

[97] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking crypto-
graphic implementations using deep learning techniques. In International Conference
on Security, Privacy, and Applied Cryptography Engineering, pages 3–26. Springer,
2016.

115

Bibliography

[98] Houssem Maghrebi, Olivier Rioul, Sylvain Guilley, and Jean-Luc Danger. Compar-
ison between side-channel analysis distinguishers. In International Conference on
Information and Communications Security, pages 331–340. Springer, 2012.

[99] Badruddoja Majumder, Sakib Hasan, Mesbah Uddin, and Garrett S Rose. Chaos
computing for mitigating side channel attack. In 2018 IEEE international symposium
on hardware oriented security and trust (HOST), pages 143–146. IEEE, 2018.

[100] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business Media,
2008.

[101] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attacking
masked aes hardware implementations. In International workshop on cryptographic
hardware and embedded systems, pages 157–171. Springer, 2005.

[102] Zdenek Martinasek, Lukas Malina, and Krisztina Trasy. Profiling power analysis at-
tack based on multi-layer perceptron network. In Computational Problems in Science
and Engineering, pages 317–339. Springer, 2015.

[103] Zdenek Martinasek and Vaclav Zeman. Innovative method of the power analysis.
Radioengineering, 22(2):586–594, 2013.

[104] James L Massey. Guessing and entropy. In Proceedings of 1994 IEEE International
Symposium on Information Theory, page 204. IEEE, 1994.

[105] Robert Matthews. On the derivation of a “chaotic” encryption algorithm. Cryptolo-
gia, 13(1):29–42, 1989.

[106] Matthew Mayhew and Radu Muresan. On-chip nanoscale capacitor decoupling archi-
tectures for hardware security. IEEE Transactions on Emerging Topics in Computing,
2(1):4–15, 2014.

[107] Matthew Mayhew and Radu Muresan. An overview of hardware-level statisti-
cal power analysis attack countermeasures. Journal of Cryptographic Engineering,
7(3):213–244, 2017.

[108] Nele Mentens, Benedikt Gierlichs, and Ingrid Verbauwhede. Power and fault analysis
resistance in hardware through dynamic reconfiguration. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 346–362. Springer, 2008.

[109] Thomas S Messerges. Securing the aes finalists against power analysis attacks. In
International Workshop on Fast Software Encryption, pages 150–164. Springer, 2000.

[110] Thomas S Messerges. Using second-order power analysis to attack dpa resistant soft-
ware. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 238–251. Springer, 2000.

116

Bibliography

[111] Thomas S Messerges, Ezzat A Dabbish, and Robert H Sloan. Examining smart-card
security under the threat of power analysis attacks. IEEE transactions on computers,
51(5):541–552, 2002.

[112] Yong Moon and Deog-Kyoon Jeong. An efficient charge recovery logic circuit. IEICE
transactions on electronics, 79(7):925–933, 1996.

[113] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-resistant masking revisited. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 256–292, 2019.

[114] Thorben Moos, Felix Wegener, and Amir Moradi. Dl-la: Deep learning leakage
assessment. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 552–598, 2021.

[115] Amir Moradi. Advances in side-channel security. Habilitation, Ruhr-Universität
Bochum, 2015.

[116] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Push-
ing the limits: A very compact and a threshold implementation of aes. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
pages 69–88. Springer, 2011.

[117] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Standaert.
Leakage detection with the x2-test. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 209–237, 2018.

[118] Radu Muresan and Stefano Gregori. Protection circuit against differential power
analysis attacks for smart cards. IEEE Transactions on Computers, 57(11):1540–
1549, 2008.

[119] Miguel Angel Murillo-Escobar, César Cruz-Hernández, Fausto Abundiz-Pérez, and
Rosa Martha López-Gutiérrez. Implementation of an improved chaotic encryption
algorithm for real-time embedded systems by using a 32-bit microcontroller. Micro-
processors and Microsystems, 45:297–309, 2016.

[120] National Institute of Standards and Technology. Advanced encryption standard. In
Federal Information Processing Standards Publication 197, 2001.

[121] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In International conference on
information and communications security, pages 529–545. Springer, 2006.

[122] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implemen-
tation of nonlinear functions in the presence of glitches. Journal of Cryptology,
24(2):292–321, 2011.

117

Bibliography

[123] Daniel H Noronha, Bahar Salehpour, and Steven JE Wilton. Leflow: Enabling flex-
ible fpga high-level synthesis of tensorflow deep neural networks. In FSP Workshop
2018; Fifth International Workshop on FPGAs for Software Programmers, pages
1–8. VDE, 2018.

[124] Matúš Olekšák and Vojtěch Mǐskovský. Correlation power analysis of siphash. In
2022 25th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS), pages 84–87. IEEE, 2022.

[125] Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical
second-order dpa attacks for masked smart card implementations of block ciphers.
In Cryptographers’ Track at the RSA Conference, pages 192–207. Springer, 2006.

[126] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. A
side-channel analysis resistant description of the aes s-box. In International workshop
on fast software encryption, pages 413–423. Springer, 2005.

[127] Colin O’Flynn and Zhizhang Chen. Synchronous sampling and clock recovery of
internal oscillators for side channel analysis and fault injection. Journal of Crypto-
graphic Engineering, 5(1):53–69, 2015.

[128] Sanjay Pant. Design and Analysis of Power Distribution Networks in VLSI Circuits.
PhD thesis, The University of Michigan, 2008.

[129] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. Side-channel at-
tacks on post-quantum signature schemes based on multivariate quadratic equations.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 500–
523, 2018.

[130] Bruce B Pedersen. Programmable logic device with improved security, August 28
2012. US Patent 8,255,702.

[131] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Cyclicrainbow–a
multivariate signature scheme with a partially cyclic public key. In International
Conference on Cryptology in India, pages 33–48. Springer, 2010.

[132] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni.
The curse of class imbalance and conflicting metrics with machine learning for side-
channel evaluations. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(1):1–29, 2019.

[133] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang,
and San Ling. Side-channel resistant crypto for less than 2,300 ge. Journal of
Cryptology, 24(2):322–345, 2011.

118

Bibliography

[134] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A
formal security proof. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 142–159. Springer, 2013.

[135] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of second
order differential power analysis. IEEE Transactions on computers, 58(6):799–811,
2009.

[136] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Mea-
sures and counter-measures for smart cards. In Smart Card Programming and Secu-
rity, pages 200–210. Springer, 2001.

[137] Jan M Rabaey, Anantha P Chandrakasan, and Borivoje Nikolić. Digital integrated
circuits: a design perspective, volume 7. Pearson education Upper Saddle River, NJ,
2003.

[138] Jan M.. Rabaey, Anantha P Chandrakasan, and Borivoje Nikolić. Digital integrated
circuits: a design perspective. Pearson Education, Incorporated., 2003.

[139] Pqcrainbow.org. Online. URL: https://www.pqcrainbow.org/.

[140] Chethan Ramesh, Shivukumar B Patil, Siva Nishok Dhanuskodi, George Provelen-
gios, Sébastien Pillement, Daniel Holcomb, and Russell Tessier. Fpga side channel
attacks without physical access. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 45–52. IEEE,
2018.

[141] Girish B Ratanpal, Ronald D Williams, and Travis N Blalock. An on-chip signal
suppression countermeasure to power analysis attacks. IEEE Transactions on De-
pendable and Secure Computing, 1(3):179–189, 2004.

[142] Alin Razafindraibe, Michel Robert, and Philippe Maurine. Improvement of dual rail
logic as a countermeasure against dpa. In 2007 IFIP International Conference on
Very Large Scale Integration, pages 270–275. IEEE, 2007.

[143] Christian Rechberger and Elisabeth Oswald. Practical template attacks. In Inter-
national Workshop on Information Security Applications, pages 440–456. Springer,
2004.

[144] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[145] Rajat Sadhukhan, Sayandeep Saha, and Debdeep Mukhopadhyay. Shortest path to
secured hardware: Domain oriented masking with high-level-synthesis. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 223–228. IEEE, 2021.

119

https://www.pqcrainbow.org/

Bibliography

[146] Pradeep Kumar Sana and M Satyam. An energy efficient secure logic to provide re-
sistance against differential power analysis attacks. In 2010 International Symposium
on Electronic System Design, pages 61–65. IEEE, 2010.

[147] Pascal Sasdrich, René Bock, and Amir Moradi. Threshold implementation in soft-
ware. In International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 227–244. Springer, 2018.

[148] Pascal Sasdrich, Amir Moradi, Oliver Mischke, and Tim Güneysu. Achieving side-
channel protection with dynamic logic reconfiguration on modern fpgas. In 2015
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pages 130–136. IEEE, 2015.

[149] Laurent Sauvage, Sylvain Guilley, Jean-Luc Danger, Yves Mathieu, and Maxime
Nassar. Successful attack on an fpga-based wddl des cryptoprocessor without place
and route constraints. In 2009 Design, Automation & Test in Europe Conference &
Exhibition, pages 640–645. IEEE, 2009.

[150] Falk Schellenberg, Dennis RE Gnad, Amir Moradi, and Mehdi B Tahoori. An inside
job: Remote power analysis attacks on fpgas. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1111–1116. IEEE, 2018.

[151] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 495–513.
Springer, 2015.

[152] Tobias Schneider, Amir Moradi, and Tim Güneysu. Robust and one-pass paral-
lel computation of correlation-based attacks at arbitrary order. In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages 199–
217. Springer, 2016.

[153] Adi Shamir. Protecting smart cards from power analysis with detachable power
supplies, January 14 2003. US Patent 6,507,913.

[154] Kyung-Ah Shim, Cheol-Min Park, and Yoo-Jin Baek. Lite-rainbow: Lightweight
signature schemes based on multivariate quadratic equations and their secure imple-
mentations. In Alex Biryukov and Vipul Goyal, editors, Progress in Cryptology –
INDOCRYPT 2015, pages 45–63, Cham, 2015. Springer International Publishing.

[155] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[156] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-Porisini.
Security, privacy and trust in internet of things: The road ahead. Computer networks,
76:146–164, 2015.

120

Bibliography

[157] Bernard W Silverman. Density Estimation for Statistics and Data Analysis, vol-
ume 26. CRC Press, 1986.

[158] Petr Socha. hls-crypto. URL: https://github.com/petrsocha/hls-crypto.

[159] Youssef Souissi, M Abdelaziz Elaabid, Nicolas Debande, Sylvain Guilley, and Jean-
Luc Danger. Novel applications of wavelet transforms based side-channel analysis.
In Non-Invasive Attack Testing Workshop, 2011.

[160] François-Xavier Standaert. Introduction to side-channel attacks. In Secure integrated
circuits and systems, pages 27–42. Springer, 2010.

[161] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel security
evaluations. In International Conference on Smart Card Research and Advanced
Applications, pages 65–79. Springer, 2018.

[162] François-Xavier Standaert, Benedikt Gierlichs, and Ingrid Verbauwhede. Partition
vs. comparison side-channel distinguishers: An empirical evaluation of statistical
tests for univariate side-channel attacks against two unprotected cmos devices. In
International Conference on Information Security and Cryptology, pages 253–267.
Springer, 2008.

[163] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A formal practice-oriented
model for the analysis of side-channel attacks. IACR e-print archive, 134(2006):2,
2006.

[164] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Annual international conference
on the theory and applications of cryptographic techniques, pages 443–461. Springer,
2009.

[165] D.A. Suprunenko, K.A. Hirsch, and American Mathematical Society. Matrix Groups.
Translations of mathematical monographs. American Mathematical Society, 1976.
URL: https://books.google.cz/books?id=5wnvAAAAMAAJ.

[166] Benjamin Timon. Non-profiled deep learning-based side-channel attacks with sensi-
tivity analysis. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, pages 107–131, 2019.

[167] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and differen-
tial cmos logic with signal independent power consumption to withstand differential
power analysis on smart cards. In Proceedings of the 28th European solid-state circuits
conference, pages 403–406. IEEE, 2002.

[168] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure dpa
resistant asic or fpga implementation. In Proceedings Design, Automation and Test
in Europe Conference and Exhibition, volume 1, pages 246–251. IEEE, 2004.

121

https://github.com/petrsocha/hls-crypto
https://books.google.cz/books?id=5wnvAAAAMAAJ

Bibliography

[169] Carlos Tokunaga and David Blaauw. Securing encryption systems with a switched
capacitor current equalizer. IEEE Journal of Solid-State Circuits, 45(1):23–31, 2009.

[170] Elena Trichina, Tymur Korkishko, and Kyung Hee Lee. Small size, low power,
side channel-immune aes coprocessor: design and synthesis results. In International
Conference on Advanced Encryption Standard, pages 113–127. Springer, 2004.

[171] Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was here: The first
step towards explainability of neural networks in profiled side-channel analysis. In
International Workshop on Constructive Side-Channel Analysis and Secure Design,
pages 175–199. Springer, 2020.

[172] Jasper GJ van Woudenberg, Marc F Witteman, and Bram Bakker. Improving dif-
ferential power analysis by elastic alignment. In Cryptographers’ Track at the RSA
Conference, pages 104–119. Springer, 2011.

[173] Nicolas Veyrat-Charvillon and François-Xavier Standaert. Mutual information anal-
ysis: how, when and why? In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 429–443. Springer, 2009.

[174] Jason Waddle and David Wagner. Towards efficient second-order power analysis. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages
1–15. Springer, 2004.

[175] CarolynWhitnall and Elisabeth Oswald. A comprehensive evaluation of mutual infor-
mation analysis using a fair evaluation framework. In Annual Cryptology Conference,
pages 316–334. Springer, 2011.

[176] Carolyn Whitnall and Elisabeth Oswald. A fair evaluation framework for compar-
ing side-channel distinguishers. Journal of Cryptographic Engineering, 1(2):145–160,
2011.

[177] Carolyn Whitnall, Elisabeth Oswald, and Luke Mather. An exploration of the
kolmogorov-smirnov test as a competitor to mutual information analysis. In In-
ternational Conference on Smart Card Research and Advanced Applications, pages
234–251. Springer, 2011.

[178] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert. The myth of
generic dpa. . . and the magic of learning. In Cryptographers’ Track at the RSA
Conference, pages 183–205. Springer, 2014.

[179] Christopher Wolf and Bart Preneel. Equivalent keys in multivariate quadratic public
key systems. Journal of Mathematical Cryptology, 4(4):375–415, 2011. URL: https:
//doi.org/10.1515/jmc.2011.004, doi:doi:10.1515/jmc.2011.004.

122

https://doi.org/10.1515/jmc.2011.004
https://doi.org/10.1515/jmc.2011.004
https://doi.org/doi:10.1515/jmc.2011.004

Bibliography

[180] Xilinx. Spartan-6 libraries guide for hdl designs. URL: https:

//www.xilinx.com/support/documentation/sw \protect\penalty\z@manuals/
xilinx14 \protect\penalty\z@5/spartan6 \protect\penalty\z@hdl.pdf.

[181] Xilinx. Vivado design suite user guide: high-level synthesis (ug902), 2018.

[182] Lu Zhang, Wei Hu, Armaiti Ardeshiricham, Yu Tai, Jeremy Blackstone, Dejun Mu,
and Ryan Kastner. Examining the consequences of high-level synthesis optimizations
on power side-channel. In 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1167–1170. IEEE, 2018.

[183] Mark Zhao and G Edward Suh. Fpga-based remote power side-channel attacks. In
2018 IEEE Symposium on Security and Privacy (SP), pages 229–244. IEEE, 2018.

[184] Nianhao Zhu, Yujie Zhou, and Hongming Liu. Counteracting leakage power analysis
attack using random ring oscillators. In Proceedings of 2013 International Conference
on Sensor Network Security Technology and Privacy Communication System, pages
74–77. IEEE, 2013.

123

https://www.xilinx.com/support/documentation/sw_\protect \penalty \z@ manuals/xilinx14_\protect \penalty \z@ 5/spartan6_\protect \penalty \z@ hdl.pdf
https://www.xilinx.com/support/documentation/sw_\protect \penalty \z@ manuals/xilinx14_\protect \penalty \z@ 5/spartan6_\protect \penalty \z@ hdl.pdf
https://www.xilinx.com/support/documentation/sw_\protect \penalty \z@ manuals/xilinx14_\protect \penalty \z@ 5/spartan6_\protect \penalty \z@ hdl.pdf

Reviewed Publications of the Author
Presented in This Thesis

[A.1] Petr Socha, Vojtěch Mǐskovský and Martin Novotný. A Comprehensive Survey on
the Non-Invasive Passive Side-Channel Analysis. Sensors, 22(21):3607, 2022.

[A.2] Petr Socha, Jan Brejńık, Stanislav Jeřábek, Martin Novotný and Nele Mentens.
Dynamic Logic Reconfiguration Based Side-Channel Protection of AES and Serpent.
In 2019 22nd Euromicro Conference on Digital System Design (DSD), pages 277-
282. IEEE, 2019.

The paper has been cited 2 times, in:

◦ Harcha, G.; Introduction d’aléas dans les architectures matérielles pour une contribution à la sécurisation
de chiffreurs AES dans un contexte IoT; Doctoral thesis, 2021.

◦ Wittke, Ch.; Investigation of the effects of layout variants on side channels of accelerators for cryptographic
operations; Doctoral thesis, 2021.

[A.3] Petr Socha, Jan Brejńık, Josep Balasch, Martin Novotný and Nele Mentens.
Side-channel countermeasures utilizing dynamic logic reconfiguration: Protecting
AES/Rijndael and Serpent encryption in hardware. Microprocessors and Microsys-
tems, 78:103208, 2020.

The paper has been cited 2 times, in:

◦ Sepúlveda, J.; Secure Cryptography Integration: NoC-Based Microarchitectural Attacks and Countermea-
sures; Network-on-Chip Security and Privacy, pp. 153 - 179, 2021. ISBN 978-3-030-69131-8.

◦ Das, N.; Panchanathan, A.; SD-SHO: Security-dominated finite state machine state assignment technique
with a satisfactory level of hardware optimization; IET Computers and Digital Techniques, vol. 15, no. 5,
pp. 372 - 392, 2021. ISSN 1751-8601.

[A.4] Petr Socha and Martin Novotný. Towards High-Level Synthesis of Polymorphic
Side-Channel Countermeasures. In 2020 23rd Euromicro Conference on Digital
System Design (DSD), pages 193-199. IEEE, 2020.

The paper has been cited 2 times, in:

◦ Sadhukhan, R.; Saha, S.; Mukhopadhyay, D.; Shortest Path to Secured Hardware: Domain Oriented Masking
with High-Level-Synthesis; 2021 58TH ACM/IEEE Design Automation Conference (DAC), pp. 223 - 228,
2021. ISSN 0738-100X.

125

Reviewed Publications of the Author Presented in This Thesis

◦ Bran, C.; Flores, D.; Hernández, C.; Cryptography model to secure IoT device endpoints, based on polymor-
phic cipher OTP; 2022 IEEE 40th Central America and Panama Convention (CONCAPAN), 2022. ISBN
978-1-7281-6715-2.

[A.5] Petr Socha, Vojtěch Mǐskovský and Martin Novotný. High-level synthesis, cryptog-
raphy, and side-channel countermeasures: A comprehensive evaluation. Micropro-
cessors and Microsystems, 104311, 2021.

The paper has been cited 2 times, in:

◦ Koufopoulou, A. A.; Development of hardware countermeasures for embedded systems security using High-
Level Synthesis; Master’s thesis, 2022.

◦ Koufopoulou, A.; Xevgeni, K.; Papadimitriou, A.; Psarakis, M.; Hely, D.; Security and Reliability Evaluation
of Countermeasures implemented using High-Level Synthesis; 2022 IEEE 28th International Symposium on
On-line Testing and Robust System Design (IOLTS 2022), 2022. ISSN 1942-9398.

[A.6] David Pokorný, Petr Socha and Martin Novotný. Side-channel attack on Rainbow
post-quantum signature. In 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1-4. IEEE, 2021.

The paper has been cited 5 times, in:

◦ Aulbach, T.; Kovats, T.; Krämer, J.; Marzougui, S.; Recovering Rainbow’s Secret Key with a First-Order
Fault Attack; Progress in Cryptology - AFRICACRYPT 2022: 13th International Conference on Cryptology
in Africa, AFRICACRYPT 2022, 2022.

◦ Jin, X.; Katsis, C.; Sang, F.; Sun, J.; Kundu, A.; Kompella, R.; Edge Security: Challenges and Issues;
arXiv:2206.07164, 2022.

◦ Gupta, N.; Jati, A.; Chattopadhyay, A.; Jha, G.; Lightweight Hardware Accelerator for Post-Quantum
Digital Signature CRYSTALS-Dilithium; Cryptology ePrint Archive, 2022.

◦ Zhi, Q.; Jiang, X.; Zhang, H.; Zhou, Z.; Ren, J.; Huang, T.; An Anti-Physical Attack Scheme of ARX
Lightweight Algorithms for IoT Applications; Computer Systems Science and Engineering, 2023. ISSN 0267-
6192.

◦ Aulbach, T.; Campos, F.; Krämer, J.; Samardjiska, S.; Stöttinger, M.; Separating Oil and Vinegar with a
Single Trace; Cryptology ePrint Archive, 2023.

[A.7] David Pokorný, Petr Socha and Martin Novotný. Equivalent Keys: Side-Channel
Countermeasure for Post-Quantum Multivariate Quadratic Signatures. Electronics,
11(21):3607, 2022.

126

Remaining Reviewed Publications of the
Author

[A.8] Petr Socha, Vojtěch Mǐskovský, Hana Kubátová and Martin Novotný. Optimization
of Pearson correlation coefficient calculation for DPA and comparison of different
approaches. In 2017 IEEE 20th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS), pages 184-189. IEEE, 2017.

The paper has been cited 14 times, in:

◦ Wei, Y.; Zhang, Y.; Tong, W.; Form factors of modeling design language with improved entropy weight based
on Kaisen engineering; Revista de la Facultad de Ingenieria, vol. 32, pp. 357 - 363, 2017. ISSN 0798-4065.

◦ Liu, Y. J.; Zhao, Y. Q.; He, J. J.; Liu, A. Q.; Xin, R. S.; SCCA: Side-Channel Correlation Analysis for
Detecting Hardware Trojan; Proceedings of 2017 11th IEEE International Conference on Anti-Counterfeiting,
Security, and Identification (ASID), pp. 196 - 200, 2017. ISBN 978-1-5386-0533-2. ISSN 2163-5048.

◦ Nascimento, J. F. O.; Estudo de preços de energia no mercado spot e futuros no mibel; Master’s thesis, 2017.

◦ Shakhari, S.; Verma, A. K.; Ghosh, D.; Bhar, K. K.; Banerjee, I.; Diverse Water Quality Data Pattern Study
of the Indian River Ganga: Correlation and Cluster Analysis; 2019 17th International Conference on ICT
and Knowledge Engineering (ICT&KE), pp. 93 - 99, 2019. ISBN 978-1-7281-3209-9. ISSN 2157-0981.

◦ Bos, S.; Secure Machine Learning for Privacy Preserving Genetic Disease Identification; Master’s thesis,
2019.

◦ Randolph, M.; Diehl, W.; Power Side-Channel Attack Analysis: A Review of 20 Years of Study for the
Layman; Cryptography, vol. 4, no. 2, 2020.

◦ Garcia, L. G.; Molina, R. S.; Crespo, M. L.; Carrato, S.; Ramponi, G.; Cicuttin, A.; Morales, I. R.;
Perez, H.; Muon-Electron Pulse Shape Discrimination for Water Cherenkov Detectors Based on FPGA/SoC;
Electronics, vol. 10, no. 3, 2021.

◦ Kaushal, A.; Alexander, R.; Rao, P.T.; Prakash, J.; Dasgupta, K.; Artificial neural network, Pareto opti-
mization, and Taguchi analysis for the synthesis of single-walled carbon nanotubes; Carbon Trends, vol. 2,
2021. ISSN 2667-0569.

◦ Rastoceanu, F.; Rughinis, R.; Ciocirlan, S.; Enache, M.; Sensor-Based Entropy Source Analysis and Valida-
tion for Use in IoT Environments; Electronics, vol. 10, no. 10, 2021.

◦ Blackstone, J.; Using Blinking to Mitigate Passive Side Channel Attacks and Fault Attacks; Doctoral thesis,
2021.

◦ Abdelhadi, A. M. S.; Sha, E.; Bannon, C.; Steenland, H.; Moshovos, A.; Noema: Hardware-Efficient Tem-
plate Matching for Neural Population Pattern Detection; MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 522 - 534, 2021.

◦ Nematirad, R.; Pahwa, A.; Solar Radiation Forecasting Using Artificial Neural Networks Considering Feature
Selection; 2022 IEEE Kansas Power and Energy Conference (KPEC 2022), 2022.

127

Remaining Reviewed Publications of the Author

◦ Pham, K. H.; Tran, T. H.; Nguyen, T. P.; Pham, C. K.; An Efficient Masking Method for AES Using Tower
Fields; 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE), 2022. ISBN;
978-1-6654-9745-9.

◦ Saini, A.; Tsokanos, A.; Kirner, R.; CryptoQNRG: a new framework for evaluation of cryptographic strength
in quantum and pseudorandom number generation for key-scheduling algorithms; The Journal of Supercom-
puting, 2023. ISSN 1573-0484.

[A.9] Petr Socha, Vojtěch Mǐskovský, Hana Kubátová and Martin Novotný. Correlation
Power Analysis Distinguisher Based on the Correlation Trace Derivative. In 2018
21st Euromicro Conference on Digital System Design (DSD), pages 565-568. IEEE,
2018.

The paper has been cited 4 times, in:

◦ Wang, M.; Huang, K.; Wang, Yi; Wu, Z.; Du, Z.; A novel side-channel analysis for physical-domain security
in cyber-physical systems; International Journal of Distributed Sensor Networks, vol. 15, no. 8, 2019. ISSN
1550-1477.

◦ Randolph, M.; Diehl, W.; Power Side-Channel Attack Analysis: A Review of 20 Years of Study for the
Layman; Cryptography, vol. 4, no. 2, 2020.

◦ Blackstone, J.; Using Blinking to Mitigate Passive Side Channel Attacks and Fault Attacks; Doctoral thesis,
2021.

◦ Zonios, C.; Tenentes, V.; REVOLVER: A Zero-Step Execution Emulation Framework for Mitigating Power
Side-Channel Attacks on ARM64; 2022 IEEE 28th International Symposium on On-line Testing and Robust
System Design (IOLTS 2022), 2022. ISSN 1942-9398.

[A.10] Petr Socha, Jan Brejńık and Matěj Bart́ık. Attacking AES implementations using
correlation power analysis on ZYBO Zynq-7000 SoC board. In 2018 7th Mediter-
ranean Conference on Embedded Computing (MECO), pages 1-4. IEEE, 2018.

The paper has been cited 10 times, in:

◦ De Los Reyes, E.M.; Sison, A.M.; Medina, R.P.; Modified AES cipher round and key schedule; Indonesian
Journal of Electrical Engineering and Informatics, vol. 7, pp. 29 - 36, 2019. ISSN 2089-3272.

◦ Gui, Y.; Tamore, S.; Siddiqui, A.; Saqib, F.; A Key Update Scheme for Side-Channel Attack Mitigation;
2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT, IoT and
AI (IEEE HONET-ICT 2019), pp. 187 - 188, 2019.

◦ Prinetto, P.; Roascio, G.; Hardware Security, Vulnerabilities, and Attacks: A Comprehensive Taxonomy;
Proceedings of the Fourth Italian Conference on Cyber Security (ITASEC 2020), vol. 2597, pp. 177 - 189,
2020. ISSN 1613-0073.

◦ Reifler, M.; Zollinger, M.; Embedded Secure Boot Test Suite; Bachelor’s thesis, 2020.

◦ Reynaud, V.; Accès sécurisé aux ressources de test IEEE 1687 et aux crypto-processeurs légers dans le
contexte des IoT; Doctoral thesis, 2021.

◦ Mozipo, A. T.; Acken, J. M.; Power Side Channel Attack of AES FPGA Implementation with Experimental
Results using Full Keys; 2021 IEEE International Conference on Design & Test of Integrated Micro &
Nano-Systems (DTS), 2021. ISBN 978-1-6654-2542-1.

◦ Hafeez, M.; Hazzazi, M.; Tariq, H.; Aljaedi, A.; Javed, A.; Alharbi, Adel R.; A Low-Overhead Countermea-
sure against Differential Power Analysis for AES Block Cipher; Applied Sciences, vol. 11, no. 21, 2021.

◦ Trautmann, J.; Teich, J.; Wildermann, S.; Characterization of Side Channels on FPGA-based Off-The-Shelf
Boards against Automated Attacks; 2022 IEEE 30th International Symposium On Field-Programmable
Custom Computing Machines (FCCM 2022), pp. 168 - 176, 2022. ISSN 2576-2613.

◦ Bergstedt, M. A.; Malware Detection Using Electromagnetic Side-Channel Analysis; Air Force Institute of
Technology, Wright-Patterson Air Force Base, Ohio, 2022.

◦ Talaki, E.; A memory hierarchy protected against side-channel attacks; Doctoral thesis, 2022.

128

Remaining Reviewed Publications of the Author

[A.11] Petr Socha, Vojtěch Mǐskovský and Martin Novotný. SICAK: An open-source SIde-
Channel Analysis toolKit. In 2019 8th Workshop on Trustworthy Manufacturing
and Utilization of Secure Devices (TRUDEVICE). 2019.

[A.12] Petr Socha, Vojtěch Mǐskovský and Martin Novotný. First-Order and Higher-Order
Power Analysis: Computational Approaches and Aspects. In 2019 8th Mediter-
ranean Conference on Embedded Computing (MECO), pages 1-5. IEEE, 2019.

The paper has been cited 1 time, in:

◦ Moucha, P.; Ochrana šifry PRESENT prostřednictv́ım falešných a v́ıcenásobnýcch rund na FPGA; Bachelor’s
thesis, 2020.

[A.13] Petr Socha, Vojtěch Mǐskovský, Hana Kubátová and Martin Novotný. Efficient
algorithmic evaluation of correlation power analysis: Key distinguisher based on the
correlation trace derivative. Microprocessors and Microsystems, 71:102858, 2019.

The paper has been cited 1 time, in:

◦ Cheng, K.; Song, Z.; Cui, X.; Zhang, L.; Hybrid Denoising Based Correlation Power Analysis for AES;
2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC), 2021. ISBN 978-1-7281-8535-4. ISSN 2693-2776.

[A.14] Petr Socha, Vojtěch Mǐskovský and Martin Novotný. A fair experimental evalua-
tion of distance correlation side-channel distinguisher. In 2022 11th Mediterranean
Conference on Embedded Computing (MECO), pages 1-4. IEEE, 2022.

[A.15] Tomáš Přeučil, Petr Socha and Martin Novotný. Implementation of the Rainbow
signature scheme on SoC FPGA. In 2022 25st Euromicro Conference on Digital
System Design (DSD), pages 513-519. IEEE, 2022.

[A.16] Petr Jedlička, Lukáš Malina, Petr Socha, Tomáš Gerlich, Zdeněk Martinásek and
Jan Hajný. On Secure and Side-Channel Resistant Hardware Implementations of
Post-Quantum Cryptography. In Proceedings of the 17th International Conference
on Availability, Reliability and Security, pages 1-9. ACM, 2022.

129

	Introduction
	Motivation and Problem Statement
	Goals of the Dissertation Thesis
	Structure of the Dissertation Thesis

	Background and State of the Art
	Introduction to Side-Channel Security
	Measurements
	Formal Model
	Leakage Function

	Non-Profiled Attacks
	Differential Power Analysis (DPA)
	Multi-bit DPA and Partitioning Power Analysis (PPA)
	Correlation Power Analysis (CPA)
	Mutual Information Analysis (MIA)
	Kolmogorov–Smirnov Analysis (KSA)
	Differential Deep Learning Analysis (DDLA)

	Profiled Attacks
	Template Attack (TA)
	Machine Learning-based Attacks

	Side-Channel Attack Related Metrics
	Success Rate and Guessing Entropy
	Confusion Coefficient and Distinguishing Margin

	Countermeasures Against Attacks
	Secure Logic Styles
	Additional Modules
	Masking

	Attacks on Protected Implementations
	Attacks on Hiding
	Attacks on Masking

	Leakage Assessment
	Welch's t-test
	Chi-squared test
	Deep Learning Leakage Assessment

	Symmetric Cryptography
	Substitution-Permutation Networks
	PRESENT
	AES/Rijndael
	Serpent

	Combined Countermeasures Utilizing Dynamic Logic Reconfiguration
	Dynamic Logic Reconfiguration using CFGLUTs
	Countermeasures Combination
	Proposed Secure Cipher Design
	Latency and Area Utilization
	Side-Channel Leakage Evaluation
	Further Experiments
	Summary

	High-Level Synthesis of Masking Countermeasure
	FPGA Design using High-Level Synthesis
	Alternating Masks Scheme
	Proposed Secure Cipher Design
	Latency, Throughput and Area Utilization
	Side-Channel Leakage Evaluation
	Discussion and Future Work
	Summary

	Summary

	Asymmetric Cryptography
	Rainbow Multivariate Quadratic Signature
	Matrix Multiplication in the Reference Implementation
	Central Map in Matrix Representation
	Secret and Public Keys
	Signing and Verification Process

	Side-Channel Attack on the 32-bit Reference Implementation of the Rainbow
	Attack on S map
	Attack on T map
	Extraction of the Central Map F
	Experimental Evaluation
	Summary

	Equivalent Keys as a Side-Channel Countermeasure for Multivariate Quadratic Signatures
	Equivalent Key
	Efficient Implementation
	Side-Channel Leakage Evaluation
	Time Evaluation
	Memory Evaluation
	Summary

	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Reviewed Publications of the Author Presented in This Thesis
	Remaining Reviewed Publications of the Author

