
Abstraction-Based Machine-Code Program Verification

by

Ing. Jan Onderka

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Doctoral study programme: Informatics
Department of Digital Design

Prague, August 2024

Supervisor:
doc. Dipl.-Ing. Dr. techn. Stefan Ratschan
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2024 Ing. Jan Onderka

ii

Abstract
This dissertation thesis is focused on formal verification of machine-code systems using
model checking with abstraction. The background and state of the art of machine-code
model checking are presented, and weaknesses of previous approaches are noted. The au-
thor’s research described in this dissertation thesis and previous conference proceedings
articles presents novel solutions to the major problems of previous research: the systems
are described in the Rust programming language and are inherently simulable, automati-
cally converted to verification equivalents and verified within a novel framework based on
Three-Valued Abstraction Refinement. Special care is taken to allow efficient verification
of variables based on bit-vectors. The author has created a formal verification tool imple-
menting the introduced techniques, and its performance is evaluated in the thesis. The tool
can be used to verify arbitrary finite-state digital systems, with a special focus on systems
with behaviour determined by machine-code programs. To the author’s knowledge, the
created tool is the first free, open-source, and publicly available tool of its kind.

Keywords:
Machine-code verification, translation of simulable descriptions, three-valued abstrac-

tion refinement, bit-vector domain

Abstrakt
Tato disertační práce pojednává o formální verifikaci systémů založených na strojovém
kódu pomocí techniky kontroly modelu s použitím abstrakce. Je prezentován současný
stav poznání v tomto oboru a je poukázáno na slabá místa předchozích přístupů. Autorův
výzkum popsaný v této disertační práci a předchozích článcích v konferenčních sbornících
prezentuje nové způsoby řešení problémů předchozího výzkumu: systémy jsou popsány
v programovacím jazyce Rust a samy o sobě simulovatelné, jsou automaticky konvertovány
do verifikačních ekvivalentů a verifikovány v originální konstrukci založené na zjemňování
trojhodnotové abstrakce. Pro účinnou verifikaci je speciálně zacházeno s proměnnými za-
loženými na bitových vektorech. Autor práce vytvořil nástroj pro formální verifikaci, který
implementuje představené techniky, a jeho schopnosti jsou v práci vyhodnoceny. Nástroj
může být použit pro verifikaci libovolných konečných číslicových systémů, se zaměřením
na systémy, kde je chování určeno programy ve strojovém kódu. Pokud je autorovi známo,
vytvořený nástroj je první bezplatný a veřejně dostupný nástroj svého druhu s otevřeným
zdrojovým kódem.

Klíčová slova:
Verifikace strojového kódu, překlad simulovatelných popisů, zjemňování trojhodnotové

abstrakce, doména bitových vektorů

iii

Acknowledgements

I would like to thank my dissertation thesis supervisor Stefan Ratschan for his insight
and support during my research. I would also like to thank the other academic and non-
academic staff of the Department of Digital Design for their help with the formalities during
the course of my studies. Finally, I thank my family for their support.

My research has been partially supported by the Grant Agency of the Czech Technical Uni-
versity in Prague, grant No. SGS20/211/OHK3/3T/18 and No. SGS23/208/OHK3/3T/18.

iv

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Organisation of This Thesis . 3

2 Background and State of the Art 5
2.1 Digital Systems . 6

2.1.1 Digital System Levels . 8
2.1.2 Digital System Commonalities . 10
2.1.3 Formalisation as Moore Machines 11

2.2 Property Specifications . 12
2.3 Formal Verification Using Model Checking 14

2.3.1 Classic Model-Checking Formalisms 15
2.4 Advanced Techniques for Model Checking 16
2.5 Abstraction and Abstraction Refinement 18

2.5.1 Methodologies . 19
2.5.2 Abstraction Domains . 20

2.6 State of the Art in Digital System Verification 22
2.6.1 Source-Code Systems . 22
2.6.2 Hardware Systems . 23
2.6.3 Machine-Code Systems . 23
2.6.4 Comparison of System Levels . 25

2.7 Summary . 25

3 Machine-Code Verification Using Translation of Simulable Descriptions 27
3.1 Verification of Machine-Code Systems . 28
3.2 Processor Descriptions . 29
3.3 Subset of the Rust Language Usable in Descriptions 32
3.4 Further Notes . 36

v

Contents

4 Input-based Three-valued Abstraction Refinement Framework 37
4.1 The Need for a New Three-valued Abstraction Refinement Framework . . . 37
4.2 Previous Work on Three-valued Abstraction 38

4.2.1 Previous Frameworks and Their Problems 40
4.3 State-based and Input-based Refinement 40
4.4 Input-based Abstraction Framework . 42

4.4.1 Generating Automata . 42
4.4.2 High-level View of the Input-based Framework 43

4.5 Soundness, Monotonicity, and Completeness 45
4.5.1 Soundness Preservation through Modal Simulation 47
4.5.2 Proof of Soundness . 49
4.5.3 Proof of Monotonicity . 49
4.5.4 Proof of Completeness . 50

4.6 Implementation and Experimental Evaluation 51
4.7 Further Notes . 53

5 Abstract Three-valued Bit-vector Arithmetic 55
5.1 Related Work . 56
5.2 Basic Definitions . 57

5.2.1 Abstract Bit Encodings . 57
5.2.2 Abstract Transformers . 58
5.2.3 Algorithm Complexity Considerations 59
5.2.4 Naïve Universal Abstract Algorithm 59

5.3 Formal Problem Statement . 60
5.4 Modular Extreme-Finding Technique . 60
5.5 Fast Abstract Addition . 63
5.6 Fast Abstract Multiplication . 64

5.6.1 Obtaining a Best Abstract Transformer 64
5.6.2 At Most One Double-Unknown k-th Column Pair 65
5.6.3 Multiple Double-Unknown k-th Column Pairs 67
5.6.4 Implementation Considerations . 69
5.6.5 Fast Abstract Multiplication Algorithm 70

5.7 Experimental Evaluation . 72
5.7.1 Visualisation and Interpretation . 72

5.8 Further Notes . 73

6 Created Formal Verification Tool machine-check 75
6.1 Input-based Three-valued Abstraction Refinement Using Abstraction Ana-

logues . 75
6.1.1 Abstract Generating Automatons and Soundness 77
6.1.2 The Refinement Algorithm . 80

6.2 Translation to Abstraction and Refinement Analogues 82
6.2.1 Functions without Control Flow . 82

vi

Contents

6.2.2 Functions with Conditional Branches 84
6.3 Implementation Specifics . 85

6.3.1 Resolution of Introduced Complications 86
6.4 Verification of AVR Programs . 88

6.4.1 Description Details and Evaluation Setup 89
6.4.2 Toy Programs . 90
6.4.3 Factorial: Stack Overflow Avoidance 92
6.4.4 Digital Calibration: Finding a Bug in a Realistic Program 93
6.4.5 Assessment of Capabilities and Possible Improvements 96

7 Conclusion 99
7.1 Summary . 99
7.2 Contributions of the Dissertation Thesis 100
7.3 Future Work . 101

Bibliography 103

Reviewed Publications of the Author Relevant to the Thesis 113

Remaining Publications of the Author Relevant to the Thesis 115

Remaining Publications of the Author 117

vii

List of Figures

2.1 Overview of formal verification of digital systems 8

4.1 Systems that compute the maximum running value of the input 38
4.2 Strategies for path prefix splitting . 41
4.3 Block overview of concrete verification . 44
4.4 Block overview of the proposed input-based Three-valued Abstraction Refine-

ment framework . 45
4.5 Wall-time elapsed during verification of the recovery property 52

5.1 Measured computation times for 106 random abstract input combinations. . . 73
5.2 Measured computation time for 106 random abstract input combinations, fast

algorithms only. 73
5.3 Measured computation times for 106 random abstract input combinations with

fixed N = 32, while the number of unknown bits in each input varies. 74

6.1 An example of a lasso-shaped state space and the culprit 81
6.2 A function without control flow and its abstract and refinement analogues. . . 83
6.3 A function with branching and its abstract analogue. 84
6.4 Categories of lines of Rust code in machine-check 87
6.5 The factorial program . 92
6.6 The simplified calibration program . 94

viii

List of Tables

6.1 Measurements of machine-code verification of toy programs using machine-
check-avr . 91

6.2 Measurements of machine-code verification of the factorial program using machine-
check-avr. 93

6.3 Measurements of machine-code verification of the calibration program using
machine-check-avr. 95

ix

List of Algorithms

5.1 Modular extreme-finding abstract algorithm blueprint 62
5.2 Fast abstract multiplication algorithm . 70

x

Abbreviations

Commonly Used Abbreviations

BDD Binary Decision Diagram
CEGAR Counterexample-guided Abstraction Refinement
CTL Computation Tree Logic
GA Generating Automaton
GPIO General-Purpose Input/Output
KS Kripke Structure
KMTS Kripke Modal Transition Structure
LTL Linear Time Logic
PC Program Counter
PKS Partial Kripke Structure
SAT Boolean Satisfiability Problem
SMT SAT Modulo Theories
SP Stack Pointer
SRAM Static Random-Access Memory
TVAR Three-valued Abstraction Refinement

Less Common Mathematical Notation

102 Number 3 expressed in binary numeral system
0x1F Number 31 expressed in hexadecimal numeral system
{0, 1}n n-ary Cartesian power of set {0, 1}
def= Defined as

xi

Abbreviations

Three-valued Abstraction Notation

‘0’ Three-valued abstraction value corresponding to “definitely 0”
‘1’ Three-valued abstraction value corresponding to “definitely 1”
‘X’ Three-valued abstraction value corresponding to “perhaps 0, perhaps 1”
“1X10” A tuple of three-valued abstraction values

Typesetting

italic A concept that is being introduced

bold A tool, an executable, a competition,
or a temporal logic operator represented by a letter

typewriter A code identifier or a Rust package

xii

Chapter 1
Introduction

The presence of bugs in programs for computers and embedded systems may have se-
vere consequences for safety, security, reliability, etc. Source-code-level and hardware-level
verification has been explored in great detail, resulting in applicable tools for formal ver-
ification. Machine code level, especially important for embedded systems with wide use
in safety-critical industries such as medical, automotive, and aeronautics, has not enjoyed
the study and availability of formal verification tools on such a scale. Formal verification
of machine-code systems is problematic due to a unique combination of challenges: large
state spaces, the loss of high-level information about the programs, and the diversity of
various processor architectures.

Previously, in my diploma thesis [A.4], I noted that there were no publicly available
formal verification tools for machine-code systems, and created a tool based on previous
research, using the ubiquitously used model checking with abstraction. However, it was not
good enough for practical purposes due to the aforementioned challenges. In particular,
abstraction refinement is typically used in state-of-the-art tools for formal verification of
source-code and hardware systems to reduce the state space size, but adding it while
allowing for diverse processor architectures was previously not reasonably possible.

I set out to overcome the challenges, at least partially, during my doctoral research.
I devised three novel techniques, described them in publications and implemented them
in my publicly available, free, and open-source formal verification tool machine-check1,
a spiritual successor to my previous tool. In this thesis, I comprehensively present the
background of my work, the devised techniques, as well as their experimental evaluation.
Using my tool, I was able to verify that various specifications hold in bare-metal programs
for the AVR ATmega328 microcontroller. The techniques enable verification in reasonable
time and memory without problems of the previous tools, substantially improving the state
of the art in formal verification of machine-code systems.

1The latest release of machine-check is available at https://crates.io/crates/machine-check.
The current release at the time of writing this thesis is available at https://crates.io/crates/machine-
check/0.3.0.

1

https://crates.io/crates/machine-check
https://crates.io/crates/machine-check/0.3.0
https://crates.io/crates/machine-check/0.3.0

1. Introduction

1.1 Contribution
I devised, described, and, where applicable, formally proved three novel techniques:

◦ Translation of simulable machine-code system descriptions. Previously, tools
for formal verification of machine-code systems were largely tailored to a specific pro-
cessor, and abstraction was managed manually, making the addition of new processors
and architectures highly complicated and time-consuming. I devised a scheme where
the processors are described in the programming language Rust and automatically
translated to their verification analogues at compile time using meta-programming.
I published an overview of the scheme [A.2].

◦ Input-based three-valued abstraction refinement framework. The usual ab-
straction refinement scheme is Counterexample-guided Abstraction Refinement (CE-
GAR), which cannot verify some system properties, importantly including whether
the system can recover to a specified state from any state. Properties such as recovery
can be verified using the stronger Three-valued Abstraction Refinement (TVAR), but
the previous abstraction refinement frameworks based on TVAR were problematic.
Therefore, I devised a novel framework based on TVAR that resolves the problems,
and proved that it can be used for formal verification of arbitrary properties of propo-
sitional µ-calculus. A preprint of my work is available [A.3].

◦ Three-valued bit-vector arithmetic. When using abstraction, the abstract do-
mains of system-state variables must be chosen, with a dramatic impact on verifica-
tion speed and the ability to prove or disprove properties. In machine-code systems,
it is typical that only one specific bit of an input port determines whether the prop-
erty holds or not. This can be abstracted well by three-valued bit-vector abstraction,
but it was previously not possible to quickly compute useful results of arithmetic
operations using such abstraction. I devised a novel technique for computing useful
results in polynomial time, with the best possible results for addition and multipli-
cation computable in linear and quadratic time, respectively. I described, formally
proved, and published the technique together with my supervisor [A.1].

I implemented the techniques in my free and open-source tool machine-check. It is
able to verify properties of machine-code programs as well as any other systems that can be
described as finite-state machines. The required time and memory are reasonable for simple
programs, and the framework and its implementation are conducive to improvements in
abstraction and refinement strategies, paving the way to full formal verification of security-
and safety-critical systems, not just their hardware or source-code components.

While my research was focused on the machine-code level, the techniques are general
and of interest in other fields of formal verification, especially of source-code and hardware
systems. The input-based TVAR framework in particular is fully general and can be used
to verify properties not verifiable by current state-of-the-art tools, further supporting the
overarching goal of leveraging formal verification for greater security and safety.

2

1.2. Organisation of This Thesis

1.2 Organisation of This Thesis
The dissertation thesis is organised into chapters as follows:

1. Introduction: Describes the contribution of my research.

2. Background and State of the Art: Introduces the reader to the necessary theo-
retical background and surveys the current state of the art.

3. Translation of Simulable Machine-Code System Descriptions: Describes the
technique of translation of simulable descriptions used in my tool machine-check.
Contains previously published material [A.2] with further additions.

4. Input-based Three-valued Abstraction Refinement Framework: Describes
the Three-valued Abstraction Refinement framework I proposed and implemented,
elegant yet more powerful than the commonly used Counterexample-guided Abstrac-
tion Refinement frameworks. It is proven that its important characteristics, which
make it suitable for formal verification, depend only on fairly simple requirements.
Contains material available as a preprint [A.3].

5. Abstract Three-valued Bit-vector Arithmetic: Describes a three-valued ab-
straction domain that is useful for digital (especially machine-code) systems, and
presents fast algorithms for addition and multiplication within the domain, with
proofs that they produce the best possible results. Contains previously published
material [A.1].

6. Created Machine-Code Formal Verification Tool machine-check: Describes
the combination of the techniques from Chapter 3, 4, and 5 and further considerations
for implementation of the formal verification tool that I created during work on this
thesis. Discusses an experimental evaluation of the tool on machine-code systems.

7. Conclusion: Summarises the results of my doctoral research, suggests possible topics
of further research, and concludes the dissertation thesis.

3

Chapter 2
Background and State of the Art

The rise of digital electronic systems to ubiquity in our lives has brought a multitude
of challenges. Computing devices are no longer restricted to mainframes and personal
computers but are present in all kinds of aspects of our lives including medical devices,
home appliances, or toys. Most of us carry a mobile phone, and we rely on transport by cars,
trains, ships, and aeroplanes, all of them increasingly dependent on electronic control. All
aspects of our lives, including our security and safety, are reliant on the systems behaving
correctly. Nevertheless, just during the last two months of writing this thesis,

◦ the outage caused by the CrowdStrike software glitch paralysed the global economy
and resulted in losses estimated in billions of dollars [1],

◦ the leading processor manufacturer Intel has responded to the instability of its 13th
and 14th generation processors, releasing a processor microcode update which is
supposed to fix incorrect voltage requests that result in processor degradation [2],

◦ a vulnerability was found in AMD processors including the current generation [3],
undetected for almost 20 years, allowing the planting of nearly undetectable malware
once kernel-level access is obtained [4].

While informal testing of systems can reveal some bugs, formal verification can definitely
prove or disprove that a given specification holds in a given system, preventing bugs that
arise from unconsidered corner cases. Unfortunately, it is much more problematic to for-
mally verify systems than to create them. Continual advances in formal verification are
necessary to prevent the consequences of bugs such as drastic monetary loss, data theft,
loss of privacy, and even human injury.

Formal verification is a wide field of computer science which overlaps with other fields
such as graph theory, automata theory, combinatorial optimisation, static program analy-
sis, and testing. As such, in this chapter, I discuss only topics of direct relevance to the
subject of this dissertation thesis. Related work that is only relevant to a single chapter
will be discussed in the respective chapter.

5

2. Background and State of the Art

In this thesis, I focus on formal verification of machine-code programs against specifica-
tions. The main processors under consideration are simple embedded microcontrollers, the
programs are bare-metal, without any operating system layer. Machine-code verification
is especially sensible in this scenario, as source-code verification may not be able to verify
properties such as correct initialisation and usage of peripherals. Some parts of the program
may also be hand-written in assembly language to achieve maximum performance, preclud-
ing source code verification. Lastly, the compiler may contain bugs, resulting in possible
issues that are undetectable using source-level verification. The aforementioned concerns
make machine-code verification an important and irreplaceable avenue of approach.

For a comprehensive understanding of the task, there are three major areas to explore:

◦ The digital systems under verification, their levels (hardware, machine code, source
code), and commonalities shared by systems of all levels.

◦ The specifications for which we are trying to decide whether they hold in a given
system.

◦ The techniques for formal verification.

These areas are interrelated: the digital systems are usually formalised as automata, and so
the typical specification formalisms are based on states and paths through the automata.
The verification techniques are based on the formalised systems and specifications. Adher-
ence of finite-state systems to common temporal specifications can be verified in time and
space linear to the state space size, with further improvements possible through the use of
advanced techniques.

In this chapter, I will explore systems, specifications, and verification techniques. After
that, I will focus on formal verification using model checking with abstraction refinement.
Finally, I will examine the state of the art in formal verification of digital systems, noting
the lack of usable tools for verification of machine-code systems.

2.1 Digital Systems
As proven by Shannon [5], systems comprised of switching circuits can be used to solve
arbitrary problems specified in Boolean algebra by the construction of logic gates. The rise
of transistor technology, especially Complementary Metal-Oxide-Semiconductor (CMOS)
technology, has allowed us to construct systems with computation capabilities far over-
shadowing other kinds of systems. The systems are inherently parallel in nature, each
logic gate only dependent on the ones producing its inputs.

While electronic hardware systems can be designed to perform fixed computations with
great performance and little power consumption, the design and initial manufacturing
expenses for such devices are prohibitive for most applications. As such, programmable
devices are now commonly used as well. It is possible to group them into two categories,
notwithstanding System on a Chip (SoC) combinations:

6

2.1. Digital Systems

◦ Programmable Logic Devices (PLDs) are devices in which reconfigurable digital cir-
cuits can be configured to perform specified computations using basic elements such
as logic gates and flip-flops, similarly to building the digital circuits themselves. The
most complex of these devices are Field-Programmable Gate Arrays (FPGAs).

◦ Processors are devices that manipulate their state according to machine-code-program
instructions. This typically results in less parallelism, with sequential program flow
in each processor core. The programmer typically writes a source-code program in
a programming language such as C, which is then compiled to machine code that is
executed by the processor.

Let us suppose that we want to create a digital system. We are only responsible for
designing a small part of the overall system, building on top of underlying components.
For example, in a machine-code system, we design the machine code that will be executed
on the selected processor and rely on the guarantees by the processor manufacturer that
it will perform as described in its accompanying documentation. We devise the machine
code based on these guarantees (not the physical device itself): without knowing anything
about the processor behaviour, the machine code is just a meaningless sequence of bits.

In this thesis, I will use the noun design to refer to the part of the system that is under
our control, and the noun guarantees to refer to the guarantees about the behaviour of the
underlying parts of the system outside of our control. The design and guarantees combine
to form the system. For verification purposes, the whole system must be considered, as
visualised in the block overview in Figure 2.1.

The digital system will ultimately be backed by a physical device that behaves according
to the physical reality. As such, there must be fundamental guarantees that the device
behaves digitally. During verification, we assume that all guarantees hold, as we are only
concerned with detecting problems where we are at fault, not problems arising due to the
given guarantees not holding in the actual device.

In case the design is described in a language with formal syntax and semantics, basic
guarantees are defined by the semantics of the formal language. However, there might be
additional guarantees.

Example 2.1.1. Let us consider that we are writing a source-code program in the C lan-
guage, and our compiler adheres to the C99 standard [6]. The language semantics defined
in the standard give us basic guarantees about how the program will behave once compiled
and executed, barring e.g. bugs in our compiler or a defective processor we will be compil-
ing or executing the program on. We can also use libraries, with which we communicate
using Application Programming Interfaces (APIs), with additional guarantees of their be-
haviour. When verifying our program, we take the source code we have written and the
guarantees (language semantics and API guarantees) into account.

7

2. Background and State of the Art

guarantees design

combine

system specification

verification
result

verify

Figure 2.1: A high-level overview of formal verification of digital systems. The solid yellow
cells represent verification inputs, while the dashed blue cells represent an automated
combination or result. The guarantees and the design are combined together to form the
system under verification. It is then determined if the specification holds.

2.1.1 Digital System Levels
In the vast majority of cases, a digital system can be placed into one of three separate
levels:

◦ A hardware system is a combination of the digital design described in a design lan-
guage, the basic guarantees provided by the design language, and possibly additional
guarantees provided by e.g. Intellectual Property (IP) blocks. The design language is
typically a Hardware Description Language (HDL) such as VHDL or Verilog. For for-
mal verification, the systems are typically first translated to the AIGER format [7, 8]
that describes the whole system as a sequence of gates or the Btor2 format [9] that
describes the systems by bit-vectors and bit-vector arrays, preserving operations such
as addition or multiplication instead of translating them to logic gate combinations.
After translation, the guarantees are formed by the AIGER/Btor2 format semantics.

◦ A machine-code system is a combination of the design in the form of machine code,
the basic executing processor guarantees, and possibly additional guarantees for e.g.
circuits connected to the processor pins. For bare-metal use, the machine code is
typically in the Intel HEX format [10]. For usage with operating systems, the ma-
chine code is typically bundled with some additional information, e.g. the Executable
and Linkable Format (ELF) for Unix-like operating systems and the Portable Exe-
cutable (PE) format for the Windows operating system. Unfortunately, the processor
guarantees are usually not available as a formal specification, the informal documen-
tation being provided in the form of the processor datasheet, the user manual, the
instruction set architecture manual, etc.

8

2.1. Digital Systems

◦ A source-code system is a combination of the design in the form of source code
in a programming language, the basic guarantees provided by the semantics of the
programming language, and possibly additional guarantees provided by e.g. the APIs
of the used libraries. The programming languages can be standardised, as in the case
of the ubiquitous C99 standard [6], but their more difficult semantics are typically
described informally.

Some digital systems cannot be placed into a single level, such as source-code programs
with inline assembly which combine source-code and machine-code characteristics, but I
will not discuss them in this thesis for the sake of conciseness. Between the three levels,
there are two special system types that seemingly mix the characteristics but tend to be
closer to one level:

◦ A bytecode system is a combination of the design in the form of bytecode for a
Virtual Machine (VM), basic guarantees provided by the bytecode specification, and
possibly additional guarantees. The bytecode serves as an intermediate stage before
interpretation or compilation on the target machine. The typical program bytecode is
for the Java Virtual Machine (JVM). LLVM IR (Intermediate Representation) is used
as an intermediate compilation stage for the LLVM compiler suite [11]. While the
bytecode is a sequence of bits similar to machine code, the system as a whole is much
more similar to a source-code system, with device-agnostic guarantees. Bytecode is
sometimes used for verification in place of source code due to similar expressivity but
simpler constructs.

◦ A microcode system is a combination of the design in the form of microcode and the
underlying hardware guarantees, implementing a processor that is supposed to exe-
cute machine code with the guarantees given by the processor manufacturer. Struc-
turally, the microcode system can be considered a machine-code system which serves
to provide a Virtual Machine for the higher-level machine code.

During the discussion of the state of the art in Section 2.6, I will discuss the bytecode and
microcode systems grouped with source-code and machine-code systems, respectively.

Example 2.1.2. Throughout this thesis, I will focus on AVR ATmega328P, a mid-line
8-bit microcontroller which is famously used in the Arduino Uno development boards.
The microcontroller integrates an 8-bit AVR processor core with 32 working registers and
additional Input/Output (I/O) registers together with 2048 bytes of Static Random Access
Memory (SRAM) that is used as data memory and 1024 bytes of Electrically Erasable
Programmable Read-Only Memory (EEPROM) that is used as program memory [12].

The hardware level of the microcontroller is known to the AVR processor manufacturer
Microchip (which has acquired the former manufacturer Atmel), but not to the general
public. The programs are usually written either in the C language (source code level)
and compiled to machine code or in the AVR assembly language that corresponds to the
machine-code instructions directly and is assembled to machine code. The instruction set
is publicly available [13].

9

2. Background and State of the Art

Note 2.1.3. Digital systems can be described using many specific languages, such as mod-
elling languages (UML, SysML), simulation-oriented languages (Matlab-Simulink etc.), or
verification-specific languages [14]. However, these languages usually present some general
overview of the system, not a fully specified system that can be used in the real world. I
will not discuss the specific languages further and will show in Chapter 3 that it is possible
to describe digital systems using a general-purpose programming language and still retain
the ability to use advanced verification techniques.

2.1.2 Digital System Commonalities
The transition from hardware up to source code is essentially a transition from physi-
cal systems to systems that correspond to human (predominantly sequential) reasoning.
There are important commonalities between the systems, combining building blocks that
are physically efficient and those that are conducive to human reasoning. These common-
alities can be found by examining HDL languages, common processor architectures, and
imperative programming languages:

◦ Binary digits. While other bases such as ternary and decimal have enjoyed some
popularity in the past, the current digital systems are ubiquitously binary.

◦ Finite-width bit-vector variables. Unlike mathematical variables, the variables
refer to some over-writable physical memory location. Only finite-width bit-vectors
are physically implementable in the binary digital logic. They are used as basic
building blocks for describing real-world digital systems.

◦ Arrays and array indexing. Bit-vector arrays are ubiquitously used. In machine-
code systems, only a few arrays are exposed through the machine-code instructions,
typically including working registers and either the main memory (von Neumann
architecture) or the program memory and the data memory (Harvard architecture).
In imperative programming languages, only the main memory is exposed, and vari-
ables used to index into it are called pointers (typically treated differently from other
variables to prevent bugs).

◦ Fixed-point bit-vector operations. There are five basic types of almost uni-
versally available bit-vector operations: bitwise operations, bit-shift operations, bit
length manipulation operations, arithmetic operations, and relational operations.
Some operations (such as bit extension or division) are dependent on the interpre-
tation of the bit-vector, which is today almost universally treated as either unsigned
or signed in two’s complement. The interpretation is chosen either by the variable
type (e.g. in typical imperative programming languages or VHDL numeric_std) or
by a special operation choice (e.g. the processor instruction type).

While bit-vectors do not perfectly correspond to the mathematical notions of numbers,
arithmetic operations can be performed using them if the distinctions are observed (e.g.
sizing the variables to prevent overflows). While the arithmetic and relational operations

10

2.1. Digital Systems

are provided due to the need to perform arithmetic and comparisons in number-based
algorithms, the bitwise and bit-shift operations are provided because they are efficiently
implementable. The combination allows for a number of “hacks”, such as fast multiplication
and division by powers of 2 using bit-shifting [15].
Note 2.1.4. Floating-point operations are outside of the scope of this thesis. Common
processors and language implementations typically follow the IEEE 754 standard to a
certain extent. Floating-point variables can be described as bit-vectors and the operations
can be converted into bit-vector operations (soft floating point).

Example 2.1.5. In ATmega328P, the working registers, the data memory, and the pro-
gram memory are the most important bit-vector arrays. I/O addresses can correspond
to I/O registers or have special behaviour (e.g. reading digital values of microcontroller
pins). Typical instructions perform indexing (e.g. of two registers) and perform some
fixed-point operations using the indexed locations (e.g. adding the two registers and writ-
ing the result into one of them, writing status flags afterwards). The arithmetic operations
mostly operate on 8-bit bit-vectors. Floating-point operations are not supported and must
be emulated with soft floating point if necessary. The instructions correspond closely to
C operations on 8-bit integers and are efficiently implemented in hardware, with most
instructions executing in one clock cycle.

The commonalities can be used to describe the system at another system level or even
automatically translate between the levels, adjusting the design to the new guarantees
so that the overall system behaviour remains the same. In my approach, the machine-
code system guarantees (mainly describing the processor behaviour) are described at the
source-code level in the Rust programming language, leveraging its advantages. This will
be elaborated upon in Chapter 3.

2.1.3 Formalisation as Moore Machines
Digital systems can be formalised as general automata with outputs. In practice, con-
structable systems are always finite, and can be formalised by deterministic Moore or
Mealy Finite State Machines (FSMs): the system deterministically changes its state based
on the values of its inputs and its behaviour is reflected in its outputs. I will discuss the
Moore machine formalism as it is simpler.

Definition 2.1.6. A Moore machine M is a tuple M = (S, s0,Σ,Ω, δ, λ) where

◦ S is a finite set of states,

◦ s0 ∈ S is the initial state,

◦ Σ is the input alphabet, a finite set,

◦ Ω is the output alphabet, a finite set,

11

2. Background and State of the Art

◦ δ : S × Σ→ S is the state transition function,

◦ λ : S → Ω is the output function.

The behaviour of the system is determined by the outputs of the successive states,
starting in the initial state and applying the state transition function with the selected
inputs. Dropping the requirements of finite S, Σ, and Ω, the resulting formalisation allows
for non-constructable systems as well, such as source-code programs with variables that
are unrestricted natural numbers.

The formalisation captures the system behaviour but not the practical considerations.
Most notably, it is typically only necessary to consider the states and transitions reachable
from the initial state, as the others are irrelevant to system behaviour. The commonalities
from Subsection 2.1.2 are hidden in the definitions of S,Σ,Ω, δ, and λ, despite having an
important practical role in the speed of simulation and verification of the system.

2.2 Property Specifications
Formalising digital systems as Moore machines allows for proving their predicate calculus
properties. However, automatically formally verifying predicate calculus properties w.r.t.
the machines is problematic for two reasons:

◦ Proving in reasonable time and memory. Trivially, proving or disproving that
finite specifications (of finite length and with finite quantified variables) hold in finite
systems can be accomplished in finite time and with finite memory using brute force.
However, the amount of reachable states tends to grow exponentially to the input
size, and verifying the specification can introduce further slowdowns. Furthermore,
checking the properties of infinite paths is even more problematic.

◦ Specifications difficult to express in predicate calculus. In the specifications,
we typically are concerned about properties of system states and paths through the
system that might not be intuitive to express in predicate calculus.

While the full predicate calculus is too general, properties that only consider a single state
of the system are too limited. Temporal logics, which describe the behaviour as paths
through the state space are taken, are a good compromise and have become the most
commonly used specification formalisms in formal verification. A temporal logic forms a
useful, well-defined set of formulas with respect to the system under verification, referring
not only to individual states but also to paths, which are typically infinite. Formulas of
common temporal logics can be directly translated to predicate logic formulas.

The most important temporal logics in formal verification are Computation Tree Logic
(CTL), Linear Time Logic (LTL), and CTL*, of which CTL and LTL are subsets. For
conciseness, I will define CTL* first and then introduce CTL and LTL using it.

12

2.2. Property Specifications

Definition 2.2.1. A CTL* property is a logical formula consisting of either an atomic
proposition or a logical operator combining other CTL* properties. There are three kinds
of such operators in CTL* [16, p. 7-10]:

◦ Propositional logic operators. Typically, these are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⇒ ψ,
ϕ⇔ ψ.

◦ Temporal operators. These operators encode the desired behaviour on an infinite
path through the system. There are five such operators:

– X ϕ (next). The property ϕ has to hold at the next state of the path.
– Gϕ (globally). The property ϕ has to hold in every state on the path.
– Fϕ (f inally). The property ϕ has to hold in some state on the path.
– [ϕUψ] (until). The property ϕ has to hold until ψ holds (not including the first

state where ψ holds), and ψ must hold in some state on the path.
– [ϕRψ] (release)1. The property ψ has to hold before and during the first state

in which ϕ holds, but ϕ does not have to ever hold (in which case, ψ must hold
forever). In other words, ϕ releases ψ.

◦ Path quantifiers. These operators encode the quantification of paths from a given
state.

– Aϕ (along all paths, inevitably). The property ϕ must be true in all paths from
the given state.

– Eϕ (there exists a path, possibly). The property ϕ must be true in at least one
path from the given state.

For evaluation, the CTL* formula is implicitly enclosed by an along-all-paths quantifier
if necessary (i.e. there exists a temporal operator not enclosed by a path quantifier),
similarly to implicit universal quantification of free variables in predicate calculus. The
resultant formula can be evaluated on arbitrary states of the system under verification.
When a system with multiple initial states is considered, the CTL* property must hold in
all initial states to hold in the system itself.

Example 2.2.2. Some of the more notable CTL* formula schemes are:

◦ Safety. AG[ϕ], i.e. on all paths, ϕ holds forever.

◦ Reachability. AF[ϕ], i.e. on all paths, a state where ϕ holds is reached.
1In some literature, the release operator is not included in CTL* and its subsets, simplifying the

definition at the expense of losing operator duality. Alternatively, [ϕRψ] can be thought of as an alias for
¬[(¬ϕ)U(¬ψ)].

13

2. Background and State of the Art

◦ Recovery. AG[EF[ϕ]], i.e. from every reachable state, there exists a path to a
state where ϕ holds in the future. In other words, we can always somehow coerce the
system to reach a state where ϕ holds.

◦ Invariant lock. AG[ϕ⇒ AG[ϕ]], i.e. once ϕ holds, it holds forever.

◦ Action-reaction. AG[ϕ⇒ AF[ψ]], i.e. once ϕ holds, ψ must hold in that state or
some successive state.

As stated previously, the two most ubiquitous subsets of CTL* are CTL and LTL:

◦ In CTL, the path quantifiers and temporal operators can only come in pairs in that
order, e.g. AGϕ or E[ϕUψ]. In essence, CTL allows posing statements about the
current state and states following it, but not arbitrary paths.

◦ In LTL, no path quantifiers are permitted in the formula, the only one being the
implicit along-all-paths quantifier. For example, the LTL formula FGϕ could be
more clearly expressed in CTL* as AFGϕ [16, p. 9]. In essence, LTL describes each
path through the state space separately, and the result is whether this description
holds for all paths.

Each CTL* property can be translated into an equivalent formula of the (stronger) predi-
cate µ-calculus [17, p. 907]. While the proofs in Chapter 4 are general enough for arbitrary
µ-calculus properties, I will not discuss µ-calculus in detail as it is less understandable than
classic temporal logics and it is not easy to find interesting properties expressible in it but
not in CTL*.

2.3 Formal Verification Using Model Checking
Formal verification of systems against specifications can be accomplished in a multitude
of ways. The most basic one is through manual proofs. However, that approach is only
realistic for very simple systems. It is possible to construct automated proofs, but as
the systems become complicated, devising the choices to make in the proofs becomes
problematic. Fortunately, for finite-state state-transition systems, it is possible to use the
model-checking approach to prove or disprove the properties completely automatically. In
model-checking, the state space of the finite-state system is constructed and the properties
are verified against the state space instead of the original system [16, p. 1-3]. This allows
for completely automatic verification of the system in finite time and memory.

Unfortunately, while model checking seems excellent in theory, there are two main
practical challenges encountered [16, p. 3-4]:

◦ Scalability. While the time and memory needed for model-checking is finite, in
practice, it is infeasible to model-check all but the simplest systems without using
advanced techniques. This is mainly due to the exponential explosion during the

14

2.3. Formal Verification Using Model Checking

construction of the reachable state space (also termed state space explosion): in each
state, N input bits result in up to 2N successor states being generated.

◦ Modelling. The classic model-checking formalisms essentially verify whether tem-
poral logic specifications hold in finite-state machines. The modelling challenge is to
fully capture many possible systems of interest, including unbounded systems and
differently descriptive specifications (i.e. real-time logics).

The scalability and modelling challenges are subjects of ample research [16]. Both are
major challenges to machine-code verification, although the modelling challenge is present
mainly in the practical rather than in the theoretical sense, as the classic model-checking
formalisms capture the nature of digital systems well.

2.3.1 Classic Model-Checking Formalisms
I will now introduce the classic formalisms for formal verification using model checking [16].
The name model checking is taken from mathematical logic: we are checking whether the
formalism of the system, a Kripke structure K, is a model of the specification ϕ, i.e.
whether all sentences in ϕ are true with respect to K. The fact that K is a model of
ϕ is usually written as K |= ϕ, and that fact that it is not is written as K ̸|= ϕ. The
model-checking tool, given K and ϕ, ideally outputs either K |= ϕ or K ̸|= ϕ (and perhaps
some additional information such as the reasons for that result). In practice, it also may
not give us any answer at all, such as when verification time or memory is exceeded.

Definition 2.3.1. A Kripke structure over a set A of atomic propositions is defined as a
tuple K = (S, S0, R, L) where

◦ S is the set of states,

◦ S0 ⊆ S is the set of initial states,

◦ R ⊆ S × S is a transition relation,

◦ L : S × A → {0, 1} is a labelling function, which determines whether each atomic
proposition holds in a state or does not.

Note 2.3.2. I use the Kripke structure definition with initial states throughout this thesis
for correspondence with real-life digital systems. Some definitions omit the initial states.
I use a characteristic labelling function instead of the more common definition L : S → 2A

for easier formalisation of abstraction in Section 2.5.
The Moore machines from Section 2.1.3 can be easily turned into Kripke structures by

replacing the output function with the labelling function (which may expose the internal
state of the machine as well as the outputs), and turning the state transition function into
a relation by considering all input possibilities. The major insight here is that the actual
input values are unnecessary for computing the verification result. However, as discussed

15

2. Background and State of the Art

later in Chapter 4, the inputs become relevant again when we are trying to determine what
caused the result.

In classic model checking, the Kripke structure is checked against a CTL, LTL, or CTL*
property. Although these temporal logics work with infinite paths, there are algorithms
that can verify their properties in a reasonable time:

◦ CTL. Running time depends linearly both on the size of K and the length of the
CTL formula [16, p. 11].

◦ LTL. Running time depends linearly on the size of K and exponentially on the length
of the LTL formula [16, p. 13].

◦ CTL*. The algorithms for CTL and LTL can be simply combined [18, p. 69],
resulting in running time depending linearly on the size of K and exponentially on
the length of the CTL* formula, the same as for LTL.

As the size of K is the major limiting factor, the ability to verify in time linear to it is
crucial, explaining the popularity of CTL, LTL, and CTL*. The state space explosion
becomes the main problem.

Example 2.3.3. Let us consider formal verification of ATmega328P using naïve model
checking. The I/O registers are reset during the device reset [12, p. 56], but the 32 work-
ing registers and 2048 SRAM bytes are not and may contain any value. The number of
possibilities after reset is 22048+32 = 22080, which results in infeasibly many initial states.
Even ignoring the initial possibilities does not save us. The General Purpose Input/Output
peripheral allows reading of up to 8 binary pin values during single instruction execution.
Reading four times in succession to different working registers produces (28)4 = 232 com-
binations. Clearly, naïve model checking is not suitable for machine-code verification.

2.4 Advanced Techniques for Model Checking
As the state space explosion precludes verification of complex systems, advanced techniques
have been devised to verify the system without constructing and model-checking the whole
Kripke structure. Such techniques can be roughly classified in three groups [16, p. 15-18]:

◦ Abstraction is an approach where, instead of model-checking the original Kripke
structure K, an abstract structure K̂ with less information is model-checked. The
result is either the same as for the original structure or is unknown due to the lack of
information. As an unknown result is not useful, abstraction refinement can be used
to keep adding information to K̂ where it is necessary for verification until a definite
result of model-checking is obtained.

16

2.4. Advanced Techniques for Model Checking

◦ Symbolic methods avoid construction of the Kripke structure by using symbolic
logic expressions to represent states and/or transitions, essentially compressing the
state space by using a more compact representation. There are two main symbolic
method subgroups:

– Model checking with Binary Decision Diagrams (BDDs). Useful especially for
low-level hardware circuits described by Boolean expressions where they can
dramatically reduce state space size while retaining the verification complexity,
but problematic to use with arithmetic expressions due to the reintroduction of
exponential explosion.

– Model checking based on solving the Boolean satisfiability problem (SAT) and
its extensions. The system and the specification are encoded into SAT formulas
that are solved by general SAT solvers. This approach allows the separation
of describing the systems from the actual verification, which is reduced to a
combinatorial problem. LTL or ACTL* formulas can be verified by SAT solvers2.
For CTL and its supersets, the stronger Quantified Boolean Formula (QBF)
solvers are necessary.

◦ Structural methods exploit the structure of the code that defines the system. The
structural methods are usually associated with parallel systems or complex reasoning,
using symmetries, partial orders, or other higher-level information to avoid storing
the whole Kripke structure.

In practice, the groups of approaches tend to be combined. In particular, symbolic
methods and abstraction are very conducive to combination since they are cleanly sepa-
rated: the symbolic methods are applied once the system is abstracted. In fact, the widely-
used Counterexample-Guided Abstraction Refinement (CEGAR) methodology was origi-
nally described as used with BDDs [19] and later extended for use with SAT solvers [20].
The SAT solvers themselves have evolved to Satisfiability Modulo Theories (SMT) solvers,
which support solving formulas with e.g. bit-vector or mathematical integer variables in
addition to Boolean variables.

For my core use case of machine-code verification, the use of abstraction is key to
reasonable state space sizes. Symbolic methods can be used with abstraction, and they
are well-researched [21, 22], but their use is mostly an implementation decision rather than
a fundamental concept in a verification tool. I did not feel the need to use structural
methods at this point as they are most useful when some kind of parallelism is introduced,
and non-parallel machine-code programs are problematic enough as-is. As such, I have
focused on abstraction in my work, and will not discuss the other groups of techniques
further except where used in state-of-the-art tools discussed in Section 2.6.

2For systems with left-total transition relations, as later noted in Section 2.5.1.

17

2. Background and State of the Art

2.5 Abstraction and Abstraction Refinement
The ideal process of model-checking can be represented as a function Pϕ : K → {0, 1}
where K is the set of all Kripke structures containing the atomic propositions present in
the specification ϕ. For every K ∈ K, Pϕ(K) = 0 means that the model-checker determined
K ̸|= ϕ, and Pϕ(K) = 1 means it determined K |= ϕ. We can extend the process to model-
checking Kripke-like structures that can lack some of the original information, representing
the incomplete model-checking process by P̂ϕ : K̂→ {0, 1,⊥}, where the results 0, 1 behave
the same as previously and ⊥ (unknown) means nothing was proven or disproven due to
the lack of information3. The three distinct valuations 0, 1, ⊥ give rise to three-valued
logic, which will be discussed in more detail later in Chapters 4 and 5.

Abstraction in model checking consists of devising an incomplete structure K̂ for ver-
ification and verifying properties of K using it. The abstraction should be sound, never
producing wrong results:

P̂ϕ(K̂) ̸= ⊥ ⇒ P̂ϕ(K̂) = Pϕ(K). (2.1)

While it may be infeasible to compute Pϕ(K) in practice, devising K̂ and computing
P̂ϕ(K̂) can be easier as K̂ can contain less information and have fewer reachable states.
The obvious problem is that if P̂ϕ(K̂) = ⊥, we have not learned anything useful about K,
only that K̂ is not a good enough abstraction for our purposes. This problem is resolved
by abstraction refinement, where, after computing P̂ϕ(K̂) = ⊥, we refine K̂ to contain
more information, and continue until P̂ϕ(K̂) ̸= ⊥. This refinement loop forms the core of
abstraction refinement frameworks, which we design to be sound and, optionally, complete,
always verifying that the specification either holds or does not in finite time and memory
for finite systems and specifications.

Example 2.5.1. Continuing in the example of verification of machine-code programs for
AVR ATmega328P, we can represent each bit in a bit-vector by one of three values, ‘0’
(definitely zero), ‘1’ (definitely one), or ‘X’ (unknown — possibly zero, possibly one),
forming three-valued bit-vector abstraction (discussed further in Chapter 5). Representing
each uninitialised or input bit by ‘X’, we can start with a single abstract state that has
all working registers and SRAM locations unknown, and representing all step inputs as
unknown as well, produce a single abstract state in each processor step, ending up with
a lasso-shaped state space. Unfortunately, as the step function is required to preserve
soundness, the result of verifying properties that are dependent on inputs will be unknown,
rendering the abstraction fairly useless. It is necessary to choose the abstract bits that will
be turned to ‘0’ and ‘1’ possibilities, increasing the amount of information at the cost of
increased state space size. Using abstraction refinement, we can choose the bits of interest
deductively, without any outside help.

3Not being to able to prove or disprove due to the lack of information in K̂ is different than not
being able to prove due to e.g. the model-checker being terminated due to exceeding time or memory.
The former gives us useful information about K̂, while the latter gives us nothing at all, and is thus not
formally considered.

18

2.5. Abstraction and Abstraction Refinement

2.5.1 Methodologies
Now that the basic notions are in place, we can discuss the abstraction refinement method-
ologies. While Chapter 4 contains a more comprehensive and formal description of common
abstraction frameworks based on the methodologies, I will give a basic overview based on
Dams and Grumberg [23] here.

First, I will consider that the commonly used existential abstraction is used, where the
abstract states of K̂ are related to the concrete states of K by a concretization function
γ : Ŝ → 2S. In essence, an abstract state represents that the concrete system might be
in any of the concrete states given by the concretization function. For conciseness, I will
write that the abstract state covers a concrete state in if it contains it in its concretization.
Similarly, I will write that a path of abstract states covers a path of concrete states exactly
if, in each position, the abstract state covers the concrete one.

Counterexample-guided Abstraction Refinement (CEGAR). The introduced
abstract structure K̂ is a Kripke structure but has a very different meaning compared to
K. The states of K̂ are abstract states. The transitions present in the transition relation R̂
of K̂ give no useful information as they may or may not correspond to concrete transitions
between the concrete states covered by the endpoints. However, it is required that the
transitions in the complement of R̂ do not correspond to any such concrete transitions, i.e.

∀(ŝhead, ŝtail) ∈ (Ŝ × Ŝ) \ R̂ . ∀(shead, stail) ∈ γ(ŝhead)× γ(ŝtail) . (shead, stail) ̸∈ R. (2.2)

Additionally requiring covering each state in S0 by at least one state in Ŝ0, the set of paths
in K is overapproximated by the set of paths in K̂. Each path in K is covered by some
path in K̂ but a path in K̂ can cover zero paths in K.

Assuming that R is left-total4, the temporal properties expressible in LTL or the univer-
sal fragments of CTL, CTL*, and propositional µ-calculus (the universal fragment essen-
tially precludes existential quantifiers when the property is expressed in negation normal
form) depend only on the set of paths, so we can use K̂ |= ϕ to conclude K |= ϕ. However,
it is not possible to use K̂ ̸|= ϕ to conclude K ̸|= ϕ, as the counterexample path may not
be contained in the set of paths in K (it may be spurious). However, we can overcome the
problem by using the following refinement loop:

1. Model-check K̂ instead of K. If K̂ |= ϕ, conclude that K |= ϕ: as the aforementioned
properties are violated by paths and K̂ covers all paths in K, the property must hold
in K when it does in K̂.

2. We know that K̂ ̸|= ϕ. Obtain a path that violates the property in K̂ (the coun-
terexample) and validate if it violates the property in K as well. If it violates the
property in K, conclude K ̸|= ϕ, providing the counterexample.

4If the transition relation in K is not left-total, there are some implicit existential characteristics in
the universal fragment of CTL* and some of its subsets [23, p. 392-393]. Fortunately, digital systems
expressible as automata have left-total transition relations (there is always at least one next state).

19

2. Background and State of the Art

3. We know that K̂ ̸|= ϕ, but the counterexample for K̂ is not a counterexample for K
(it is spurious). Refine K̂ somehow, so the abstract paths ideally cover fewer concrete
paths, and go back to Step 1.

The core CEGAR methodology can be implemented in various ways, not dictating
the choice of the abstract state space beyond existential abstraction nor the choices of
refinement. However, it cannot verify properties such as the recovery properties discussed in
Example 2.2.2, because they contain both universal and existential quantifiers in negation
normal form.

Three-Valued Abstraction Refinement (TVAR). The TVAR methodology al-
lows verification of full propositional µ-calculus and its fragments such as CTL*, CTL,
and LTL. For K̂, extensions of Kripke structures are used. A Partial Kripke Structure
(PKS) introduces the possibility of state labellings being unknown, which means there is
a possibility of an unknown result of model-checking K̂, in which case K̂ is refined. A
Kripke Modal Transition System (KMTS) structure further introduces the possibility of
transitions having an unknown presence.

Unfortunately, as TVAR is not limited to specification with path counterexamples, the
algorithms for verification tend to be more complicated, and it is not as easy to provide a
counterexample when a property is violated. The TVAR frameworks and structures will
be explored in detail in Chapter 4.

2.5.2 Abstraction Domains
To properly and effectively leverage abstraction, we need to decide how the system will be
abstracted, keeping the number of reachable abstract states low but with enough informa-
tion needed to verify the properties. In practice, it is also necessary to be able to compute
the transition function for the abstract states reasonably fast.

Digital system states are typically composed of separate variables. We can assign
abstract domains to the variables to form the abstraction. There are two general groups
of abstract domains, non-relational and relational. We are mostly interested in bit-vector
domains since bit-vectors are commonly used in digital systems, as previously discussed in
Subsection 2.1.2.

The abstract domains can be considered using various underlying formalisms. For model
checking with abstraction refinement, existential abstraction is sufficient, but it is common
to describe domains using abstract interpretation, which extends existential abstraction
and allows using additional algorithms.

In non-relational domains, each variable is considered separately. Some examples of
domains for bit-vectors are:

◦ Constant domain. The abstract bit-vector either has a constant value or can have
any value (⊤).

◦ Sign domain. Only the signedness of the bit-vector in the two’s complement is
retained. Zero can be treated as a special value as well, and any possibility (negative,

20

2.5. Abstraction and Abstraction Refinement

zero, positive) is represented by ⊤, resulting in the abstract value being represented
by {−, 0,+,⊤}. Other variations are also possible, e.g. also considering non-negative
and non-positive abstract values.

◦ Interval domain. The abstract bit-vector value is restricted to some interval. This
requires interpreting the bit-vector value as a number, differing depending on whether
we consider it to be signed or unsigned. Problematically, signedness may vary de-
pending on the machine-code instruction or hardware operation, leading to research
into wrap-around arithmetic [24].

◦ Three-valued bit-vector domain. Each bit of the bit-vector is considered as sepa-
rate, expressed in three-valued logic. This domain is discussed in detail in Chapter 5.

Relational domains allow expressing relationships between variables, such as the oc-
tagon abstract domain [25]. The richest abstraction domain is predicate abstraction, where
the abstract states retain information about whether some chosen predicate calculus for-
mulas hold in them.

Note 2.5.2. The common formalism for abstract model-checking is that of lack of infor-
mation, using the symbol ⊥ for no information. However, the common formalism for
abstraction domains, coming from program verification and abstract interpretation, is that
of possibilities, using the symbol ⊤ for all possibilities. These formalisms are dual and
both correspond to the third value in three-valued logic.

The choice of a suitable domain is heavily dependent on the system and the verified
property5. While a more descriptive abstraction may reduce state space explosion, its
effectiveness may be limited due to slower computation of transitions.

It has been previously observed that a major exponential explosion in formal verification
of machine-code programs occurs when reading the General Purpose Input/Output (GPIO)
port values [26, 27, 28], an instance of this phenomenon already discussed in Example 2.3.3.
The most suitable domain for resolving this problem is the three-valued bit-vector domain,
which I decided to use in my diploma thesis [A.4]. However, it was previously not possible
to perform arithmetic operations in the three-valued bit-vector domain without exponential
explosion within the operation, leading me to devise new algorithms that solve this problem,
as described in Chapter 5.

Note 2.5.3. I conducted some preliminary research into interval abstraction for machine-
code verification, but it is not integrated into my tool machine-check yet. While I think
that it is worthwhile to use other abstraction domains in addition to the three-valued
bit-vector domain, they are outside of the scope of this thesis.

5If we had an oracle that could always choose the domain resulting in the quickest verification with a
non-⊥ result, verification would be quick and there would be no need for abstraction refinement.

21

2. Background and State of the Art

2.6 State of the Art in Digital System Verification
By comparing the state-of-the-art formal verification tools for hardware, source-code, and
machine-code systems, we can discover how the differences in the system levels result in
differences in approaches taken to describe and verify the systems. I will discuss source-
code and hardware verification first as they are used in practice with a variety of competing
tools [29]. I will restrict the discussion to freely available verification tools and scientific
research. Even though the basic techniques used in commercial tools may be similar to the
ones in freely available tools, the details are not well-known.

2.6.1 Source-Code Systems
The main source for determining the state of the art in formal verification of source-
code systems is the SV-COMP competition, organised yearly from 2012 onwards. In
the latest competition [30], there were 59 verification tools participating, showing that
source-code verification is highly established in the formal verification community. The
main programming language in SV-COMP and most competing tools is the C language,
widely used e.g. in operating system kernels and drivers where programming bugs can
severely impact the security or safety of the affected computers. In the latest SV-COMP
competition, there were 30300 C verification tasks [30, p. 300], showing the maturity of work
on benchmarking of source-code verification. Nevertheless, good results in SV-COMP do
not necessarily mean that the tools are applicable to industrial use [31].

Notably, all specifications in SV-COMP are simple LTL formulas in the form Gϕ,
where ϕ is an atomic property, or Fϕ for termination [32]. As such, it is possible to verify
the specifications using simpler reachability-based algorithms rather than the algorithms
for checking e.g. LTL, CTL, or CTL* specifications. Simple path-based counterexam-
ples can be generated where Gϕ is violated. I would argue that the focus on degenerate
specifications may be detrimental to the diversity of research: there is no quantitative mo-
tivation for verifying more complex specifications that correspond to less trivial violations.
Instead, the verification tools are incentivised to present quantitative improvement for the
degenerate specifications.

While there are many participating tools in SV-COMP, two tools stand out in partic-
ular, frequently placing in top three or winning many categories: CPAchecker6 [33] and
Ultimate Automizer, part of the Ultimate program analysis framework [34]. Notably,
both of the tools use CEGAR and encode the program and the property into Satisfi-
ability Modulo Theories (SMT) formulas which are checked by underlying SMT solver
tools [30, 35]. Further techniques are used to extend this basic concept or introduce addi-
tional improvements, but they are beyond the scope of this thesis.

6As a part of fulfilment of requirements for submitting my doctoral thesis, I went on a month-long
study stay at the Software and Computational Systems Lab of the Ludwig Maximilian University of
Munich, which develops CPAchecker. I contributed to its predicate abstraction component, allowing
verification of programs that use the standard C library memory-manipulation functions memset, memcpy,
and memmove, and improved the treatment of quantifiers.

22

2.6. State of the Art in Digital System Verification

Note 2.6.1. Bytecode was also used for verification. In the main part of the competition,
the DIVINE model checker, which uses LLVM IR bytecode [36], was entered outside
of the competition (hors-concours). The SV-COMP competition also features a track
on verification of Java programs. The Java track is decidedly less popular, with only 9
tools participating, 4 of them hors-concours. The top three tools MLB [37], JBMC [38],
and GDart [39] all use JVM bytecode. All of the hors-concours tools used the JPF
framework [30, p. 308-310], which works with JVM bytecode as well [40].

2.6.2 Hardware Systems
The main hardware system formal verification competition is the Hardware Model Checking
Competition (HWMCC). Despite hardware verification being widespread in industrial
practice [29], the latest HWMCC at the time of writing this thesis was in 2020 [41],
with only 11 verification tools participating, 6 of them competitively, showing distinctly
lower popularity than for source-code verification. Out of these tools, the model checkers
AVR (Abstractly Verifying Reachability) and ABC performed the best. AVR is based
on the IC3 algorithm used with SMT solvers [42]. The IC3 algorithm tries to refine sets of
states in steps reachable from the initial states, the sets of states determined by invariants
that hold [43]. ABC is much more hardware-specific, based on single-bit handling via
And-Inverter Graphs, using multiple algorithms to handle verification, one of them being
abstraction refinement [44, p. 36].

Recently, the Btor2C tool has been introduced, allowing verification of hardware sys-
tems using software tools using translation from hardware to C source code [45]. The
software tools typically under-performed the hardware ones except for a few of the tasks
in the benchmark, an expected result as the tools are tailored to the specific system level.
Notably, the translation exploited the commonalities of bit-vectors in digital systems dis-
cussed in Section 2.1.

2.6.3 Machine-Code Systems
At the time of writing, I am not aware of any publicly available formal verification tools for
machine-code systems other than my tool machine-check. There has been some research
in the field, but the created tools either never have been publicly available or are not
available currently.

A formal verification tool for embedded systems HOIST was described by Regehr and
Reid [46], and used for stack size estimation [47]. The tool essentially builds abstract
Binary Decision Diagrams from the results of instructions of an embedded processor or
its simulator. Unfortunately, this results in high time and memory requirements, making
the technique costly for 8-bit and infeasible for 16-bit or 32-bit processors. Abstraction
refinement was not needed for the authors’ use-case of stack size estimation but presumably
would have been necessary for verifying arbitrary properties.

The Estes model checker was introduced by Mercer and Jones [48]. Estes used the gdb
debugger to step through processor states and thus theoretically could support multiple

23

2. Background and State of the Art

processor models as long as gdb supported them. However, in practice, extensive changes
were necessary to adapt the debugger to model checking on the Motorola 68hc11 processor.

The StEAM model checker was introduced by Mehler [49]. It did not perform ver-
ification for specific hardware but compiled a C/C++ program under verification to the
Internet Virtual Machine (IVM). It could be also considered a bytecode verification tool
but was considered to be a machine-code verification tool by Mehler. The approach did
not become popular in practice, presumably due to the fact that it reduces the amount of
high-level information available in the source code, making verification harder.

The model checker that inspired machine-check the most was Arcade.µC (previously
[mc]square), developed at the RWTH Aachen University. It was introduced by Schlich
and Kowalewski [26]7, and built the state space directly using a custom simulator written
for a specific processor, checking CTL formulas, with special handling of nondeterminism
to prevent state space explosion. Arcade.µC was developed to use abstraction techniques
using three-valued bit-vectors [27], including delayed instantiation of the variables after
masking of inputs by logical instructions so that state-space explosion is mitigated [50].
Subsequent versions of Arcade.µC introduced static analysis techniques, enabling more
efficient verification at the cost of further need for custom tailoring of the verifier to the
processor [28, 51]. Interval abstraction was also added, working in concert with three-valued
bit-vector abstraction to provide a further reduction of the abstract state space [52].

To reduce the difficulty of adding new microcontroller types and architectures to Ar-
cade.µC, synthesis of state space generators was developed [53]. This approach was not
entirely successful as the author was unable to implement abstraction in such a way that
would not require the description writer to tailor the description to it [53, p. 121]. In the
end, the work on verification of microcontroller machine code using Arcade.µC was aban-
doned in favour of verification of Programmable Logic Controller (PLC) programs, which
are typically much simpler. To my knowledge, Arcade.µC never supported abstraction
refinement, though its successor Arcade.PLC implemented CEGAR [54]. Furthermore,
while Arcade.µC used three-valued bit-vectors for abstraction [27], it was not possible to
compute arithmetic operations in the abstraction, forcing exponential explosion.

Note 2.6.2. Little has been published on formal verification of microcode but fairly com-
prehensive summaries of related work have been presented by Davis et al. [55] and Goel et
al. [56]. This is expected as microcode is the core intellectual property of processor design
companies. Due to its similarity to normal machine code, machine-code verification tools
could potentially be used for microcode verification. In addition, some processors contain
machine code in Read-only Memory (ROM) programmed by the manufacturer, providing
features such as Secure Boot. Bugs in such machine code may be unfixable on already man-
ufactured devices. For example, a buffer overflow vulnerability in manufacturer-provided
ROM machine code allowed exploits on a range of NXP devices, and it was only fixed on
newly manufactured devices, leaving many devices vulnerable [57].

7The paper [26] also mentions a previous machine-code model-checker MCESS. The model-checker
seems to be developed in a single diploma thesis, the text of which I was unable to procure. It seems
MCESS was not developed further.

24

2.7. Summary

2.6.4 Comparison of System Levels
Formal verification of source-code systems is the most popular, with hardware systems less
popular but still actively researched, with open-source tools available. Formal verification
of machine-code systems, on the other hand, has been under-researched, with a few scarce
and later-aborted attempts. This seems to be due to the need to combine easy writing of
processor descriptions and management of the abstraction so that the state space size is
not infeasibly large but the verification is still useful.

Unfortunately, the inability to formally verify machine-code systems makes it difficult to
verify processor-specific details such as peripheral manipulation or hand-written assembly
code. Furthermore, it is difficult to formally verify that the machine code generated by the
compiler is truly correct. These verification blind spots are dangerous, especially to safety-
and security-critical systems.

As for the techniques used, state-of-the-art verifiers have converged to the nearly ubiq-
uitous use of abstraction refinement, using CEGAR or similar techniques (such as IC3)
that iteratively take more information into consideration until it is possible to determine
whether the specification holds or not. Symbolic techniques, especially when combined
with SMT solvers, are widespread, although not universal.

Translation is typically performed by compilers, not verification tools themselves, but
translation from hardware systems to source-code systems performed specially for the
purpose of verification has appeared in the Btor2C tool.

2.7 Summary
In this chapter, I discussed digital systems with a focus on verification and introduced three
system levels: hardware, machine-code, and source-code. I noted that there are common-
alities between system levels, especially the use of bit-vector and bit-vector array variables
with their respective operations, motivated by bringing together physical efficiency and
usefulness to humans. I discussed how digital systems of all levels can be formalised as
Moore machines (or their non-finite equivalents).

I discussed why standard predicate logic is not typically used for formal verification,
noting the problems with feasibility and difficulty of expression of temporal properties in
predicate logic. I then introduced the common temporal logics CTL*, CTL, and LTL.

Having introduced the systems and the specifications they are verified against, I intro-
duced model checking, a commonly used approach to formal verification of digital systems,
and defined the Kripke structure formalism.

After introducing model checking, I introduced the three major groups of advanced
model-checking techniques, focusing on the abstraction refinement and noting that there
are two methodologies for it, Counterexample-guided Abstraction Refinement (CEGAR)
and Three-valued Abstraction Refinement (TVAR). CEGAR can verify LTL properties, but
not all CTL or CTL* properties. TVAR can verify all CTL*, CTL, and LTL properties.

25

2. Background and State of the Art

I discussed abstraction domains, and how their choice is of crucial importance for efficient
verification.

Finally, I discussed the state of the art in formal verification of digital systems. Source-
code verification is the most popular and is heavily focused on LTL-style properties. Suit-
able tools are available for hardware verification as well. However, machine-code verifica-
tion is currently not practically usable due to the necessity of tailoring the tools to specific
architectures or devices and the lack of support for abstraction refinement that is utilised
in verification at the source-code and hardware levels.

The inadequacies that I encountered led me to devise novel techniques that will be dis-
cussed in the rest of this thesis. In Chapter 3, I focus on enabling machine-code verification
without tailoring to a specific architecture using translation of simulable processor descrip-
tions. In Chapter 4, I introduce a novel TVAR framework, so that arbitrary µ-calculus
properties (including CTL*, CTL, and LTL properties) can be verified with abstraction
refinement. In Chapter 5, I describe the technique of fast computation of arithmetic oper-
ation results in three-valued bit-vector abstraction, which was previously not possible and
severely limited machine-code verification. Finally, in Chapter 6, I will discuss how I com-
bined the techniques in my tool, and provide experimental results that show its usability
for machine-code verification.

26

Chapter 3
Machine-Code Verification Using

Translation of Simulable Descriptions

An important problem for the verification of machine-code systems is that the guarantees
for the underlying processors are usually only given informally in the accompanying doc-
umentation. While the machine code itself is a well-defined bit sequence, it is necessary
to formalise the guarantees before the system can be verified. While there are specially
created description languages for verification [14], I strove to instead use a general-purpose
programming language because they are popular, well-developed, and provide various con-
veniences such as syntax highlighting, linting, and library management. I succeeded by
devising a novel translation technique.

To formalise the guarantees given for the processor, we can write its simulable descrip-
tion, which I define as code in a general-purpose programming language that describes
the processor behaviour as a finite-state machine (FSM). The FSM is parameterised by
the machine code that will be executed on the processor. By instantiating the simulable
description with the machine code as a parameter, the machine-code system is formed, and
it can be simulated by stepping the FSM.

Unfortunately, without additional reasoning, the simulable descriptions are only veri-
fiable explicitly, precluding abstraction refinement and making verification of reasonably
complex systems infeasible. However, it is typically hard to reason over constructs of
general-purpose programming languages as they are written with expressivity in mind.

To ensure that abstraction refinement can be used in conjunction with simulable de-
scriptions, I devised a technique of translating the simulable descriptions to their verifica-
tion analogues, using meta-programming (automatically rewriting code to other code).

A verification analogue is code added to the simulable description (not changing its
own behaviour) that is written in the same language and behaves analogously to the
description code, but using a different interpretation of the language constructs than the
usual. Specifically, in the abstract analogue, the data types are changed to abstract types
(e.g. bit-vectors to three-valued bit-vectors), and the functions are adjusted accordingly.
The refinement analogue is used to find the reason for an unknown verification result,

27

3. Machine-Code Verification Using Translation of Simulable
Descriptions

the data types and algorithms are transformed so that the finite-state machine is stepped
backwards, deductively finding possible causes for the unknown result. The verification
analogues and the translation process will be discussed in more detail in Chapter 6.

I implemented the technique in my formal verification tool machine-check, written
in the Rust language. The simulable descriptions are written in a subset of the Rust
language, and they are translated to their verification analogues using a macro, a special
Rust language construct that allows meta-programming during compilation. Since the
verification analogues themselves are subject to compilation, they can be optimised by the
compiler, improving verification performance.

In this chapter, I will introduce the high-level process of verification from the point
of view of writing a processor description for verification of machine-code systems using
machine-check, without considering the internals. I will show the description of a very
simplified Reduced Instruction Set Computer (RISC) processor, construct a machine-code
system using a hard-coded machine-code program, and discuss some properties that can be
verified to hold. After that, I will discuss the subset of Rust in which the descriptions can
be written, noting that arbitrary digital systems can be described, not just machine-code
systems.
Note 3.0.1. Sections 3.1 and 3.2 in this chapter, describing the point of view of a processor
description writer, are based on the contents of my paper [A.2], reworked for inclusion in
this thesis.

3.1 Verification of Machine-Code Systems
A machine-code system is composed of the machine code itself and the processor which
executes it. This means that both the machine code and the processor description are
necessary for formal verification of the system against a specification, as shown in Fig-
ure 3.1. While the machine code is some well-defined bit sequence (or multiple sequences
in non-consecutive locations), stored e.g. in the Intel HEX format, the processor descrip-
tions are typically only given in the human-readable form of datasheets and user manuals.
Sometimes, processor simulators are available, either from the manufacturer or some third
party. Unfortunately, the descriptions of the processors in simulators are not usable for
formal verification using model checking with abstraction refinement, as that requires the
ability to manipulate the description to work with the abstraction of the system rather
than the system itself.

In my formal verification tool machine-check, I use translation of simulable proces-
sor descriptions to verification analogues to support effective verification of machine-code
programs. The high-level overview of machine-code verification via machine-check is vi-
sualised in Figure 3.2. The simulable processor description, written in Rust code, is trans-
lated to verification analogues, which are compiled together with algorithms that control
the verification process. The machine code and specification are provided as arguments to
the resultant executable. As such, the verification is faster and uses less memory than if the
system was interpreted, yet allows for flexible, iterative development of the machine code

28

3.2. Processor Descriptions

processor machine code

system specification

verification
result

combine

verify

Figure 3.1: A high-level overview of formal verification of machine-code systems. The solid
yellow cells represent inputs, while the dashed blue cells represent automated results. The
processor and machine code are combined to form the system under verification. It is
then determined if the specification holds or does not hold in the system. This figure is a
specialisation of Figure 2.1 for machine-code systems.

and specification. The verifier executable can also be used on a dedicated server without
installing the Rust language ecosystem. Currently, verification against Computation Tree
Logic (CTL) [58] specifications is supported.

The verification result is a yes-no answer of whether the specification holds for the sys-
tem. The final abstract state space, which serves as a witness to the CTL verification result,
is printed out if requested via a command-line parameter. By design, machine-check is
complete, producing the yes-no answer in finite time (although the needed computation
time and memory may be impractical for some combinations of system and specification).

3.2 Processor Descriptions
The simulable descriptions in machine-check are designed to make describing processor-
based systems simple. Even so, real architectures are still time-consuming to implement
due to the size of the instruction set. For example, I have described the AVR ATmega328P
microcontroller in approximately 3000 lines, with simple peripheral support only. Fortu-
nately, once coded, the vast majority of the description can be reused for other similar
microcontrollers with the same architecture.

A simulable description of a very simplified RISC microcontroller1 is shown in Fig-
ure 3.3. The description is written in a subset of valid Rust code (which will be described
later in Section 3.3), using specially provided machine-check types for simple transcrip-
tion of behaviour from datasheets. The machine-code system described in Figure 3.3 can
be immediately simulated in Rust by instantiating the System structure, with the machine

1The whole description is available at https://docs.rs/crate/machine-check/0.3.0/source/
examples/simple_risc.rs.

29

https://docs.rs/crate/machine-check/0.3.0/source/examples/simple_risc.rs
https://docs.rs/crate/machine-check/0.3.0/source/examples/simple_risc.rs

3. Machine-Code Verification Using Translation of Simulable
Descriptions

processor
description

machine code specification

verification
result

verifier
executable

translate
and compile

execute with
arguments

Figure 3.2: A high-level overview of machine-check machine-code system verification
process. The processor description is translated to verification analogues, then compiled
together with verification control algorithms to form a verifier executable for the given
processor, visualised in a solid green cell. The verifier is executed with the machine code
and specification given as arguments, performing formal verification as in Figure 3.1. The
compilation step ensures a speed gain over interpretation. Additional guarantees beyond
the processor descriptions are not considered in this chapter for simplicity.

code under simulation contained in field progmem, and using the init and next functions
to generate successive states using a given sequence of inputs.

While simulation is performed with a single input sequence, all input sequences must
be considered for formal verification. Since each successive state only depends on the
previous state and the input, it would be possible to generate the reachable state space that
completely captures the system behaviour. However, this is infeasible in practice due to
the exponential explosion problem. As such, the machine_description macro provided by
machine-check, applied to the description on line 1 of Figure 3.3, automatically generates
verification analogues of the machine, allowing the use of advanced abstraction-refinement
techniques. In case the description code does not conform to the subset of Rust processable
by machine-check translation, a compilation error is issued so the problem can be fixed.

In the description in Figure 3.3, the input, state, and system structures are defined
on lines 3–17. Power-of-two array sizes and bit-vector lengths are determined by generic
constants, so e.g. the register array reg contains 22 = 4 registers, each 8 bits wide. On lines
18-59, the finite-state-machine behaviour is described by the functions init and next. In
Rust, if the last statement in a function is not terminated by a semicolon, it is the return
value. As such, both functions return new states. The init function returns a state with
the program counter set to zero and other fields uninitialized (having arbitrary values). The
function next reads the current instruction from read-only program memory, increments
the program counter, and decides on the action to perform depending on the instruction
value. The bitmask_switch macro is designed to have the same format as conventional
instruction set descriptions, filtering on zeros and ones and creating new variables for

30

3.2. Processor Descriptions

1 #[machine_check::machine_description]
2 mod machine_module {
3 pub struct Input {
4 gpio_read: BitvectorArray<4, 8>,
5 uninit_reg: BitvectorArray<2, 8>,
6 uninit_data: BitvectorArray<8, 8>,
7 }
8 impl ::machine_check::Input for Input {}
9 pub struct State {

10 pc: Bitvector<7>,
11 reg: BitvectorArray<2, 8>,
12 data: BitvectorArray<8, 8>,
13 }
14 impl ::machine_check::State for State {}
15 pub struct System {
16 pub progmem: BitvectorArray<7, 12>,
17 }
18 impl ::machine_check::Machine for System {
19 type Input = Input;
20 type State = State;
21 fn init(&self, input: &Input) −> State {
22 State {
23 pc: Bitvector::<7>::new(0),
24 reg: Clone::clone(&input.uninit_reg),
25 data: Clone::clone(&input.uninit_data),
26 }
27 }
28 fn next(&self, state: &State, input: &Input)
29 −> State {
30 let instruction = self.progmem[state.pc];
31 let mut pc = state.pc + Bitvector::<7>::new(1);
32 let mut reg = Clone::clone(&state.reg);
33 let mut data = Clone::clone(&state.data);
34 ::machine_check::bitmask_switch!(instruction {
35 "00dd_00−−_aabb" => { // add
36 reg[d] = reg[a] + reg[b];
37 }
38 "00dd_01−−_gggg" => { // read input
39 reg[d] = input.gpio_read[g];
40 }
41 "00rr_1kkk_kkkk" => { // jump if bit 0 is set
42 if reg[r] & Bitvector::<8>::new(1)
43 == Bitvector::<8>::new(1) {
44 pc = k;
45 };
46 }
47 "01dd_kkkk_kkkk" => { // load immediate
48 reg[d] = k;
49 }
50 "10dd_nnnn_nnnn" => { // load direct
51 reg[d] = data[n];
52 }
53 "11ss_nnnn_nnnn" => { // store direct
54 data[n] = reg[s];
55 }
56 });
57 State { pc, reg, data }
58 }
59 }
60 }

Figure 3.3: Example description of a simplified Harvard-architecture RISC microcontroller
as a finite-state machine. Less important code details are omitted for conciseness and
readability.

31

3. Machine-Code Verification Using Translation of Simulable
Descriptions

letters.
Each system has specific parameters. For example, classic finite-state machines are

constructed without any parameters, while machine-code systems must be provided with
the machine code, with varying specifics such as instruction length and the number of
instructions. As such, in machine-check, constructing the system is the responsibility of
the description writer. For machine-code systems, the intended approach is to read the
machine code from a file given as an argument to the verifier. However, for conciseness,
in Figure 3.4, the example system from Figure 3.3 is constructed with a hard-coded toy
machine-code program. The constructed system is handed off to the main routine of
machine-check afterwards, which verifies a specification obtained from arguments to
the executable. As such, properties of the system obtained by compiling the code from
Figures 3.3 and 3.4 can be formally verified. For example:

◦ Register 1 is set to 1 before the main loop is reached: AF[reg[1] = 1 ∧ PC < 3].
◦ It is always possible to reach program location 9: AG[EF[PC = 9]].
◦ Program locations above 9 are never reached: AG[PC ≤ 9].

The properties are verified nearly instantaneously, below one second of computation time,
and with insignificant memory usage. In comparison, naïve model-checking without ab-
straction would require constructing more than 228 = 2256 states, which is completely
infeasible.

3.3 Subset of the Rust Language Usable in Descriptions
Having shown an example of a simulable description in Figure 3.3, I will discuss what
subset of the Rust language that can be used in descriptions in the current versions
of machine-check. This only affects the simulation description code inside the macro
machine_description, not the related code such as the main function in Figure 3.4.
Note 3.3.1. In the rest of this section, I will write the Rust language constructs under-
lined. Informal but authoritative information about the constructs is provided in the Rust
Reference2. In the electronic version of this thesis, the underlined constructs link to the
appropriate parts of the Rust Reference.

The basic principle is that the macro machine_description emits the code that was
originally written, augmented with the verification analogues that are only usable by
machine-check and opaque to the user. As such, the descriptions can be directly used
outside machine-check as they would be without the macro, so it is possible to e.g. sim-
ulate the described systems by directly stepping the instance of the Machine with given
inputs.

2The latest version of the Rust Reference is available at https://doc.rust-lang.org/stable/
reference/. In machine-check 0.3.0, the current version at the time of writing of this thesis, the
minimum supported Rust version is 1.75.0, with the corresponding version of the Rust Reference at
https://doc.rust-lang.org/1.75.0/reference/.

32

https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/1.75.0/reference/

3.3. Subset of the Rust Language Usable in Descriptions

1 fn main() {
2 let toy_program = [
3 // (0) set r0 to zero
4 Bitvector::new(0b0100_0000_0000),
5 // (1) set r1 to one
6 Bitvector::new(0b0101_0000_0001),
7 // (2) set r0 to zero
8 Bitvector::new(0b0110_0000_0000),
9 // −−− main loop −−−

10 // (3) store r0 content to data location 0
11 Bitvector::new(0b1100_0000_0000),
12 // (4) store r0 content to data location 1
13 Bitvector::new(0b1100_0000_0001),
14 // (5) read input location 0 to r3
15 Bitvector::new(0b0011_0100_0000),
16 // (6) jump to (3) if r3 bit 0 is set
17 Bitvector::new(0b0011_1000_0011),
18 // (7) increment r2
19 Bitvector::new(0b0010_0000_1001),
20 // (8) store r2 content to data location 1
21 Bitvector::new(0b1110_0000_0001),
22 // (9) jump to (3)
23 Bitvector::new(0b0001_1000_0011),
24];
25 let mut progmem = BitvectorArray::new_filled(
26 Bitvector::new(0));
27 for (index, instruction) in toy_program
28 .into_iter().enumerate() {
29 progmem[Bitvector::new(index as u64)] = instruction;
30 }
31 let system = machine_module::System { progmem };
32 machine_check::run(system);
33 }

Figure 3.4: Example of code for verification of a machine-code system based on the sim-
plified RISC processor from Figure 3.3. On lines 1–25, the first ten instructions are hard-
coded, and on lines 26–31, they are assigned into the program memory, pre-filled with
zeros. The System structure is instantiated on line 32, combining the processor description
with the provided program memory, and the verification is run with the provided system.
Finally, the system is handed off to machine-check on line 33, which verifies properties
determined by command-line arguments.
Considering data locations 0 and 1 to be memory-mapped peripherals (e.g. general-purpose
outputs), the output behaviour of the program is that the locations are set to zero on
initialisation, after which the data location 1 is varied between zero and the content of
register 2, which is incremented each time the bit 0 of input location 0 is read as set.

The published version of the paper [A.2] contains slightly wrong comments to instructions (3) and (4) and it is not considered

in the figure caption that the data location 1 is periodically set to 0 in the main loop. The main text is not affected.

33

3. Machine-Code Verification Using Translation of Simulable
Descriptions

The only exception to the principle is when the macro is not able to translate to the
verification analogues for some reason, in which case it emits an error. In that case, care
is taken so that the error is descriptive and localised to the problematic code span so that
it can be fixed. It is also possible that the generated code will cause compilation to fail at
a later stage. Errors have no impact on soundness as verification cannot proceed if they
are emitted.

The macro machine_description must be applied to a module introduced by the Rust
keyword mod that forms a separate lexical scope and contains items. I will now describe the
basic supported items and the constructs inside them non-exhaustively. Since machine-
check is not yet stable, the details may still change.

Use declarations. Since the translation occurs without access to the outer scope of
the macro, it is necessary to either qualify each item from outside of the module with
a full path, such as ::machine_check::Machine, referring to item Machine provided by
machine-check, or add a use declaration as

1 #[machine_check::machine_description]
2 mod machine_module {
3 ...
4 use ::machine_check::Machine;
5 ...
6 }

After that, it is then possible to only refer to Machine in the scope.
Note 3.3.2. In Figure 3.3 and Figure 3.4, the use declarations that are needed for types
::machine_check::Bitvector and ::machine_check::BitvectorArray were skipped for
conciseness and readability.

Structs. In Rust, data types can be combined in a struct type. The struct is typi-
cally defined by a keyword struct followed by named field declarations in braces. In the
machine_description macro, the permitted field types are the other struct types defined
inside the macro in addition to the four types provided by machine−check, which are

◦ Unsigned, an unsigned integer type with finite bit-width,

◦ Signed, a two’s complement signed integer type with finite bit-width,

◦ Bitvector, a type with finite bit-width where signedness is not specified (and only
operations where signedness does not matter are supported),

◦ BitvectorArray, a finite power-of-2 array of Bitvector elements that is indexable
by Bitvector or Unsigned of the appropriate bit-width.

Implementations. The defined structs can be provided with implementations, which
define items directly related to the struct, especially functions. Specially, a struct can
implement a trait, which describes an interface usable by other code without dependence
on the actual type. This is the key to describing a finite-state machine that can be verified
by machine-check. In Figure 3.3, the necessary implementations of the traits for the
finite-state machine are seen:

34

https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/items/modules.html
https://doc.rust-lang.org/1.75.0/reference/items.html
https://doc.rust-lang.org/1.75.0/reference/items.html
https://doc.rust-lang.org/1.75.0/reference/items/use-declarations.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/items.html
https://doc.rust-lang.org/1.75.0/reference/paths.html
https://doc.rust-lang.org/1.75.0/reference/items.html
https://doc.rust-lang.org/1.75.0/reference/items/use-declarations.html
https://doc.rust-lang.org/1.75.0/reference/items/use-declarations.html
https://doc.rust-lang.org/1.75.0/reference/types.html
https://doc.rust-lang.org/1.75.0/reference/items/structs.html
https://doc.rust-lang.org/1.75.0/reference/types.html
https://doc.rust-lang.org/1.75.0/reference/types/struct.html
https://doc.rust-lang.org/1.75.0/reference/items/structs.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/types.html
https://doc.rust-lang.org/1.75.0/reference/types/struct.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/types.html
https://doc.rust-lang.org/1.75.0/reference/items/implementations.html
https://doc.rust-lang.org/1.75.0/reference/types/struct.html
https://doc.rust-lang.org/1.75.0/reference/items/implementations.html
https://doc.rust-lang.org/1.75.0/reference/items.html
https://doc.rust-lang.org/1.75.0/reference/types/struct.html
https://doc.rust-lang.org/1.75.0/reference/items/functions.html
https://doc.rust-lang.org/1.75.0/reference/types/struct.html
https://doc.rust-lang.org/1.75.0/reference/traits.html
https://doc.rust-lang.org/1.75.0/reference/types.html
https://doc.rust-lang.org/1.75.0/reference/items/implementations.html
https://doc.rust-lang.org/1.75.0/reference/traits.html

3.3. Subset of the Rust Language Usable in Descriptions

◦ ::machine_check::Input marks the structure as usable as a machine input.

◦ ::machine_check::State marks the structure as usable as a machine state.

◦ ::machine_check::Machine describes the behaviour of the finite-state machine via
the init and next functions. The associated types Input and State are set to the
locally defined struct types Input and State, deciding the appropriate signatures of
the init and next functions. In addition to the instances of the input and state
structures, these functions can access the instance of the implementing type, which
provides the system parameters.

The functions inside the implementations can have only the types permitted by the macro
in their signatures. They contain a block expression that determines their behaviour. The
block expression is introduced by curly braces and contains a sequence of statements that
can be followed by an expression determining the result value. Each statement is separated
with a semicolon, and three kinds of statements are supported in the machine_description
macro:

◦ Let statements that introduce an optionally-initialised variable, such as the statement
let a = Bitvector::<8>::new(255);.

◦ Expression statements that compute an expression, such as the assignment expression
reg[d] = reg[a] + reg[b];, and discard its return value.

◦ Macro invocation statements that execute a macro in statement position, such as
::machine_check::bitmask_switch!(...);. The supported macros are the bit-
mask switch macro provided by the machine−check library package and standard
library macros panic!, unimplemented!, and todo!, which allow the program to ter-
minate due to some unexpected cause (e.g. a situation that can only occur due to
a previous bug). When verified by machine-check, the inherent lack of panics can
either be verified on its own or before verification of another property (in which case
the verification returns an error if the inherent lack of panics is violated).

Out of the many expression types in Rust, only some are supported in the macro:

◦ Literal expressions, e.g. 255 or the string literal "00rr_1kkk_kkkk".

◦ Path expressions, e.g. k or ::machine_check::bitmask_switch, which denote a local
variable or an item.

◦ Block expressions, e.g. {}.

◦ Operator expressions with a supported operator. Standard binary arithmetic, logical,
bit-shift, and comparison operators +, −, *, /, %, &, |, ^, <<, >>, ==, !=, >, <, >=, <= are
supported3, as well as unary arithmetic negation (−) and bitwise NOT (!). Special

3Division and remainder are currently not available, as I have not yet decided on the behaviour for
division by zero and signed division overflow, but they are technically supported by the translation.

35

https://doc.rust-lang.org/1.75.0/reference/items/functions.html
https://doc.rust-lang.org/1.75.0/reference/items/associated-items.html#associated-types
https://doc.rust-lang.org/1.75.0/reference/types/struct.html
https://doc.rust-lang.org/1.75.0/reference/items/functions.html
https://doc.rust-lang.org/1.75.0/reference/types.html
https://doc.rust-lang.org/1.75.0/reference/items/functions.html
https://doc.rust-lang.org/1.75.0/reference/items/implementations.html
https://doc.rust-lang.org/1.75.0/reference/types.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/expressions/block-expr.html
https://doc.rust-lang.org/1.75.0/reference/expressions/block-expr.html
https://doc.rust-lang.org/1.75.0/reference/statements.html
https://doc.rust-lang.org/1.75.0/reference/expressions.html
https://doc.rust-lang.org/1.75.0/reference/statements.html
https://doc.rust-lang.org/1.75.0/reference/statements.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/statements.html#let-statements
https://doc.rust-lang.org/1.75.0/reference/statements.html#expression-statements
https://doc.rust-lang.org/1.75.0/reference/macros.html#macro-invocation
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/std/macro.panic.html
https://doc.rust-lang.org/std/macro.unimplemented.html
https://doc.rust-lang.org/std/macro.todo.html
https://doc.rust-lang.org/1.75.0/reference/expressions.html
https://doc.rust-lang.org/1.75.0/reference/macros.html
https://doc.rust-lang.org/1.75.0/reference/expressions/literal-expr.html
https://doc.rust-lang.org/1.75.0/reference/expressions/path-expr.html
https://doc.rust-lang.org/1.75.0/reference/items.html
https://doc.rust-lang.org/1.75.0/reference/expressions/block-expr.html
https://doc.rust-lang.org/1.75.0/reference/expressions/operator-expr.html

3. Machine-Code Verification Using Translation of Simulable
Descriptions

supported operators are assignment (pc = k) and reference (&k), which takes the
reference of the variable instead of the variable itself, useful especially for calling
functions that should not take ownership of the variable, only access its value.

◦ Parenthesised expressions, to determine the precedence order of expressions.

◦ Array indexing expressions, e.g. reg[a].

◦ Struct expressions that instantiate a struct given the field names and values, sup-
porting a shorthand when the field names are the same as the corresponding variable
names, e.g. State { pc, reg, data }.

◦ Call expressions that call a function, e.g. Bitvector::<8>::new(1).

◦ Field access expressions that access a struct field, e.g. state.pc.

◦ If expressions that branch the execution conditionally, such as the if expression
if a < b { c = a; } else { c = b; }.

The currently supported subset of Rust does not contain loop expressions, so it is
impossible to inadvertently preclude verification due to an infinite loop. It is possible to
introduce infinite recursion, which will typically result in stack overflow during verification,
although it is also possible that the computation will continue indefinitely due to removal
of recursion through optimisation. As avoiding infinite recursion in system descriptions
is not very problematic, in the current version of machine-check, it is assumed that it
is avoided. In the future, loop expressions may be added and checking for the absence
of infinite loops and recursion may be introduced, so that the expressiveness is enhanced
while assuring finite computation time for the init and next functions.

3.4 Further Notes
This chapter was a light introduction to the simulable descriptions of processors from the
view of a description writer. The machine-code system use-case is ideal for the translation
technique, as the processor description can be compiled only once per device, after which
many programs and specifications can be verified using the resulting executable. A source-
code or hardware system description can also be produced by translation from the original
formal language to the subset of Rust permitted for descriptions, but these approaches
require recompilation each time the system is changed.

In Chapter 6, the implementation of the translation in the macro machine_description
that produces the verification analogues will be described in more detail, once the inter-
acting techniques from Chapters 4 and 5 are also introduced.

36

https://doc.rust-lang.org/1.75.0/reference/items/functions.html
https://doc.rust-lang.org/1.75.0/reference/expressions/grouped-expr.html
https://doc.rust-lang.org/1.75.0/reference/expressions/array-expr.html#array-and-slice-indexing-expressions
https://doc.rust-lang.org/1.75.0/reference/expressions/struct-expr.html
https://doc.rust-lang.org/1.75.0/reference/expressions/call-expr.html
https://doc.rust-lang.org/1.75.0/reference/items/functions.html
https://doc.rust-lang.org/1.75.0/reference/expressions/field-expr.html
https://doc.rust-lang.org/1.75.0/reference/expressions/if-expr.html#if-expressions
https://doc.rust-lang.org/1.75.0/reference/expressions/loop-expr.html
https://doc.rust-lang.org/1.75.0/reference/expressions/loop-expr.html
https://doc.rust-lang.org/1.75.0/reference/items/functions.html

Chapter 4
Input-based Three-valued Abstraction

Refinement Framework

The conventional methodology for abstraction refinement, Counterexample-guided Ab-
straction Refinement (CEGAR) [19], is not strong enough to verify all properties of the
CTL* logic. The shortcoming is resolved by the Three-Valued Abstraction Refinement
(TVAR) methodology. However, despite the ubiquity of CEGAR-based verification tools,
there were no publicly available TVAR-based formal verification tools. I suspect that this
is due to the previously introduced abstraction frameworks based on TVAR [59, 60, 61, 62]
being too complex and unwieldy for intuitive understanding and implementation.

In this chapter, I describe a novel abstraction framework based on Three-Valued Ab-
straction Refinement (TVAR) that I devised during my doctoral study and formally prove
that it can be used for model checking with abstraction refinement. It performs refinement
on system inputs rather than system states as previous TVAR-based abstraction frame-
works have done, resulting in simpler formalisms and implementation. The framework
retains the advantages of TVAR while being simpler than the previous frameworks, and it
is implemented in my free and open-source verification tool machine-check.

Note 4.0.1. This chapter is based on the contents of an available preprint [A.3], reworked
for inclusion in this thesis.

4.1 The Need for a New Three-valued Abstraction Re-
finement Framework

CEGAR is limited to a specific set of temporal properties, which notably includes Linear
Time Logic (LTL) properties but not all Computation Tree Logic (CTL) properties. No-
tably, recovery properties, which state that the system under verification can always return
to a well-known state using some sequence of inputs, cannot be verified using CEGAR. The
recovery properties are crucial especially for hardware systems, so that they can be reset

37

4. Input-based Three-valued Abstraction Refinement Framework

Figure 4.1: Systems that compute the maximum running value of the input, with ini-
tial value 0. In a), the possible input values are 0, 1, and 2. The recovery property
AG(EF(start)) is violated. In b), a return-to-zero input value is added, and the property
is fulfilled. As for similar properties without alternating quantifiers, AG(AF(start)) is
violated in both systems and EG(EF(start)) is fulfilled in both.

without a hard power cycle, and they can also preclude software systems from “freezing”.
They can be expressed in CTL as AG(EF(start)) [18, p. 63].

As CEGAR-based tools are ubiquitous, especially in software verification [30], blind
spots occur: a crucial property not verifiable by CEGAR may not be checked because
there is no suitable verifier to check it. The property may not even be considered during
design, since it does not fit into the LTL-centric view.

The blind-spot problem can be resolved by TVAR. However, the previous works on
TVAR frameworks [59, 60, 61, 62] do not contain information about any implemented
tools. Even after further research, I have not found any free and open-source verification
tools that implement TVAR1. I have tried to implement the previous frameworks into
my free and open-source model-checking tool machine-check, but was unable to due to
the complicated formal structures used, doubts about some proofs, under-specification, and
undesirable characteristics of the previous frameworks. This led me to devise a novel TVAR
framework and implement an instance of it in machine-check. Using the implementation,
I was able to verify recovery properties on systems similar to those in Figure 4.1 while
preventing exponential explosion due to irrelevant inputs and computations, as will be
discussed later in Section 4.6.

4.2 Previous Work on Three-valued Abstraction
In this section, I list previous work on three-valued abstraction and model checking relevant
to this chapter, in roughly chronological order. Additional information about previous work
on three-valued model checking can be found in [23, 62].

Three-valued logic. The typical underlying logic used for three-valued abstraction is
Kleene’s strong three-valued logic [64]. While the logic was introduced in the discussion
of results of partial recursive functions, it can be used to represent uncertainty as well,

1I am aware of a non-free implementation of verification with three-valued abstraction refinement of
strategic abilities in multi-agent systems [63].

38

4.2. Previous Work on Three-valued Abstraction

in which case the three distinct values are typically named “false” (0), “true” (1), and
“unknown” (⊥). Operations featuring only “false” and “true” follow classical logic.

Partial Kripke Structures (PKS). Verification on partial state spaces was intro-
duced by Bruns and Godefroid [65], motivated by the idea of disregarding some system
information to produce a smaller state space (i.e. model checking with abstraction). The
introduced formalism of PKS enriches standard KS by making labellings of states possibly
unknown.

Definition 4.2.1. A partial Kripke structure (PKS) is a tuple (S, S0, R, L) where

◦ S is the set of states,

◦ S0 ⊆ S is the set of initial states,

◦ R ⊆ S × S is a transition relation,

◦ L : S ×A→ {0, 1,⊥} is a labelling function mapping each atomic proposition a ∈ A
to 0 (¬a holds in state), 1 (a holds in state), or ⊥ (it is unknown which one holds).

Note 4.2.2. Partial Kripke structures were introduced without initial states [65]. For cor-
respondence with real systems, initial states are used. Using Definition 4.2.1, a Kripke
structure (KS) is a PKS where the labelling function L is restricted to S × A→ {0, 1}.

Kripke Modal Transition Structures (KMTS). KMTS were introduced by Huth
et al. [66], building on previous work on PKS and on Modal Transition Systems (MTS) [67].
The conventional form of KMTS differs from PKS only in the presence of two transition
functions instead of one. The must-transitions underapproximate the system, while the
may-transitions overapproximate it.

Definition 4.2.3. A Kripke Modal Transition Structure (KMTS) is defined as a tuple
(S, S0, R

may, Rmust, L) where

◦ S, S0, and L follow Definition 4.2.1,

◦ Rmay ⊆ S × S is the set of transitions which may be present,

◦ Rmust ⊆ Rmay is the set of transitions which are definitely present.

Computation of properties. Interpretation of µ-calculus properties on PKS and
KMTS can be computed by converting the structure to two KS, applying standard model-
checking algorithms, and combining the results [68, 69]. As a consequence, the complexity
is the same as of standard model checking.

Expressivity. While PKS can only convey abstraction by states with unknown la-
bellings, KMTS also can convey it by transitions in Rmay \ Rmust, which have unknown
presence. It has been shown that PKS and KMTS are equally expressive [70], i.e. the
KMTS formalism is unnecessarily redundant.

39

4. Input-based Three-valued Abstraction Refinement Framework

4.2.1 Previous Frameworks and Their Problems
I consider three characteristics necessary for a TVAR framework2 to be well-usable:

◦ Refinement monotonicity, i.e. a verifiable property never becomes unverifiable after
refinement.

◦ Ability to use standard, well-researched model-checking algorithms.

◦ No risk of unnecessary exponential explosion introduced by the formalisms.

All of these characteristics are fulfilled by standard CEGAR. I will examine the three pre-
viously introduced TVAR frameworks and show that each one violates some characteristic.

Program-verification TVAR (Godefroid & Jagadeesan). A framework for TVAR
was proposed previously [69], combining the concept of abstraction refinement with avoid-
ance of unnecessary refinement for formulas such as ¬p ∨ p. As this avoidance leads to
high time complexity, I will not discuss it further. The abstract state space is formalised
by KMTS and constructed within each iteration of the refinement loop. The may- and
must-transitions are constructed exactly if they are permissible according to the concrete
state space. The refinement strategy is not discussed in detail, and is not monotone, as it
uses KMTS and refinement on states, so must-transitions can be lost [71].

Game-based TVAR (Shoham & Grumberg). Introduced for CTL specifica-
tions [59] and later extended to µ-calculus [60]. KTMS are used, and a game is played by
a prover and a refuter. If neither wins, the abstraction is refined and KMTS is recomputed.
Later, it was proven that two standard model-checking games can be used instead of one
three-valued game [61]. Unfortunately, the need for specially devised algorithms based on
game theory makes the framework difficult to use.

BDD-based TVAR (Shoham & Grumberg). Introduced for CTL specifications [71]
and later generalised to alternation-free µ-calculus [72]. Abstract states are stored using Bi-
nary Decision Diagrams (BDDs), and BDD operations are used similarly to standard BDD-
based symbolic model checking. To achieve monotonicity, Generalized KMTS (GKMTS)
are used instead of KMTS, at the expense of possible exponential explosion introduced by
hyper-transitions in the GKMTS.

4.3 State-based and Input-based Refinement
My framework is based on the concept of performing input-based refinement instead of
state-based refinement, fulfilling all characteristics from Subsection 4.2.1 and allowing use
of the simple Partial Kripke Structures. In this section, I will explain the concept using
an example of performing one refinement.

I use the classic existential abstraction of the state space, i.e. there is a concretization
function γ : Ŝ → 2S \ {∅} that maps each abstract state ŝ ∈ Ŝ to a non-empty set

2I use the term framework in the sense of abstraction frameworks in [23]. From the user’s point of
view, a three-valued abstraction framework maps each combination of system and property to 0, 1, or ⊥.

40

4.3. State-based and Input-based Refinement

Figure 4.2: Strategies for splitting of path prefix where we are interested in property a
in state ŝ. For CEGAR and state-based TVAR, the actual refinement is performed by
eliminating spurious paths after splitting.

of concrete states it represents. Let us consider abstraction refinement in a situation
where we generated a state space expressible within PKS and three-valued model-checking
returned ⊥. We determined the reason for the unknown result to be an abstract path
prefix shown in Figure 4.2(a). In ŝ, the last state of the prefix, the atomic proposition a is
unknown even though it affects the model-checking result, so the state ŝ should be split.
The concrete equivalent of the path prefix in Figure 4.2(b) shows that the value of the
proposition depends only on the value of input i in the transition from s0.

CEGAR can be formalised using KMTS with no must-transitions [23, p. 412]. The
state ŝ can be safely split to ŝa and ŝb such that γ(ŝ) ⊆ γ(ŝa) ∪ γ(ŝb) as in Figure 4.2(c),
as there is no requirement for ŝa and ŝb to actually correspond to system states since they
are only reachable by may-transitions. However, this splitting does not actually refine the
system (decreasing the number of properties where the model-checking result is ⊥). The
actual refinement is done when CEGAR eliminates paths that violate the specification but
are spurious.

State-based refinement used in previous TVAR frameworks would first split ŝ into

41

4. Input-based Three-valued Abstraction Refinement Framework

two abstract states ŝb, ŝb such that γ(ŝ) ⊆ γ(ŝa)∪γ(ŝb), similarly to CEGAR. However, the
must-transitions from ŝ1 must be eliminated, since it is unclear if either of the transitions
actually exists, as seen in Figure 4.2(d). This means that some properties are no longer
provable in the new system (e.g. that AFϕ holds given that ϕ holds in ŝ but not ŝ0 and ŝ1),
so the refinement is not monotonic. This scenario was the reason for introducing GKMTS
in [71]. After splitting, it is necessary to test for spuriousness after splitting to actually
refine the system, similarly to CEGAR.

Input-based refinement. By deducing which inputs could have caused the unknown
result, we can discover that the value of a in ŝ can depend on the value of î in the step
from ŝ0, but not on the value of î in the step from ŝ1. By abstracting the inputs as well
as states, we can refine the inputs that are suspected of causing the unknown result, as
visualised in Figure 4.2(e).

Unlike state-based refinement where we are not sure if the split states are actually
present, we know that each concrete input must be present since we are considering all
possible inputs during verification. Therefore, each abstract input can be split (or com-
bined) at will, provided that all concrete inputs are preserved. As there is no need to
use may-transitions, PKS can be used for abstract state space formalisation. As seen in
Figure 4.2(e), the amount of newly generated states can be higher than for state-based
splitting, but there is no further need to test for spuriousness.

4.4 Input-based Abstraction Framework
To formalise refinement on inputs, I first define generating automata that include inputs
in their formalisation and generate Partial Kripke Structures, so that standard model-
checking algorithms can be used on the generated PKS. I then describe the main refinement
loop of the proposed abstraction framework.

4.4.1 Generating Automata
I chose the formalism for the generating automata so it is largely consistent with the
generated PKS. Generating automata are cleanly separated from the model-checking al-
gorithms by PKS, and are completely distinct from nondeterministic automata used for
actual model checking, e.g. Büchi automata for LTL checking [73] or tree automata for
three-valued checking [74].

Definition 4.4.1. A generating automaton (GA) is a tuple G = (S, s0, I, q, f, L) where

◦ S is the set of automaton states,

◦ s0 ∈ S is the initial state,

◦ I is the set of all possible step inputs,

◦ q : S → 2I \ {∅} is the input qualification function,

42

4.4. Input-based Abstraction Framework

◦ f : S × I → S is the step function, mapping the combination of the current state
and step input to the next state,

◦ L : S × A→ {0, 1,⊥} is a labelling function.

It generates the PKS K = (S, {s0}, R, L) as

R = {(s, f(s, i)) | s ∈ S ∧ i ∈ q(s)}. (4.1)

Generating automata are similar to classic deterministic automata, but include an input
qualification function q that selects the inputs that will be used to generate transitions from
each state. This is not especially useful for automata representing concrete systems but
will allow deciding which abstract inputs will be used in each state, allowing input-based
refinement.

Example 4.4.2. Abstracting over a system with input set {0, 1}, we can use {0, 1,⊥} as
the abstract input set. In each state, we can decide whether to split the input, either setting
q(s) = {0, 1} so that we can verify properties based on the value or setting q(s) = {⊥} to
mitigate state space explosion. This was previously done in Figure 4.2(e).

Finite GA with q = {(s, I) | s ∈ S} are a special case of Moore machines with output
alphabet A→ {0, 1,⊥}. For simplicity, a single initial state is used. Multiple initial states
can be supported by treating s0 as a dummy state whose direct successors are the actual
initial states. As it is customary to consider the property ϕ to hold exactly when it holds in
all initial states, the property AX[ϕ] on the generated PKS with the dummy initial state
s0 can be model-checked instead of the property ϕ on the PKS with multiple initial states.

4.4.2 High-level View of the Input-based Framework
To visualise the algorithmic actions performed during verification in the input-based frame-
work, I will start with a simple setup using a generating automaton but no abstraction
yet, shown in Figure 4.3. The original system under verification may not be described in
the exact form we need (e.g. is expressed as a program instead of a finite-state machine or
does not contain labellings), so it is first translated to the concrete generating automaton
(CGA) G = (S, s0, I, {(s, I) | s ∈ S}, f, L) that represents it. The CGA generates a PKS
that can be model-checked by classic algorithms. There may be unknown labellings in L,
but if there are none as the system is fully specified, the generated PKS is a KS.

Example 4.4.3. Let us consider the system from Figure 4.1a) that always remembers
the maximum value of its input, ranging from 0 to 2, and starts in 0. We will also use
a single labelling a expressing that the state is equal to 0. The resulting CGA Gex =
(Sex, s0,ex, Iex, {(s, Iex)|s ∈ Sex}, fex, Lex) can be expressed as

Sex
def= {0, 1, 2}, s0,ex

def= 0, Iex
def= Sex,

fex(s, i) def= max(s, i), Lex(s, a) def= 1− sign s.
(4.2)

43

4. Input-based Three-valued Abstraction Refinement Framework

Figure 4.3: Block overview of concrete verification using concrete generating automaton.
Blocks represent structures. Arrows represent algorithm execution, and the algorithms are
assumed to terminate in finite time given finite structures.

Next, I define the input concretization function ζ : Î → 2I \ {∅} in addition to the
state concretization function γ : Ŝ → 2S \ {∅}. I then introduce the abstract generating
automaton (AGA) Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂). Specially, I set γ(ŝ0) = {s0}. The final block
overview of the input-based framework is shown in Figure 4.4. The CGA no longer gener-
ates a PKS directly but is abstracted to an AGA, which is then continually refined within
a three-valued refinement loop.

Example 4.4.4. The choice of abstraction domain determines the AGA. Continuing
with the system from Example 4.4.3, we could choose e.g. interval abstraction or bit-
vector abstraction [A.1]. Using interval abstraction, we could construct an AGA Ĝ =
(Ŝex, ŝ0,ex, Îex, q̂ex, f̂ex, L̂ex) with concretization functions γex, ζex as

γex([ŝlower, ŝupper]) def= {s | ŝlower ≤ s ≤ ŝupper}, ζex
def= γex,

Ŝex
def= {[0, 0], [1, 1], [2, 2], [0, 1], [1, 2], [0, 2]},

f̂ex(ŝ, î) def= [max(ŝlower, îlower),max(ŝupper, îupper)],

q̂ex
def= {[0, 0], [1, 2]},

L̂ex(ŝ, a) def=

b b ∈ {0, 1}, ∀s ∈ γS(ŝ) . Lex(s, a) = b,

⊥ otherwise.

(4.3)

Ĝex generates a PKS with fewer reachable states and transitions than the PKS generated
by Gex, but it is still possible to verify that AG[EF[a]] does not hold.

The framework allows using standard model-checking algorithms and there is no risk of
unnecessary exponential explosion due to the formalisms, which are two of the three char-
acteristics of a well-usable TVAR framework from Subsection 4.2.1. Of course, functional
characteristics of the input-based framework are also important: whether we can guaran-
tee soundness (that it never returns a wrong result), monotonicity (that properties that
are known will not become unknown after refinement), and completeness (that it always
returns). While soundness is necessary for an abstraction framework, monotonicity is the
third characteristic of a well-usable TVAR framework, and completeness further increases
the usefulness of the framework.

44

4.5. Soundness, Monotonicity, and Completeness

Figure 4.4: Block overview of the proposed input-based Three-valued Abstraction Refine-
ment framework, which extends Figure 4.3. In addition to describing the formalism, this
high-level overview can be directly used as a blueprint for verification tool development.
Formally, the abstract generating automaton is replaced by a new one after each iteration
of the refinement loop.

4.5 Soundness, Monotonicity, and Completeness
In this section, I will prove that the proposed input-based framework is sound, monotone,
and complete. Of course, whether these characteristics hold in an instance of the framework
depends on the chosen abstract generating automata. I will formulate the theorems that
underpin soundness, monotonicity, and completeness first, explaining the requirements
informally to provide an intuitive understanding, before proving the theorems at the end
of the section. For conciseness, I write that an abstract state ŝ or input î covers a concrete
s ∈ S or i ∈ I when s ∈ γ(ŝ) or i ∈ ζ (̂i), respectively, and that it covers another abstract
state ŝ∗ ∈ Ŝ or input î∗ ∈ Î when γ(ŝ∗) ⊆ γ(ŝ) or ζ (̂i∗) ⊆ ζ (̂i), respectively.

Definition 4.5.1. Soundness of Kripke structure K1 is preserved in Kripke structure K2

if, for every property ϕ of µ-calculus over the set of atomic propositions A, denoting its
3-valued interpretation on PKS K by JϕK(K), it holds that

JϕK(K2) ̸= ⊥ ⇒ JϕK(K1) = JϕK(K2). (4.4)

The soundness of generating automata follows their generated Kripke structures.

Informally, all interpretations of properties that are not unknown in the “coarse” K2

are the same in the “fine” K1. However, an interpretation that is not unknown in the fine
K1 can still be unknown in the coarse K2.

45

4. Input-based Three-valued Abstraction Refinement Framework

Theorem 4.5.2 (Soundness). Soundness of a concrete generating automaton G is pre-
served in an abstract generating automaton Ĝ if Ĝ fulfils

∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀a ∈ A . (L̂(ŝ, a) ̸= ⊥ ⇒ L̂(ŝ, a) = L(s, a)),
∀(ŝ, i) ∈ Ŝ × I . ∃î ∈ q̂(ŝ) . i ∈ ζ (̂i),
∀(ŝ, î) ∈ Ŝ × Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . f(s, i) ∈ γ(f̂(ŝ, î)).

(4.5)

Informally, there are three requirements:

1. Labelling soundness. Each abstract state labelling must either correspond to the
labelling of all concrete states it covers or be unknown.

2. Full input coverage. In every abstract state, each concrete input must be covered
by some qualified abstract input.

3. Step soundness. Each result of the abstract step function must cover all results
of the concrete step function where its arguments are covered by the abstract step
function arguments.

Example 4.5.3. In Example 4.4.4, soundness of Gex is preserved in Ĝex.

Definition 4.5.4. Abstract generating automaton Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂) is monotone with
respect to concretization if

∀(ŝ1, ŝ2, a) ∈ Ŝ × Ŝ ×A .

((γ(ŝ1) ⊆ γ(ŝ2) ∧ L̂(ŝ2, a) ̸= ⊥)⇒ L̂(ŝ2, a) = L(ŝ1, a)),
∀(ŝ1, ŝ2, î1, î2) ∈ Ŝ × Ŝ × Î × Î .

((γ(ŝ1)× ζ (̂i1) ⊆ γ(ŝ2)× ζ (̂i2))⇒ γ(f̂(ŝ1, î1)) ⊆ γ(f̂(ŝ2, î2)).

(4.6)

Informally, Equation 4.6 requires the labellings to have an inclination to being unknown
monotonically with coverage, and for the coverage of the results of the step function to
tend to increase monotonically with the coverage of its arguments.

Theorem 4.5.5 (Monotonicity). Soundness of an abstract generating automaton Ĝ1 =
(Ŝ, ŝ0, Î , q̂

1, f̂ 1, L̂) is preserved in an abstract generating automaton Ĝ2 = (Ŝ, ŝ0, Î , q̂
2, f̂ 2, L̂)

if Ĝ2 is monotone with respect to concretization and

∀ŝ ∈ Ŝ . ∀î1 ∈ q̂1(ŝ) . ∃î2 ∈ q̂2(ŝ) . ζ (̂i1) ⊆ ζ (̂i2),
∀ŝ ∈ Ŝ . ∀î2 ∈ q̂2(ŝ) . ∃î1 ∈ q̂1(ŝ) . ζ (̂i1) ⊆ ζ (̂i2),
∀(ŝ, î) ∈ Ŝ × Î . γ(f̂ 1(ŝ, î)) ⊆ γ(f̂ 2(ŝ, î)).

(4.7)

Informally, refining from the coarse Ĝ2 to the fine Ĝ1, we do not lose properties provable
in Ĝ2 by guaranteeing the soundness of Ĝ1 is preserved in Ĝ2. For that, we require that
Ĝ2 is monotone w.r.t. concretization and also:

46

4.5. Soundness, Monotonicity, and Completeness

1. Fine qualified inputs are not spurious. Each fine qualified input is covered by
at least one coarse qualified input.

2. Coarse qualified inputs are not lost. Each coarse qualified input covers at least
one fine qualified input.

3. Step function coverage. The result of the fine step function is always covered by
the result of the coarse step function.

The need for both quantifier combinations in the first two requirements in Equation 4.7 may
be surprising. Their violations correspond to transition addition and removal, respectively,
both of which can change verifiable properties.

Theorem 4.5.6 (Completeness). Assume an AGA Ĝ = (Ŝ, ŝ0, Î , q̂, f̂ , L̂), corresponding
to G = (S, s0, I, {s, I | s ∈ S}, f, L), that fulfils Equation 4.5 and is monotone with respect
to concretization. Its every finite µ-calculus property can be verified in finite time by
abstraction refinement if S, I, Ŝ, Î are finite and

∀s ∈ S . ∃ŝ ∈ Ŝ . γ(ŝ) = {s}, ∀i ∈ I . ∃î ∈ Î . ζ (̂i) = {i}. (4.8)

As completeness can be achieved by monotonically refining to an equivalent to the
CGA, it suffices for concrete states and inputs to have abstract equivalents.

The framework. Considering the whole framework in Figure 4.4, translation is an
implementation problem, PKS generation is trivial, and algorithms for model-checking µ-
calculus or its fragments on PKS are well-known [68, 62], so only the relationships between
CGA and AGA when abstracting and refining have to be considered, as follows:

◦ Soundness. Each AGA preserves soundness of the CGA as per Theorem 4.5.2.

◦ Monotonicity. Each AGA preserves soundness of the AGA it is refined to as per
Theorem 4.5.5.

◦ Completeness. Each AGA follows Theorem 4.5.6, and an AGA that produces the
same results as the CGA is used in finite time (it exists as per Subsection 4.5.4).

It remains to prove the theorems.

4.5.1 Soundness Preservation through Modal Simulation
To prove the theorems efficiently, without even directly defining µ-calculus, I use the previ-
ously proven relationship of soundness preservation and modal simulation [23, p. 408-410],
which I simplified for use with PKS.

47

4. Input-based Three-valued Abstraction Refinement Framework

Definition 4.5.7. Let K1 = (S1, S1
0 , R

1, L1) and K2 = (S2, S2
0 , R

2, L2) be PKS over the
set of atomic propositions A. Let H ⊆ S1 × S2 be a relation. H is a modal simulation
from K1 to K2 if and only if all of the following hold,

∀(s1, s2) ∈ H . ∀a ∈ A . (L2(s2, a) ̸= ⊥ ⇒ L1(s1, a) = L2(s2, a)),
∀(s1, s2) ∈ H . ∀s′1 ∈ S1 . (R1(s1, s′1)⇒ ∃s′2 ∈ S2 . (R2(s2, s′2) ∧H(s′1, s′2))),
∀(s1, s2) ∈ H . ∀s′2 ∈ S2 . (R2(s2, s′2)⇒ ∃s′1 ∈ S1 . (R1(s1, s′1) ∧H(s′1, s′2))).

(4.9)

Informally, H relates the states of K1 and K2 so that the states in the fine K1 preserve all
known labellings of their related states from the coarse K2, and transitions are respected:
for every pair of related states in H, each transition from one element of the pair must
correspond to at least one transition from the other element with the endpoints related by
H.

Definition 4.5.8. K1 is modal-simulated by K2, denoted K1 ⪯ K2, if H is a modal
simulation from K1 to K2 and furthermore,

∀s1
0 ∈ S1

0 . ∃s2
0 ∈ S2

0 . H(s1
0, s

2
0). (4.10)

Property 4.5.9. Soundness of K1 is preserved in K2 if K1 ⪯ K2 [23, p. 410].

Lemma 4.5.10. Soundness of a generating automaton G1 = (S1, s1
0, q

1, f 1, L1) is preserved
in a generating automaton G2 = (S2, s2

0, q
2, f 2, L2) if there exists a relation H ⊆ S1 × S2

where

(s1
0, s

2
0) ∈ H,

∀(s1, s2) ∈ H . ∀a ∈ A . (L2(s2, a) ̸= ⊥ ⇒ L1(s1, a) = L2(s2, a)),
∀(s1, s2) ∈ H . ∀i1 ∈ q1(s1) . ∃i2 ∈ q2(s2) . H(f 1(s1, i1), f 2(s2, i2)),
∀(s1, s2) ∈ H . ∀i2 ∈ q2(s2) . ∃i1 ∈ q1(s1) . H(f 1(s1, i1), f 2(s2, i2)).

(4.11)

Proof. G1 generates the PKS K1 = (S1, S1
0 , R

1, L1) and G2 generates the PKS K2 =
(S2, S2

0 , R
2, L2). We will prove that assuming Equation 4.11, soundness of K1 is preserved

in K2. As (s1
0, s

2
0) ∈ H, Equation 4.10 holds, and it remains to prove that H is a modal

simulation from K1 to K2. The first part of Equation 4.9 directly follows from Equa-
tion 4.11, and we can rewrite the other two parts, respectively inserting the definition of
R1 and R2 from Equation 4.1,

∀(s1, s2) ∈ H . ∀s′1 ∈ S1 .

((∃i1 ∈ q1(s1) . s′1 = f 1(s1, i1))⇒ ∃s′2 ∈ S2 . (R2(s2, s′2) ∧H(s′1, s′2))),
∀(s1, s2) ∈ H . ∀s′2 ∈ S2 .

((∃i2 ∈ q2(s2) . s′2 = f 2(s2, i2))⇒ ∃s′1 ∈ S1 . (R1(s1, s′1) ∧H(s′1, s′2))).

(4.12)

We move the i1, i2 quantifiers out of the implication, negating them as we are moving
out of antecedent. The s′1 and s′2 variables, respectively, are now uniquely defined in the

48

4.5. Soundness, Monotonicity, and Completeness

antecedent, so we replace their occurrences by the definition and eliminate the quantifiers,
obtaining

∀(s1, s2) ∈ H . ∀i1 ∈ q1(s1) . ∃s′2 ∈ S2 . (R2(s2, s′2) ∧H(f 1(s1, i1), s′2)),
∀(s1, s2) ∈ H . ∀i2 ∈ q2(s2) . ∃s′1 ∈ S1 . (R1(s1, s′1) ∧H(s′1, f 2(s2, i2))).

(4.13)

We then respectively insert the definition of R2 and R1, pull the i2, i1 quantifiers outside,
and eliminate the s′2, s′1 variables, obtaining

∀(s1, s2) ∈ H . ∀i1 ∈ q1(s1) . ∃i2 ∈ q2(s2) . H(f 1(s1, i1), f 2(s2, i2)),
∀(s1, s2) ∈ H . ∀i2 ∈ q2(s2) . ∃i1 ∈ q1(s1) . H(f 1(s1, i1), f 2(s2, i2)),

(4.14)

which corresponds to the last two parts of the assumed Equation 4.11.

4.5.2 Proof of Soundness
Proof (Theorem 4.5.2). To prove that soundness of G is preserved in Ĝ, we define

H = {(s, ŝ) ∈ S × Ŝ | s ∈ γ(ŝ)}. (4.15)

We assume Equation 4.5 and will prove that Equation 4.11 holds. As γ(ŝ0) = {s0}, the
first part of Equation 4.11 holds. Its second part holds due to the first part of Equation 4.5.
We rewrite the last two parts of Equation 4.11 as

∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀i ∈ I . ∃î ∈ q̂(ŝ) . f(s, i) ∈ γ(f̂(ŝ, î)),
∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀î ∈ q̂(ŝ) . ∃i ∈ I . f(s, i) ∈ γ(f̂(ŝ, î)).

(4.16)

Informally, from each concrete state covered by an abstract state, the first part of
Equation 4.16 requires that each concrete step result is covered by some abstract step
result, while the second part requires that each abstract step result covers some concrete
step result.

First part. We assume s ∈ S, ŝ ∈ γ(ŝ), i ∈ I to be arbitrary but fixed. From the
second assumption in Equation 4.5, we know that we can choose some î ∈ q̂(ŝ) for which
i ∈ ζ (̂i). From the third assumption, f(s, i) ∈ γ(f̂(ŝ, î)).

Second part. We assume s ∈ S, ŝ ∈ γ(ŝ), î ∈ q̂(ŝ) to be arbitrary but fixed. As
ζ : Î → 2I \ {∅}, we can always choose some i ∈ ζ (̂i). From the third assumption in
Equation 4.5, f(s, i) ∈ γ(f̂(ŝ, î)).

We conclude that the soundness of G is preserved in Ĝ due to Lemma 4.5.10.

4.5.3 Proof of Monotonicity
Proof (Theorem 4.5.5). We are to prove that soundness of Ĝ1 = (Ŝ, ŝ0, Î , q̂

1, f̂ 1, L̂) is
preserved in Ĝ2 = (Ŝ, ŝ0, Î , q̂

2, f̂ 2, L̂). We define

H = {(ŝ1, ŝ2) ∈ Ŝ × Ŝ | γ(ŝ1) ⊆ γ(ŝ2)}. (4.17)

49

4. Input-based Three-valued Abstraction Refinement Framework

We assume Equation 4.7 as well as Equation 4.6 for Ĝ2, and will prove that Equa-
tion 4.11 holds. The first part of Equation 4.11 holds trivially. Its second part holds due
to the first part of Equation 4.6. Assuming that ŝ1 ∈ Ŝ, ŝ2 ∈ Ŝ are arbitrary but fixed and
γ(ŝ1) ⊆ γ(ŝ2) holds, we rewrite the last two parts of Equation 4.11 as

∀î1 ∈ q̂1(ŝ1) . ∃î2 ∈ q̂2(ŝ2) . γ(f̂ 1(ŝ1, î1)) ⊆ γ(f̂ 2(ŝ2, î2)),
∀î2 ∈ q̂2(ŝ2) . ∃î1 ∈ q̂1(ŝ1) . γ(f̂ 1(ŝ1, î1)) ⊆ γ(f̂ 2(ŝ2, î2)).

(4.18)

First part. We assume î1 ∈ q̂1(ŝ1) arbitrary but fixed and choose an î2 ∈ q̂2(ŝ2) for
which ζ (̂i1) ⊆ ζ (̂i2), which exists due to the first part of Equation 4.7.

Second part. We assume î2 ∈ q̂2(ŝ2) arbitrary but fixed and choose an î1 ∈ q̂1(ŝ1) for
which ζ (̂i1) ⊆ ζ (̂i2), which exists due to the second part of Equation 4.7.

It remains to prove γ(f̂ 1(ŝ1, î1)) ⊆ γ(f̂ 2(ŝ2, î2)). From the third part of assumed Equa-
tion 4.7, we strengthen to γ(f̂ 2(ŝ1, î1)) ⊆ γ(f̂ 2(ŝ2, î2)), which directly follows from our
assumptions: γ(ŝ1) ⊆ γ(ŝ2), ζ (̂i1) ⊆ ζ (̂i2), and Equation 4.6 assumed for Ĝ2. We conclude
that the soundness of Ĝ1 is preserved in Ĝ2 due to Lemma 4.5.10.

4.5.4 Proof of Completeness
Proof (Theorem 4.5.6). As S, I, Ŝ, Î are finite, both model-checking and monotonic
refinement of q̂, f̂ can be performed in finite time. It remains to prove that Ĝ can be
monotonically refined to some Ĝ∗ where soundness of G is preserved in Ĝ∗ and soundness
of Ĝ∗ is preserved by G, so both have the same interpretations of µ-calculus properties.

Due to Equation 4.8, there exists a function Z : S → Ŝ that maps each state s to
some state ŝ so that γ(ŝ) = {s}. We define an abstract generating automaton Ĝ∗ =
(Ŝ, ŝ0, Î , q̂

∗, f̂ ∗, L̂∗) as

q̂∗(ŝ) = {̂i | ζ (̂i) = 1},

f̂ ∗(ŝ, î) =

Z(f(s, i)) {s} = γ(ŝ), {i} = ζ (̂i),
f̂(ŝ, î) otherwise,

L̂∗(ŝ, a) =

b b ∈ {0, 1},∀s ∈ γ(ŝ) . L(s, a) = b,

⊥ otherwise.

(4.19)

Clearly, Ĝ∗ is monotone w.r.t. concretization as per Equation 4.6. As we assume Equa-
tion 4.8 holds and Equation 4.5 holds for Ĝ, it can be shown from Equation 4.19 that
Equation 4.5 holds for Ĝ∗ as well. Therefore, the soundness of G is preserved in Ĝ∗. Fur-
thermore, as Ĝ is monotone w.r.t. concretization, and Equation 4.7 between Ĝ1 = Ĝ∗

and Ĝ2 = Ĝ holds due to Equation 4.19 and soundness of G is preserved in Ĝ, Ĝ can be
monotonically refined to Ĝ∗. It remains to prove that the soundness of G is preserved in
Ĝ∗. We define

H = {(ŝ, s) ∈ Ŝ × S | γ(ŝ) = {s}}. (4.20)

50

4.6. Implementation and Experimental Evaluation

As γ(ŝ0) = {s0}, the first part of Equation 4.11 holds. Its second part holds as only
the states of Ĝ∗ with exactly one concretization are present in H, and they have the same
labelling as their concretization due to Equation 4.19. Rewriting the last two parts of
Equation 4.11 results in the same formulas as in Equation 4.16 (only with the order of the
parts swapped). The same argument as in the proof of soundness can therefore be used
to show Lemma 4.5.10 holds. As such, the soundness of Ĝ∗ is preserved by G, completing
the proof.

4.6 Implementation and Experimental Evaluation
I have implemented an instance of my proposed framework in machine-check. I im-
plemented explicit-state CTL model-checking of KS as per Clarke et al. [75], extending to
PKS as per Bruns and Godefroid [68, p. 173-174]. As I am primarily interested in verifying
machine-code systems, I used three-valued bit-vector abstraction [A.1] in my implementa-
tion. To find the path prefix to be refined, as in Figure 4.2, we deduce it from the computed
labellings.

In addition to the choice of abstraction, the choice of the initial AGA and its refinements
is crucial. I will experimentally evaluate three basic strategies currently supported in
machine-check:

◦ Naïve. In the initial AGA, only single-concretization inputs are qualified and the ab-
stract step function exactly covers the concrete step functions for single-concretization
arguments, similarly to G∗ from Subsection 4.5.4. No refinement is performed, and
the state space is equivalent to the one generated by the CGA.

◦ Input splitting. In the initial AGA, the qualified inputs have all bits unknown and
are refined as necessary.

◦ Input splitting with decay. In addition to input splitting, the abstract step
function initially decays step results to states with all bits unknown. The decay is
refined as necessary.

In the current implementation, I refine one bit at a time, update the state space after
refinement (retaining the parts of the state space that did not change, with infrequent mark-
and-sweep cleanup), and recompute all labellings afterwards. Notwithstanding possible
bugs, the implementation should be sound, monotone, and complete. The framework was
easy to implement, and the main challenges were in sub-problems: abstracting, model
checking, and choosing the refinement.

Evaluation. To demonstrate the usability of my framework, I verified recovery prop-
erties on systems similar to those in Figure 4.1, but with added parameters. The system
input is a tuple i = (n,w, r), where r determines whether the system should be reset. Each
state is a tuple s = (v, u, c), where the variable v represents the maximum running value
of input n as in Figure 4.1, u is loaded from input w in every step but otherwise unused
and irrelevant, and c is an irrelevant free-running counter. The systems are parameterised

51

4. Input-based Three-valued Abstraction Refinement Framework

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8

W
a
llt

im
e

Value bits

Naïve
Input

Input+Decay

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8

W
a
llt

im
e

Value bits

Naïve
Input

Input+Decay

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8
W

a
llt

im
e

Unused bits

Naïve
Input

Input+Decay

Recoverable (AG[EF(a)] holds)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8

W
a
llt

im
e

Unused bits

Naïve
Input

Input+Decay

Non-recoverable (AG[EF(a)] does not hold)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8

W
a
llt

im
e

Counter bits

Naïve
Input

Input+Decay

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8

W
a
llt

im
e

Counter bits

Naïve
Input

Input+Decay

Figure 4.5: Wall-time elapsed during verification of the recovery property. In the left
column, V is manipulated, U = C = 0. In the centre column, U is manipulated, V = 4,
C = 0. In the right column, C is manipulated, V = 4, U = 0. Rising-line trends
correspond to exponential explosion. Horizontal-line trends show complete insensitivity to
the independent variable, with no exponential explosion. The unusually fast verification
of the non-recoverable system with the input splitting strategy is caused by the quick
generation of a reachable state where EF[a] does not hold.

by naturals V , U , and C, determining the number of used bits in v, u, and c, respectively.
The initial state is (0, 0, 0) and the step functions are

fnon-recoverable((v, u, c), (n,w, r)) def= (max(v, n), w, c+ 1 mod 2C),

frecoverable((v, u, c), (n,w, r)) def= ((1− r) max(v, n), w, c+ 1 mod 2C),
(4.21)

Using the implementation in machine-check3, I verified the CTL property AG[EF [a]]
(a is true when v = 0) for various parameter combinations, and visualised the elapsed wall-
time in Figure 4.5.

As we are evaluating the framework, not the tool, I will only discuss the trends shown
by the strategies.

3The results of the evaluation together with the source code and scripts for reproduction are available
as an artefact at https://doi.org/10.5281/zenodo.13375827.

52

https://doi.org/10.5281/zenodo.13375827

4.7. Further Notes

◦ Naïve. Susceptible to exponential explosion in all shown cases.

◦ Input splitting. Not susceptible to exponential explosion due to irrelevant unused
input assignments (middle column of Figure 4.5).

◦ Input splitting with decay. In addition, not susceptible to exponential explosion
due to irrelevant computations (right column of Figure 4.5).

My framework is clearly capable of mitigating exponential explosion. The constant
complexity factors are determined by the abstraction and refinement strategy choices,
which should be chosen to suit the systems under verification.

4.7 Further Notes
The presented input-based Three-Valued Abstraction Refinement (TVAR) framework al-
lows verification of µ-calculus properties on digital systems using abstraction refinement.
I have implemented the input-based framework I devised in my formal verification tool
machine-check, which, as far as I know, is the first free and open-source implementa-
tion of TVAR. While the implementation in machine-check is currently only able to
check CTL properties, this is dependent only on the implementation of the underlying
classic algorithms for standard two-valued model checking. The abstraction domain used
is also not restricted by anything else than the requirements for soundness (and optionally
monotonicity and completeness), providing a high amount of flexibility. The abstraction
domain currently implemented in machine-check is that of three-valued bitvectors, which
supports all common bitvector operations (bitwise, arithmetic etc.) thanks to the tech-
niques shown in Chapter 5. The combination of the techniques in machine-check will be
discussed and evaluated in Chapter 6.

53

Chapter 5
Abstract Three-valued Bit-vector

Arithmetic

As discussed in Chapter 2.1, one of the major commonalities of digital systems are oper-
ations on bit-vectors. Especially important are bitwise logical operations and fixed-point
wrap-around arithmetic. To formally verify such systems using model checking with ab-
straction, the bit-vectors must be abstracted somehow and manipulated with analogues of
the operations used on concrete bit-vectors.

For machine-code systems, it is advantageous to use the three-valued bit-vector ab-
straction, where each abstract bit can have value “zero”, “one”, or “perhaps one, perhaps
zero” (unknown). Using this abstraction, bit and bit-vector movement operations may be
performed directly on abstract bits.

Each movement operation produces a single abstract result, avoiding state space explo-
sion. The caveat is that overapproximation is incurred as relationships between unknown
values are lost. Bitwise logic operations (AND, OR, NOT. . .) can be performed in three-
valued logic, producing a single abstract result without exponential explosion [27, 50].

When implementing the predecessor to machine-check, a verification tool introduced
in [A.4], I found that while it was effective to use three-valued bit-vector abstraction, arith-
metic operations still required instantiation of the unknown bits to enumerate all concrete
input possibilities, treating each arising output possibility as distinct. This would lead
not only to output computation time increasing exponentially based on the number of
unknown bits but also to the potential creation of multiple new states and the possibility
of severe state space explosion. For example, an operation with two 32-bit inputs and
a 32-bit output could require up to 264 concrete operation computations and could pro-
duce up to 232 new states. This prompted me to research how to quickly compute useful
results of arithmetic operations while using three-valued abstraction, with no possibility of
exponential explosion due to instantiation.
Note 5.0.1. This chapter is based on the contents of the paper [A.1] that I published
together with my supervisor, reworked for inclusion in this thesis. As the paper was a
joint work, I have retained the plural first-person pronouns (we) in the rest of this chapter.

55

5. Abstract Three-valued Bit-vector Arithmetic

I was the main contributor, while my supervisor contributed mainly to the fast abstract
multiplication proofs in Section 5.6.

In this chapter, we formulate the forward operation problem, where an arbitrary oper-
ation performed on three-valued abstract bit-vector inputs results in a single three-valued
abstract bit-vector output which preserves the soundness of model checking. While the
best possible output can always be found in worst-case time exponential in the number of
three-valued input bits, this is slow for 8-bit binary operations and infeasible for higher
powers of two.

To aid with the construction of polynomial-time worst-case algorithms, we devise a
novel modular extreme-search technique. Using this technique, we find a linear-time algo-
rithm for abstract addition and a worst-case quadratic-time algorithm for abstract multi-
plication.

Our results allow model checkers that use the three-valued abstraction technique to com-
pute the state space faster and to manage its size by only performing instantiation when
necessary, reducing the risk of state space explosion.

5.1 Related Work
Many-valued logics have been extensively studied on their own, including Kleene logic [64]
used for three-valued model checking [27]. Previously, three-valued logic was used for static
program analysis of 8-bit microcontroller programs[46]. Binary decision diagrams (BDDs)
were used to compress input-output relationships for arbitrary abstract operations. This
resulted in high generation times and storage usage, making the technique infeasible to use
with 16-bit or 32-bit operands. These restrictions are not present in our approach where we
produce the abstract operation results purely algorithmically, but precomputation may still
be useful for abstract operations with no known worst-case polynomial-time algorithms.

In addition to machine-code analysis and verification, multi-valued logics are also widely
used for register-transfer level digital logic simulation. The IEEE 1164 standard [76] in-
troduces nine logic values, out of which ‘0’ (zero), ‘1’ (one), and ‘X’ (unknown) directly
correspond to three-valued abstraction. For easy differentiation between concrete values
and abstract values, we will use the IEEE 1164 notation in this paper, using single quotes
to represent an abstract bit as well as double quotes to represent an abstract bit-vector
(tuple of abstract bits). While we primarily consider microprocessor machine-code model
checking as our use case, we note that the presented algorithms also might be useful for
simulation, automated test pattern generation, and formal verification of digital circuits
containing adders and multipliers.

Yamane et al. [77] proposed that instantiation may be performed based only on in-
teresting variables. For example, if a status flag “zero” is of interest, a tuple of values
“XX” from which the flag is computed should be replaced by the possibilities {“00”, “1X”,
“X1”}. This leads to lesser state space explosion compared to naïve instantiation but is not
relevant for our discussion as we discuss avoiding instantiation entirely during operation
resolution.

56

5.2. Basic Definitions

In the paper, we define certain pseudo-Boolean functions and search for their global
extremes. This is also called pseudo-Boolean optimisation [78]. Problems in this field are
often NP-hard. However, pseudo-Boolean functions for addition and multiplication that
we will use in this paper have special forms that will allow us to resolve the correspond-
ing problems in polynomial time without having to resort to advanced pseudo-Boolean
optimisation techniques.

5.2 Basic Definitions
Let us consider a binary concrete operation which produces a single M -bit output for each
combination of two N -bit operands, i.e. r : BN × BN → BM . We define the forward
operation problem as the problem of producing a single abstract bit-vector output given
supplied abstract inputs, preserving soundness. The output is not pre-restricted (the oper-
ation computation moves only forward). To preserve soundness, the abstract output must
contain all possible concrete outputs that would be generated by first performing instanti-
ation, receiving a set of concrete possibilities, and then performing the operation on each
possibility.

To easily formalise this requirement, we first formalise three-valued abstraction using
sets. Each three-valued abstract bit value (‘0’,‘1’,‘X’) identifies all possible values the
corresponding concrete bit can take. We define the abstract bit as a subset of B = {0, 1}
and the abstract bit values as

‘0’ def= {0}, ‘1’ def= {1}, ‘X’ def= {0, 1}. (5.1)

This formalisation corresponds exactly to the meaning of ‘X’ as “possibly 0, possibly 1”.
Even though ∅ is also a subset of B, it is never assigned to any abstract bit as there is
always at least a single output possibility.

If an abstract bit is either ‘0’ or ‘1’, we consider it known; if it is ‘X’, we consider it
unknown. For ease of representation in equations, we also introduce an alternative math-
style notation X̂

def= {0, 1}.
Next, we define abstract bit-vectors as tuples of abstract bits. For clarity, we use

hat symbols to denote abstract bit-vectors and abstract operations. We use zero-based
indexing for simplicity of representation and correspondence to typical implementations,
i.e. â0 means the lowest bit of abstract bit-vector â. We denote slices of the bit-vectors by
indexing via two dots between endpoints, i.e. â0..2 means the three lowest bits of abstract
bit-vector â. In case the slice reaches higher than the most significant bit of an abstract
bit-vector, we assume it to be padded with ‘0’, consistent with an interpretation as an
unsigned number.

5.2.1 Abstract Bit Encodings
In implementations of algorithms, a single abstract bit may be represented by various
encodings. First, we formalise a zeros-ones encoding of abstract bit âi using concrete bits

57

5. Abstract Three-valued Bit-vector Arithmetic

a0
i ∈ B, a1

i ∈ B via

a0
i = 1 ⇐⇒ 0 ∈ âi, a

1
i = 1 ⇐⇒ 1 ∈ âi, (5.2)

which straightforwardly extends to bit-vectors a0, a1. Assuming â has A ∈ N0 bits, â ∈
(2B)A, while a0 ∈ BA, a1 ∈ BA, i.e. they are concrete bit-vectors.

We also formalise a mask-value encoding: the mask bit am
i = 1 exactly when the

abstract bit is unknown. When the abstract bit is known, the value bit av
i corresponds to

the abstract value (0 for ‘0’, 1 for ‘1’), as previously used in [27]. For simplicity, we further
require av

i = 0 if am
i = 1. We formalise the encoding of abstract bit âi using concrete bits

am
i ∈ B, av

i ∈ B via

am
i = 1 ⇐⇒ 0 ∈ âi ∧ 1 ∈ âi, a

v
i = 1 ⇐⇒ 0 /∈ âi ∧ 1 ∈ âi, (5.3)

which, again, straightforwardly extends to bit-vectors am ∈ BA and av ∈ BA. We note that
the encodings can be quickly converted via

a0
i = 1 ⇐⇒ am

i = 1 ∨ av
i = 0, a1

i = 1 ⇐⇒ am
i = 1 ∨ av

i = 1,
am

i = 1 ⇐⇒ a0
i = 1 ∧ a1

i = 1, av
i = 1 ⇐⇒ a0

i = 0 ∧ a1
i = 1.

(5.4)

We note that when interpreting each concrete possibility in abstract bit-vector â as an un-
signed binary number, av corresponds to the minimum, while a1 corresponds to the maxi-
mum. For conciseness and intuitiveness, we will not explicitly note the conversions in the
presented algorithms. Furthermore, where usage of arbitrary encoding is possible, we will
write the hat-notated abstract bit-vector, e.g. â.

5.2.2 Abstract Transformers
We borrow the notions defined in this subsection from abstract interpretation [79, 80],
adapting them for the purposes of this paper.

The set of concrete bit-vector possibilities given by a tuple containing A abstract bits,
â ∈ (2B)A, is given by a concretization function γ : (2B)A → 2(BA),

γ(â) def= {a ∈ BA | ∀i ∈ {0, . . . , A− 1} . ai ∈ âi}. (5.5)

Conversely, the transformation of a set of bit-vector possibilities C ∈ 2(BA) to a single
abstract bit-vector â ∈ (2B)A is determined by an abstraction function α : 2(BA) → (2B)A

which, to prevent underapproximation and to ensure soundness of model checking, must
fulfil C ⊆ γ(α(C)).

An abstract operation r̂ : (2B)N × (2B)N → (2B)M corresponding to concrete operation
r : BN × BN → BM is an approximate abstract transformer if it overapproximates r, that
is,

∀â ∈ (2B)N , b̂ ∈ (2B)N . {r(a, b) | a ∈ γ(â), b ∈ γ(b̂)} ⊆ γ(r̂(â, b̂)). (5.6)

58

5.2. Basic Definitions

The number of concrete possibilities |γ(α(C))| should be minimised to prevent unnecessary
overapproximation. For three-valued bit-vectors, the best abstraction function αbest is
uniquely given by

∀i ∈ {0, . . . , A− 1} . (αbest(C))i
def= {ci ∈ B | c ∈ C}. (5.7)

By using αbest to perform the abstraction on the minimal set of concrete results from
Equation 5.6, we obtain the best abstract transformer for arbitrary concrete operation r, i.e.
an approximate abstract transformer resulting in the least amount of overapproximation,
uniquely given as

r̂best
k (â, b̂) = αbest({rk(a, b) | a ∈ γ(â), b ∈ γ(b̂)}). (5.8)

We note that when no input abstract bit is ∅, there is at least one concrete result r(a, b)
and no output abstract bit can be ∅. Thus, three-valued representation is truly sufficient.

5.2.3 Algorithm Complexity Considerations
We will assume that the presented algorithms are implemented on a general-purpose pro-
cessor that operates on binary machine words and can compute bitwise operations, bit
shifts, addition and subtraction in constant time. Every bit-vector used fits in a machine
word. This is a reasonable assumption, as it is likely that the processor used for verifica-
tion will have the machine word size equal to or greater than the processor that runs the
program under consideration.

We also assume that the ratio of M to N is bounded, allowing us to express the
presented algorithm time complexities using only N . Memory complexity is not an issue
as the presented algorithms use only a fixed amount of temporary variables in addition to
the inputs and outputs.

5.2.4 Naïve Universal Abstract Algorithm
Equation 5.8 immediately suggests a naïve algorithm for computing r̂best for any given â, b̂:
enumerating all a, b ∈ 2(BN), filtering out the ones that do not satisfy a ∈ γ(â) ∧ b ∈ γ(b̂),
and marking the results of r(a, b), which is easily done in the zeros-ones encoding. This
naïve algorithm has a running time of Θ(22N).

Average-case computation time can be improved by only enumerating unknown input
bits, but worst-case time is still exponential. Even for 8-bit binary operations, the worst-
case input combination (all bits unknown) would require 216 concrete operation computa-
tions. For 32-bit binary operations, it would require 264 computations, which is infeasible.
Finding worst-case polynomial-time algorithms for common operations is therefore of sig-
nificant interest.

59

5. Abstract Three-valued Bit-vector Arithmetic

5.3 Formal Problem Statement
Theorem 5.3.1. The best abstract transformer of abstract bit-vector addition is com-
putable in linear time.

Theorem 5.3.2. The best abstract transformer of abstract bit-vector multiplication is
computable in worst-case quadratic time.

In Section 5.4, we will introduce a novel modular extreme-finding technique which will
use a basis for finding fast best abstract transformer algorithms. Using this technique,
we will prove Theorems 5.3.1 and 5.3.2 by constructing corresponding algorithms in Sec-
tions 5.5 and 5.6, respectively. We will experimentally evaluate the presented algorithms
to demonstrate their practical efficiency in Section 5.7.

5.4 Modular Extreme-Finding Technique
The concrete operation function r may be replaced by a pseudo-Boolean function h :
BN × BN → N0 where the output of r is the output of h written in base 2. Surely, that
fulfils

∀a ∈ BN , b ∈ BN ,∀k ∈ {0, . . . ,M − 1} .
rk(a, b) = 1 ⇐⇒ (h(a, b) mod 2k+1) ≥ 2k.

(5.9)

The best abstract transformer definition in Equation 5.8 is then equivalent to

∀k ∈ {0, . . . ,M − 1} .
(0 ∈ r̂best

k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) < 2k) ∧
(1 ∈ r̂best

k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (h(a, b) mod 2k+1) ≥ 2k).
(5.10)

The forward operation problem is therefore transformed into a problem of solving certain
modular inequalities, which is possible in polynomial time for certain operations. We will
later show that these include addition and multiplication.

If the inequalities were not modular, it would suffice to find the global minimum and
maximum (extremes) of h. Furthermore, the modular inequalities in Equation 5.10 can
be thought of as alternating intervals of length 2k. Intuitively, if it was possible to move
from the global minimum to the global maximum in steps of at most 2k by using different
values of a ∈ â, b ∈ b̂ in h(a, b), it would suffice to find the global extremes and determine
whether they are in the same 2k interval. If they were, only one of the modular inequalities
would be satisfied, resulting in known rk (either ‘0’ or ‘1’). If they were not, each modular
inequality would be satisfied by some a, b, resulting in rk = X̂.

We will now formally prove that our reasoning for this modular extreme-finding method
is indeed correct.

60

5.4. Modular Extreme-Finding Technique

Lemma 5.4.1. Consider a sequence of integers t = (t0, t1, . . . , tT −1) that fulfils

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k. (5.11)

Then,

∃v ∈ [min t,max t] . (v mod 2k+1) < 2k ⇐⇒
∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k.

(5.12)

Proof. As the sequence t is a subset of range [min t,max t], the backward direction is
trivial. The forward direction trivially holds if v is contained in t. If it is not, it is
definitely contained in some range (v−, v+), where v−, v+ are successive values in the
sequence t. Considering successive values of x in the closed range [v−, v+], the valuation
of (x mod 2k+1) < 2k changes at most once, since |v+− v−| ≤ 2k. Therefore, the valuation
for the existing v must be the same as the valuation for v+, v−, or both. As both v+ and
v− are in the sequence t, this completes the proof.

Theorem 5.4.2. Consider a pseudo-Boolean function f : BN × BN → Z, two inputs â, b̂ ∈
(2B)N , and a sequence p = (p0, p1, . . . , pP −1) where each element is a pair (a, b) ∈ (γ(â), γ(b̂)),
that fulfil

∀n ∈ [0, P − 2] . |f(pn+1)− f(pn)| ≤ 2k,

f(p0) = min
a∈γ(â)
b∈γ(b̂)

f(a, b),

f(pP −1) = max
a∈γ(â)
b∈γ(b̂)

f(a, b).
(5.13)

Then,

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k

⇐⇒ ∃n ∈ [0, P − 1] . ((f(pn) + C) mod 2k+1) < 2k).
(5.14)

Proof. Since each element of p is a pair (a, b) ∈ (γ(â), γ(b̂)), the backward direction is
trivial. For the forward direction, use Lemma 5.4.1 to convert the sequence (f(pn)+C)P −1

n=0
to range [f(p0) + C, f(pP −1) + C] and rewrite the forward direction as

∀C ∈ Z . (∃a ∈ γ(â), b ∈ γ(b̂) . ((f(a, b) + C) mod 2k+1) < 2k =⇒

∃v ∈
[

min
a∈γ(â)
b∈γ(b̂)

(f(a, b) + C) , max
a∈γ(â)
b∈γ(b̂)

(f(a, b) + C)
]
. (v mod 2k+1) < 2k). (5.15)

The implication clearly holds, completing the proof.
While Theorem 5.4.2 forms a basis for the modular extreme-finding method, there are

two problems. First, finding global extremes of a pseudo-Boolean function is not generally

61

5. Abstract Three-valued Bit-vector Arithmetic

trivial. Second, the step condition, that is, the absence of a step longer than 2k in h, must
be ensured. Otherwise, one of the inequality intervals could be “jumped over”. For non-
trivial operators, steps longer than 2k surely are present in h for some k. However, instead
of h, it is possible to use a tuple of functions (hk)M−1

k=0 where each one fulfils Equation 5.10
for a given k exactly when h does. This is definitely true if each hk is congruent with h
modulo 2k+1.

Fast best abstract transformer algorithms can now be formed based on finding extremes
of hk, provided that hk changes by at most 2k when exactly one bit of input changes its
value, which implies that a sequence p with properties required by Theorem 5.4.2 exists.
For ease of expression of the algorithms, we define a function which discards bits of a
number x below bit k (or, equivalently, performs integer division by 2k),

ζk(x) =
⌊
x

2k

⌋
. (5.16)

For conciseness, given inputs â ∈ (2B)N , b̂ ∈ (2B)N , we also define

hmin
k

def= min
a∈γ(â)
b∈γ(b̂)

hk(a, b), hmax
k

def= max
a∈γ(â)
b∈γ(b̂)

hk(a, b), (5.17)

Equation 5.10 then can be reformulated as follows: if ζk(hmin
k) ̸= ζk(hmax

k), both inequalities
are definitely fulfilled (as each one must be fulfilled by some element of the sequence) and
output bit k is unknown. Otherwise, only one inequality is fulfilled, the output bit k is
known and its value corresponds to ζk(hmin

k) mod 2. This forms the basis of Algorithm 5.1,
which provides a general blueprint for fast abstract algorithms. Proper extreme-finding for
the considered operation must be added to the algorithm, denoted by (. . .) in the algorithm
pseudocode. We will devise extreme-finding for fast abstract addition and multiplication
operations in the rest of the paper.

Algorithm 5.1: Modular extreme-finding abstract algorithm blueprint
1: function Modular_Algorithm_Blueprint(â, b̂)
2: for k ∈ {0, . . . ,M − 1} do
3: hmin

k ← (. . .) ▷ Compute extremes of hk

4: hmax
k ← (. . .)

5: if ζk(hmin
k) ̸= ζk(hmax

k) then
6: ck ← X̂ ▷ Set result bit unknown
7: else
8: cm

k ← 0, cv
k ← ζk(hmin

k) mod 2 ▷ Set value
9: end if

10: end for
11: return ĉ
12: end function

62

5.5. Fast Abstract Addition

5.5 Fast Abstract Addition
To express fast abstract addition using the modular extreme-finding technique, we first
define a function expressing the unsigned value of a concrete bit-vector a with an arbitrary
number of bits A,

Φ(a) def=
A−1∑
i=0

2iai. (5.18)

Pseudo-Boolean addition is then defined simply as

h+(a, b) def= Φ(a) + Φ(b). (5.19)

To fulfil the step condition, we define

h+
k (a, b) = Φ(a0..k) + Φ(b0..k). (5.20)

This is congruent with h+ modulo 2k+1. The step condition is trivially fulfilled for every
function h+

k in (h+
k)M−1

k=0 , as changing the value of a single bit of a or b changes the result
of h+

k by at most 2k. We note that this is due to h+ having a special form where only
single-bit summands with power-of-2 coefficients are present. Finding the global extremes
is trivial as each summand only contains a single abstract bit. Recalling Subsection 5.2.1,
the extremes can be obtained as

h+,min
k ← Φ(av

0..k) + Φ(bv
0..k),

h+,max
k ← Φ(a1

0..k) + Φ(b1
0..k).

(5.21)

The best abstract transformer for addition is obtained by combining Equation 5.21 with
Algorithm 5.1. Time complexity is trivially Θ(N), proving Theorem 5.3.1. Similar rea-
soning can be used to obtain fast best abstract transformers for subtraction and general
summation, only changing the computation of hmin

k and hmax
k .

For further understanding, we will show how fast abstract addition behaves for “X0”
+ “11”:

k = 0 : “0” + “1”, 1 = ζ0(0 + 1) = ζ0(0 + 1) = 1→ r0 = ‘1’,
k = 1 : “X0” + “11”, 1 = ζ1(0 + 3) ̸= ζ1(2 + 3) = 2→ r1 = ‘X’,
k = 2 : “0X0” + “011”, 0 = ζ2(0 + 3) ̸= ζ2(2 + 3) = 1→ r2 = ‘X’,
k > 2 : ζk(h+,min

k) = ζk(h+,max
k) = 0→ rk = ‘0’.

(5.22)

For M = 2, the result is “XX1”. For M > 2, the result is padded by ‘0’ to the left,
preserving the unsigned value of the output. For M < 2, the addition is modular. This
fully corresponds to the behaviour of concrete binary addition.

63

5. Abstract Three-valued Bit-vector Arithmetic

5.6 Fast Abstract Multiplication
Multiplication is typically implemented on microprocessors with three different input signed-
ness combinations: unsigned × unsigned, signed × unsigned, and signed × signed, with
signed variables using two’s complement encoding. It is a well-known fact that the signed-
unsigned and signed multiplication can be converted to unsigned multiplication by extend-
ing the signed multiplicand widths to product width using an arithmetic shift right. This
could pose problems when the leading significant bit is ‘X’, but it can be split beforehand
into two cases, ‘0’ and ‘1’. This allows us to only consider unsigned multiplication in this
section, signed multiplication only incurring a constant-time slowdown.

5.6.1 Obtaining a Best Abstract Transformer
Abstract multiplication could be resolved similarly to abstract addition by rewriting mul-
tiplication as an addition of a sequence of shifted summands (long multiplication) and
performing fast abstract summation. However, this does not result in a best abstract
transformer. The shortest counterexample is “11” · “X1”. Here, the unknown bit b1 is
added twice before influencing r2, once as a summand in the computation of r2 and once
as a carryover from r1:

(23) (22) (21) (20)
1 1

· b1 1
(b1) (b1) b1 1

b1 1
b1 2b1 1 + b1 1

In fast abstract summation, the summand b1 is treated as distinct for each output bit
computation, resulting in unnecessary overapproximation of multiplication.

Instead, to obtain a fast best abstract transformer for multiplication, we apply the
modular extreme-finding technique to multiplication itself, without intermediate conversion
to summation. Fulfilling the maximum 2k step condition is not as easy as previously. The
multiplication output function h∗ is defined as

h∗(a, b) def= Φ(a) · Φ(b) =
N−1∑
i=0

N−1∑
j=0

2i+jaibj. (5.23)

One could try to use congruences to remove some summands from h∗
k while keeping all

remaining summands positive. This would result in

hk(a, b) =
k∑

i=0

k−i∑
j=0

2i+jaibj. (5.24)

Changing a single bit ai would change the result by ∑k−i
j=0 2i+jbj. This sums to at most

2k+1−1 and thus does not always fulfil the maximum 2k step condition. However, the sign

64

5.6. Fast Abstract Multiplication

of the summand 2kaibk−i can be flipped due to congruence modulo 2k+1, after which the
change of result from a single bit flip is always in the interval [−2k, 2k − 1]. Therefore, to
fulfil the maximum 2k step condition, we define h∗

k : BN × BN → Z as

h∗
k(a, b) def=

(
−

k∑
i=0

2kaibk−i

)
+
k−1∑

i=0

k−i−1∑
j=0

2i+jaibj

 . (5.25)

For more insight into this definition, we will return to the counterexample to the previous
approach, “11” · “X1”, which resulted in unnecessary overapproximation for k = 2. Writing
h∗

2 computation as standard addition similarly to the previously shown long multiplication,
the carryover of b1 is counteracted by the summand −22b1:

(23) (22) (21) (20)
(b1) b1 1
−b1 1

0 1 + b1 1

It is apparent that ζ2(hmin
2) = ζk(hmax

2) = 0 and unnecessary overapproximation is not
incurred. Using that line of thinking, the definition of h∗

k in Equation 5.25 can be intu-
itively regarded as ensuring that the carryover of an unknown bit into the k-th column
is neutralised by a corresponding k-th column summand. Consequently, if the unknown
bit can appear only in both of them simultaneously, no unnecessary overapproximation is
incurred.

While the maximum 2k step condition is fulfilled in Equation 5.25, extreme-finding
is much more complicated than for addition, becoming heavily dependent on abstract
input bit pairs of the form (âi, b̂k−i) where 0 ≤ i ≤ k. Such pairs result in a summand
−2kaibk−i in h∗

k. When multiplication is rewritten using long multiplication as previously,
this summand is present in the k-th column. We therefore name such pairs k-th column
pairs for conciseness.

In Subsection 5.6.2, we show that if at most one k-th column pair where âi = b̂k−i = X̂
(double-unknown pair) exists, extremes of h∗

k can be found easily. In Subsection 5.6.3, we
prove that if at least two double-unknown pairs exist, rk = X̂. Taken together, this yields
a best abstract transformer algorithm for multiplication. In Subsection 5.6.4, we discuss
implementation considerations of the algorithm with emphasis on reducing computation
time. Finally, in Subsection 5.6.5, we present the final algorithm.

5.6.2 At Most One Double-Unknown k-th Column Pair
An extreme is given by values a ∈ â, b ∈ b̂ for which the value h∗

k(a, b) is minimal or
maximal (Equation 5.17). We will show that such a, b can be found successively when at
most one double-unknown k-th column pair is present.

65

5. Abstract Three-valued Bit-vector Arithmetic

First, for single-unknown k-th column pairs where âi = X̂, b̂k−i ̸= X̂, we note that in
Equation 5.25, the difference between h∗

k when ai = 1 and when ai = 0 is

h∗
k(a, b | ai = 1)− h∗

k(a, b | ai = 0) = −2kbk−i +
k−i−1∑

j=0
2i+jbj. (5.26)

Since the result of the sum over j must be in the interval [0, 2k−1], the direction of the
change (negative or non-negative) is uniquely given by the value of bk−i, which is known.
It is therefore sufficient to ensure amin

i ← bk−i when minimising and amin
i ← 1− bk−i when

maximising. Similar reasoning can be applied to single-unknown k-th column pairs where
âi ̸= X̂, b̂k−i = X̂.

After assigning values to all unknown bits in single-unknown k-th column pairs, the
only still-unknown bits are the ones in the only double-unknown k-th column pair present.
In case such a pair âi = X̂, b̂j = X̂, j = k− i is present, the difference between h∗

k when ai

and bj are set to arbitrary values and when they are set to 0 is

h∗
k(a, b)− h∗

k(a, b | ai = 0, bj = 0) =

− 2kaibj + 2iai

j−1∑
z=0

2zbz

+ 2jbj

(
i−1∑
z=0

2zaz

)
.

(5.27)

When minimising, it is clearly undesirable to choose amin
i ̸= bmin

j . Considering that
the change should not be positive, amin

i = bmin
j = 1 should be chosen if and only if

2i

j−1∑
z=0

2zbz

+ 2j

(
i−1∑
z=0

2zaz

)
≤ 2k. (5.28)

When maximising, it is clearly undesirable to choose amax
i = bmax

j . That said, amax
i =

1, bmax
j = 0 should be chosen if and only if

2j

(
i−1∑
z=0

2zaz

)
≤ 2i

j−1∑
z=0

2zbz

 . (5.29)

Of course, the choice is arbitrary when both possible choices result in the same change.
After the case of the only double-unknown k-th column pair present is resolved, there are
no further unknown bits and thus, the values of h∗

k extremes can be computed as

h∗,min
k =

(
−

k∑
i=0

2kamin
i bmin

k−i

)
+
k−1∑

i=0

k−i−1∑
j=0

2i+jamin
i bmin

j

 ,
h∗,max

k =
(
−

k∑
i=0

2kamax
i bmax

k−i

)
+
k−1∑

i=0

k−i−1∑
j=0

2i+jamax
i bmax

j

 .
(5.30)

66

5.6. Fast Abstract Multiplication

5.6.3 Multiple Double-Unknown k-th Column Pairs
Lemma 5.6.1. Consider a sequence of integers t = (t0, t1, . . . , tT −1) that fulfils

∀n ∈ [0, T − 2] . |tn+1 − tn| ≤ 2k, t0 + 2k ≤ tT −1. (5.31)

Then,

∃n ∈ [0, T − 1] . (tn mod 2k+1) < 2k. (5.32)

Proof. Use Lemma 5.4.1 to transform the claim to equivalent

∃v ∈ [min t,max t] . (v mod 2k+1) < 2k. (5.33)

Since [t1, t1 + 2k] ⊆ [min t,max t], such claim is implied by

∃v ∈ [t0, t0 + 2k] . (v mod 2k+1) < 2k. (5.34)

As [t0, t0 + 2k] mod 2k+1 has 2k + 1 elements and there are only 2k elements that do not
fulfil (v mod 2k+1) < 2k, Equation 5.34 holds due to the pigeonhole principle.

Corollary 5.6.2. Given a sequence of integers (t0, t1, . . . , tT −1) that fulfils Lemma 5.6.1
and an arbitrary integer C ∈ Z, the lemma also holds for sequence (t0+C, t1+C, . . . , tT −1+
C).

Theorem 5.6.3. Let r̂∗,best
k be the best abstract transformer of multiplication. Let â and

b̂ be such that there are p1, p2, q1, q2 in {0, . . . , k} where

p1 ̸= p2, p1 + q2 = k, p2 + q1 = k,

âp1 = X̂, âp2 = X̂, b̂q1 = X̂, b̂q2 = X̂.
(5.35)

Then r̂best,∗
k (â, b̂) = X̂.

Proof. For an abstract bit-vector ĉ with positions of unknown bits u1, . . . , un, denote
the concrete bit-vector c ∈ γ(ĉ) for which ∀i ∈ {1, . . . , n} . cui

= si by γs1,...,sn(ĉ). Let
Φs1,...,sn(ĉ) def= Φ(γs1,...,sn(ĉ)).

Now, without loss of generality, assume â only has unknown values in positions p1 and
p2 and b̂ only has unknown positions q1, q2 and p1 < p2, q1 < q2. Then, for s1, s2, t1, t2 ∈ B,
using h(a, b) = Φ(a) · Φ(b),

h(γs1,s2(â), γt1,t2(b̂)) = (2p1s1 + 2p2s2 + Φ00(â)) · (2q1t1 + 2q2t2 + Φ00(b̂)). (5.36)

Define A def= Φ00(â) and B def= Φ00(b̂) and let them be indexable similarly to bit-vectors, i.e.
A0..z = (A mod 2z+1), Az = ζz(A0..z). Define

hproof
k (γs1,s2(â), γt1,t2(b̂)) def=

2p1+q1s1t1 + 2p1+q2s1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1 +
2p2+q1s2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1 + AB.

(5.37)

67

5. Abstract Three-valued Bit-vector Arithmetic

As Ap1 = Ap2 = Bq1 = Bq2 = 0, hproof
k and h are congruent modulo 2k+1. Define

D(s1, s2, t1, t2) def= hproof
k (γs1,s2(â), γt1,t2(b̂)) − hproof

k (γ00(â), γ00(b̂)). (5.38)

As p1 + q2 = k and p2 + q1 = k,

D(s1, s2, t1, t2) = 2p1+q1s1t1 + 2ks1t2 + 2q1t1A0..p2−1 + 2p1s1B0..q2−1+
2ks2t1 + 2p2+q2s2t2 + 2q2t2A0..p1−1 + 2p2s2B0..q1−1.

(5.39)

Set s1, s2, t1, t2 to specific chosen values and obtain

D(1, 1, 0, 0) = D(1, 0, 0, 0) +D(0, 1, 0, 0),
D(0, 0, 1, 1) = D(0, 0, 1, 0) +D(0, 0, 0, 1),
D(1, 0, 0, 1) = 2k +D(1, 0, 0, 0) +D(0, 0, 0, 1).

(5.40)

Inspecting the various summands, note that

D(1, 0, 0, 0) ∈ [0, 2k − 1], D(0, 1, 0, 0) ∈ [0, 2k − 1],
D(0, 0, 1, 0) ∈ [0, 2k − 1], D(0, 0, 0, 1) ∈ [0, 2k − 1],

D(1, 1, 0, 0)−D(1, 0, 0, 0) ∈ [0, 2k − 1],
D(0, 0, 1, 1)−D(0, 0, 1, 0) ∈ [0, 2k − 1].

(5.41)

Recalling Equation 5.10, the best abstract transformer can be obtained as

0 ∈ r̂best
k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . (hproof

k (a, b) mod 2k+1) < 2k,

1 ∈ r̂best
k ⇐⇒ ∃a ∈ γ(â), b ∈ γ(b̂) . ((hproof

k (a, b) + 2k) mod 2k+1) < 2k.
(5.42)

Constructing a sequence of hproof
k (γs1,s2(â), γt1,t2(b̂)) that fulfils the conditions of Lemma 5.6.1

then implies that both inequalities can be fulfilled due to Corollary 5.6.2, which will com-
plete the proof. Furthermore, as D(s1, s2, t1, t2) only differs from hproof

k (γs1,s2(â), γt1,t2(b̂))
by the absence of summand AB that does not depend on the choice of s1, s2, t1, t2, it suffices
to construct a sequence of D(s1, s2, t1, t2) that fulfils Lemma 5.6.1 as well.

There is at least a 2k step between D(0, 0, 0, 0) and D(1, 0, 0, 1). They will form the
first and the last elements of the sequence, respectively. It remains to choose the elements
in their midst so that there is at most 2k step between successive elements.
Case 5.6.4. D(0, 1, 0, 0) ≥ D(0, 0, 0, 1). Considering Equations 5.40 and 5.41, a qualifying
sequence is

(D(0, 0, 0, 0), D(1, 0, 0, 0), D(1, 1, 0, 0), D(1, 0, 0, 1)). (5.43)

Case 5.6.5. D(0, 1, 0, 0) < D(0, 0, 0, 1). Using Equation 5.39, rewrite the case condition to

2p2−p1D(1, 0, 0, 0) < 2q2−q1D(0, 0, 1, 0). (5.44)

68

5.6. Fast Abstract Multiplication

As p1 + q2 = k, p2 + q1 = k, it also holds that q2− q1 = p2− p1. Rewrite the case condition
further to

2p2−p1D(1, 0, 0, 0) < 2p2−p1D(0, 0, 1, 0). (5.45)

Therefore, D(1, 0, 0, 0) < D(0, 0, 1, 0). Considering Equations 5.40 and 5.41, a qualifying
sequence is

(D(0, 0, 0, 0), D(0, 0, 1, 0), D(0, 0, 1, 1), D(1, 0, 0, 1)). (5.46)

This completes the proof.

5.6.4 Implementation Considerations
There are some considerations to be taken into account for an efficient implementation of
the fast multiplication algorithm.

The first question is how to detect the positions of single-unknown and double-unknown
k-th column pairs. As such pairs have the form 2kaibk−i, it is necessary to perform a bit
reversal of one of the bit-vectors before bitwise logic operations can be used for position
detection. Fortunately, it suffices to perform the reversal only once at the start of the
computation. Defining the bit reversal of the first z bits of b as λ(b, z) = (bz−1−i)z−1

i=0 , when
the machine word size W ≥ k+ 1, reversal of the first k+ 1 bits (i.e. the bits in b0..k) may
be performed as

λ(b, k + 1) = ((bk−i)k
i=0) = ((bW −1−i)W −1

i=W −k−1) = λ(b,W)W −k−1..W −1. (5.47)

It is thus possible to precompute λ(b,W) and, for each k, obtain λ(b, k+1) via a right shift
through W − k − 1 bits, which can be performed in constant time. Furthermore, power-
of-two bit reversals can be performed in logarithmic time on standard architectures [81,
p. 33-35], which makes the computation of λ(b,W) even more efficient.

The second problem is finding out whether multiple double-unknown k-th column pairs
exist, and if there is only a single one, what is its position. While that can be deter-
mined trivially in linear time, a find-first-set algorithm can also be used, which can be
implemented in logarithmic time on standard architectures [81, p. 9] and also is typically
implemented as a constant-time instruction on modern processors.

The third problem, computation of h∗
k extremes in Equation 5.30, is not as easily

mitigated. This is chiefly due to the removal of summands with coefficients above 2k due to
2k+1 congruence. While typical processors contain a single-cycle multiplication operation,
we have not found an efficient way to use it for the computation of Equation 5.25. To
understand why this is problematic, computation of h∗

k with 3-bit operands and k = 2 can
be visualised as

69

5. Abstract Three-valued Bit-vector Arithmetic

(24) (23) (22) (21) (20)
a2 a1 a0

· b2 b1 b0
(−a2b0) a1b0 a0b0

���HHHa2b1 (−a1b1) a0b1

�
��H
HHa2b2 �

��H
HHa1b2 (−a0b2)

. . .

The striked-out operands are removed due to 2k+1 congruence, while the k-th column pair
summands are subtracted instead of adding them. These changes could be performed via
some modifications of traditional multiplier implementation (resulting in a custom proces-
sor instruction), but are problematic when only traditional instructions can be performed
in constant time. Instead, we propose computation of h∗

k via

h∗
k(a, b) =

k∑
i=0

ai

(
−2kbk−i + 2iΦ(b0..k−i−1)

)
. (5.48)

As each summand over i can be computed in constant time on standard architectures,
h∗

k(a, b) can be computed in linear time. Modified multiplication techniques with lesser
time complexity such as Karatsuba multiplication or Schönhage–Strassen algorithm [82]
could also be considered, but they are unlikely to improve practical computation time when
N corresponds to the word size of normal microprocessors, i.e. N ≤ 64.

5.6.5 Fast Abstract Multiplication Algorithm
Applying the previously discussed improvements directly leads to Algorithm 5.2. For con-
ciseness, in the algorithm description, bitwise operations are denoted by the corresponding
logical operation symbol, shorter operands have high zeros added implicitly, and the bits
of amin, amax, bmin, bmax above k are not used, so there is no need to mask them to zero.

Algorithm 5.2: Fast abstract multiplication algorithm
1: function Fast_Abstract_Multiplication(â, b̂)
2: av

rev ← λ(bv,W) ▷ Compute machine-word reversals for word size W
3: bv

rev ← λ(bv,W)
4: am

rev ← λ(am,W)
5: bm

rev ← λ(bm,W)
6: for k ∈ {0, . . . ,M} do
7: sa ← am ∧ ¬bm

rev,W −k−1..W −1 ▷ Single-unknown k-th c. pairs, ‘X’ in a
8: amin ← av ∨ (sa ∧ bv

rev,W −k−1..W −1) ▷ Minimise such pairs
9: amax ← av ∨ (sa ∧ ¬bv

rev,W −k−1..W −1) ▷ Maximise such pairs
10: sb ← bm ∧ ¬am

rev,W −k−1..W −1 ▷ Single-unknown k-th c. pairs, ‘X’ in b
11: bmin ← bv ∨ (sb ∧ av

rev,W −k−1..W −1) ▷ Minimise such pairs
12: bmax ← bv ∨ (sb ∧ ¬av

rev,W −k−1..W −1) ▷ Maximise such pairs

70

5.6. Fast Abstract Multiplication

13: d← am ∧ bm
rev,W −k−1..W −1 ▷ Double-unknown k-th column pairs

14: if Φ(d) ̸= 0 then ▷ At least one double-unknown 2k pair
15: i← Find_First_Set(d)
16: if Φ(d) ̸= 2i then ▷ At least two double-unknown k-th col. pairs
17: ck ← X̂ ▷ Theorem 5.6.3
18: continue
19: end if
20: j ← k − i ▷ Resolve singular double-unknown k-th column pair
21: if 2iΦ(bmin

0..j−1) + 2jΦ(amin
0..i−1) ≤ 2k then ▷ Equation 5.28

22: amin
i ← 1

23: bmin
j ← 1

24: end if
25: if 2jΦ(amax

0..i−1) ≤ 2iΦ(bmax
0..j−1) then ▷ Equation 5.29

26: amax
i ← 1

27: else
28: bmax

j ← 1
29: end if
30: end if
31: h∗,min

k ← 0 ▷ Computed amin, bmin, compute minimum of h∗
k

32: h∗,max
k ← 0 ▷ Computed amax, bmax, compute maximum of h∗

k

33: for i ∈ {0, . . . , k} do ▷ Compute each row separately
34: if amin

i = 1 then
35: h∗,min

k ← h∗,min
k − (2kbmin

k−i) + (2iΦ(bmin
0..k−i−1))

36: end if
37: if amax

i = 1 then
38: h∗,max

k ← h∗,max
k − (2kbmax

k−i) + (2iΦ(bmax
0..k−i−1))

39: end if
40: end for
41: if ζk(h∗,min

k) ̸= ζk(h∗,max
k) then

42: ck ← X̂ ▷ Set result bit unknown
43: else
44: cm

k ← 0, cv
k ← ζk(h∗,min

k) mod 2 ▷ Set value
45: end if
46: end for
47: return ĉ
48: end function

Upon inspection, it is clear that the computation complexity is dominated by compu-
tation of hmin

k , hmax
k and the worst-case time complexity is Θ(N2), proving Theorem 5.3.2.

Since the loops depend on M which does not change when signed multiplication is consid-
ered (only N does), signed multiplication is expected to incur at most a factor-of-4 slow-
down when 2N fits machine word size, the possible slowdown occurring due to possible
splitting of most significant bits of multiplicands (discussed at the start of this section).

71

5. Abstract Three-valued Bit-vector Arithmetic

5.7 Experimental Evaluation
We implemented the naïve universal algorithm, the fast abstract addition algorithm, and
the fast abstract multiplication algorithm in the C++ programming language, without any
parallelisation techniques used. In addition to successfully checking equivalence of naïve
and fast algorithm outputs for N ≤ 9, we measured the performance of algorithms with
random inputs1.

To ensure result trustworthiness, random inputs are uniformly distributed and gener-
ated using a C++ standard library Mersenne twister before the measurement. The com-
puted outputs are assigned to a volatile variable to prevent their removal due to compile-
time optimisation. Each measurement is taken 20 times and the corrected sample standard
deviation is visualised.

The program was compiled by GCC 9.3.0, in 64-bit mode and with maximum speed
optimisation level -O3. It was run on a virtual machine supplied by the conference where
the original paper [A.1] was published, on an x86-64 desktop system with an AMD Ryzen
1500X processor.

5.7.1 Visualisation and Interpretation
We measured the CPU time taken to compute outputs for 106 random input combinations
for all algorithms for N ≤ 8, visualising the time elapsed in Figure 5.1. As expected, the
naïve algorithm exhibits exponential dependency on N and the fast addition algorithm
seems to be always better than the naïve one. The fast multiplication algorithm dominates
the naïve one for N ≥ 6. The computation time of the naïve algorithm makes its usage for
N ≥ 16 infeasible even if more performant hardware and parallelization techniques were
used.

For the fast algorithms, we also measured and visualised the results up to N = 32
in Figure 5.2. Fast addition is extremely quick for all reasonable input sizes and fast
multiplication remains quick enough even for N = 32. Fast multiplication results do not
seem to exhibit a noticeable quadratic dependency. We consider it plausible that as N
rises, so does the chance that there are multiple double-unknown k-th column pairs for an
output bit and it is set to ‘X’ quickly, counteracting the worst-case quadratic computation
time.

Finally, we fixed N = 32, changing the independent variable to the number of unknown
bits in each input, visualising the measurements in Figure 5.3. As expected, the fast
multiplication algorithm exhibits a prominent peak with the easiest instances being all-
unknown, as almost all output bits will be quickly set to ‘X’ due to multiple double-
unknown k-th column pairs. Even at the peak around N = 6, the throughput is still
above one hundred thousand computations per second, which should be enough for model
checking usage.

1The implementation and measurement scripts are available in an artefact at https://doi.org/
10.6084/m9.figshare.16622983.v1.

72

https://doi.org/10.6084/m9.figshare.16622983.v1
https://doi.org/10.6084/m9.figshare.16622983.v1

5.8. Further Notes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve addition
fast addition

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

naïve multiplication
fast multiplication

Figure 5.1: Measured computation times for 106 random abstract input combinations.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
P
U

 t
im

e
 e

la
p

se
d
 [

s]

Number of input operand bits (N)

fast addition
fast multiplication

Figure 5.2: Measured computation time for 106 random abstract input combinations, fast
algorithms only.

In summary, while the naïve algorithm is infeasible for usage even with 16-bit inputs,
the fast algorithms remain quick enough even for 32-bit inputs.

5.8 Further Notes
We devised a new modular extreme-finding technique for the construction of fast algorithms
which compute the best permissible three-valued abstract bit-vector result of concrete op-
erations with three-valued abstract bit-vector inputs when the output is not restricted
otherwise (forward operation problem). Using the introduced technique, we presented a
linear-time algorithm for abstract addition and a worst-case quadratic algorithm for ab-
stract multiplication. We implemented the algorithms and evaluated them experimentally,
showing that their speed is sufficient even for 32-bit operations, for which naïve algorithms
are infeasibly slow. As such, they may be used to improve the speed of model checkers
which use three-valued abstraction.

There are various research paths that could further the results of this chapter. Lesser-
used operations still remain to be inspected, most notably the division and remainder
operations. Composing multiple abstract operations into one could also potentially reduce

73

5. Abstract Three-valued Bit-vector Arithmetic

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
P
U

 t
im

e
 e

la
p

se
d

 [
s]

Number of unknown bits
in each input

fast addition
fast multiplication

Figure 5.3: Measured computation times for 106 random abstract input combinations with
fixed N = 32, while the number of unknown bits in each input varies.

overapproximation. Most interestingly, the forward operation problem could be augmented
with pre-restrictions on outputs, which would allow not only fast generation of the state
space in a forward fashion, but its fast pruning as well, allowing fast verification via state
space refinement. Furthermore, verification of hardware containing adders and multipliers
could be improved as well, e.g. by augmenting Boolean satisfiability solvers with algorithms
that narrow the search space when such a structure is found.

74

Chapter 6
Created Formal Verification Tool

machine-check

My publicly available, free, and open-source verification tool machine-check1 is based on
the techniques described in Chapters 3, 4, and 5, all of them working in concert to achieve
state-of-the-art verification of machine-code systems.

In this chapter, I will first discuss combining the previously introduced techniques to
be used in a verification tool without considering implementation specifics. I will then
discuss the internal structure of machine-check, which uses the Rust language both for
its implementation and the simulable descriptions, noting the added complications brought
by the choice of the Rust language. Finally, I will present the evaluation of the current
version of machine-check on machine-code programs written for the AVR ATmega328P
microcontroller, using a simulable description of the microcontroller I wrote. I was able
to verify interesting properties of several machine-code programs for ATmega328P. Most
notably, I was able to find a bug in an oscillator calibration program I wrote during the
work on my previous bachelor thesis [A.6], using its simplified version for verification.

6.1 Input-based Three-valued Abstraction Refinement Us-
ing Abstraction Analogues

To combine the techniques from Chapters 3 and 4, we need to begin with the fundamental
building block, which is the input-based Three-valued Abstraction Refinement framework
introduced in Chapter 4 that provides the verification results. The soundness, monotonic-
ity, and completeness characteristics can then be either formally proven or only considered
informally, guiding the implementation of the tool, with the possibility of bugs lessened by
informal testing. Since I was concerned with creating a useful and easily extensible veri-

1The latest release of machine-check is available at https://crates.io/crates/machine-check.
The current release at the time of writing this thesis, which will be discussed and evaluated in this chapter,
is available at https://crates.io/crates/machine-check/0.3.0.

75

https://crates.io/crates/machine-check
https://crates.io/crates/machine-check/0.3.0

6. Created Formal Verification Tool machine-check

fication tool, not one that intensely adheres to formalisms, I will only discuss soundness
with some degree of formality in this section. In this section, while I will use machine-
check as an example, I will focus on sensible choices rather than implementation-specific
considerations.

Recalling the definition of generating automata from Section 4.4, a generating automa-
ton (GA) is a tuple G = (S, s0, I, q, f, L) where

◦ S is the set of automaton states,

◦ s0 ∈ S is the initial state,

◦ I is the set of all possible step inputs,

◦ q : S → 2I \ {∅} is the input qualification function,

◦ f : S × I → S is the step function, mapping the combination of the current state
and step input to the next state,

◦ L : S × A→ {0, 1,⊥} is a labelling function.

Implementing the framework as per Figure 4.4, we choose the model-checking algorithms
based on the specification formalism.

Example 6.1.1. In machine-check, I chose Computation Tree Logic (CTL) and im-
plemented the model-checking algorithms as discussed in Section 4.6, using a previously
introduced algorithm that combines two passes of the classic explicit-state CTL checking
algorithm to obtain the three-valued result [68, p. 173-174]. The property is first trans-
formed to a positive normal form with no negations, the negations of atomic properties
changed to complementary atomic properties, and the properties are then model-checked
using a pessimistic Kripke structure, where the atomic properties with valuation ⊥ are co-
erced to 0, and an optimistic Kripke structure, where they are coerced to 1. If the results
are the same, that gives the three-valued result. If they differ, the three-valued result is ⊥.

To connect the framework to the system, we have to provide:

◦ The concrete generating automaton (CGA) G = (S, s0, I, {(s, I) | s ∈ S}, f, L),
which represents the original (concrete) system under verification.

◦ The initial abstract generating automaton (AGA) Ĝ0 = (Ŝ, ŝ0, Î , q̂
0, f̂ 0, L̂).

◦ The algorithm for the refinement of the abstract generating automaton that, in each
refinement loop iteration with index n ∈ N0, manipulates q̂n and f̂n to produce the
refined AGA Ĝn+1 = (Ŝ, ŝ0, Î , q̂

n+1, f̂n+1, L̂).

Considering the simulable descriptions from Chapter 3, the CGA is directly given by the
system comprised of the described finite-state machine (FSM) and the system instantiation
parameters (for machine-code systems, the processor behaviour and the machine code,
respectively). S contains the FSM states, and I contains the FSM inputs.

76

6.1. Input-based Three-valued Abstraction Refinement Using Abstraction Analogues

The reachable state space is determined by s0 and f . As the initialisation and step
behaviour of digital systems tends to be very different, I chose to provide two functions
init and next for the simulable description FSMs, as shown in Figure 3.3. In addition
to the input and, in the case of the next function, the current state, the functions take
the system instantiation parameters so that the behaviour can change with e.g. different
machine code.

Treating s0 as a dummy start state for simplicity (skipped in model checking) and
naming the system instantiation parameters p, I define f as

f(s, i) def=

init(p, i) s = s0,

next(p, s, i) s ̸= s0.
(6.1)

It remains to define the labellings. While any function L : S × A → {0, 1,⊥} can be
used, it is sensible to at least allow questions about state variables based on relational op-
erators (equality and inequalities). The choice of labellings guides the specification writers,
preventing them from writing specifications likely to result in exponential explosion.

Example 6.1.2. In the current version of machine-check, the right side of relational
operators in the property must be a constant, preventing comparing e.g. equality of two
fields, which tends to result in severe exponential explosion with only three-valued bit-
vector domains used. In a future version, this limitation could be dropped, allowing for
richer specifications.

6.1.1 Abstract Generating Automatons and Soundness
In the input-based framework, a sequence of abstract generating automatons is used as the
refinement commences. Each AGA uses the same set of abstract states Ŝ and the same
set of abstract inputs Î, both of which are determined by the abstract domains used, and
the same abstract labelling function L̂. In other words, in each iteration of the refinement
loop n ∈ N0, the AGA used is defined as Ĝn = (Ŝ, ŝ0, Î , q̂

n, f̂n, L̂), where q̂n : Ŝ → 2Î \ {∅}
and f̂n : Ŝ × Î → Ŝ.

Example 6.1.3. In machine-check, the currently supported types of state and input
variables are bit-vectors and bit-vector arrays. Formally, the variables can be flattened to
a single bit-vector. Naming the width of the state bit-vector w and the width of the input
bit-vector as y, the sets S and I are defined as

S
def= {(b0, b1, . . . , bw−1) | ∀k ∈ [0, w − 1] . bk ∈ {0, 1}},

I
def= {(b0, b1, . . . , by−1) | ∀k ∈ [0, y − 1] . bk ∈ {0, 1}}.

(6.2)

Representing ‘0’ by {0}, ‘1’ by {1}, and ‘X’ by {0, 1}, the sets Ŝ and Î are defined as

Ŝ
def= {(b̂0, b̂1, . . . , b̂w−1) | ∀k ∈ [0, w − 1] . b̂k ∈ {{0}, {1}, {0, 1}}},

Î
def= {(b̂0, b̂1, . . . , b̂y−1) | ∀k ∈ [0, y − 1] . b̂k ∈ {{0}, {1}, {0, 1}}}.

(6.3)

77

6. Created Formal Verification Tool machine-check

Recalling Theorem 4.5.2, soundness of verification using the input-based TVAR frame-
work is ensured if the following three formulas hold for each n ∈ N0,

∀ŝ ∈ Ŝ . ∀s ∈ γ(ŝ) . ∀a ∈ A . (L̂(ŝ, a) ̸= ⊥ ⇒ L̂(ŝ, a) = L(s, a)),
∀(ŝ, i) ∈ Ŝ × I . ∃î ∈ q̂n(ŝ) . i ∈ ζ (̂i),
∀(ŝ, î) ∈ Ŝ × Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . f(s, i) ∈ γ(f̂n(ŝ, î)),

(6.4)

which we called the labelling soundness, full input coverage, and step soundness, respec-
tively. Labelling soundness is independent of the refinement loop iteration and can be
achieved fairly easily by defining a reasonable L̂, given a simple labelling function and
reasonable abstract domains, and I will thus not discuss it in detail.

Input qualification. Full input coverage is a bit more involved, but not overly so.
We will first set îinitial ∈ 2Î \ {∅} that will be the result of q̂n for abstract states where the
input qualification was never refined, defining q̂0 as

q̂0 def= {(ŝ, îinitial) | ŝ ∈ Ŝ}. (6.5)

To ensure full input coverage, we require that

∀i ∈ I . i ∈ ζ (̂iinitial). (6.6)

Then, when refining qualified inputs from a given state ŝfrom, we will set q̂n+1 so that it has
the same results as q̂n except for q̂n+1(ŝfrom), which we will set so that it produces more
information. For full input coverage, we again require

∀i ∈ I . i ∈ ζ(q̂n+1(ŝfrom)). (6.7)

Example 6.1.4. In the naïve strategy for machine-check discussed in Section 4.6, for
each three-valued bit, the qualified inputs in îinitial are ‘0’ and ‘1’. In the input-splitting
strategy (both with and without decay), the only qualified input in îinitial is ‘X’. Both of
these ensure full input coverage, whereas e.g. only ‘0’ would not cover the concrete inputs
where the given bit is set to 1.

Step decay. The step function is the crucial part where the framework interacts with
the description and translated analogues. To separate our concerns, we will provide a fixed
step behaviour function f̂ : Ŝ× Î → Ŝ. In every refinement loop iteration n, we will provide
a decay function d̂n : Ŝ → Ŝ. We define f̂n as

f̂n def= {((ŝ, î), d̂n(f̂(ŝ, î))) | ŝ ∈ Ŝ, î ∈ Î}. (6.8)

We will require the decay function outputs to cover its inputs, so that it can only either
retain the information or decay to an abstract state containing less information, i.e.

∀ŝ ∈ Ŝ . γ(ŝ) ⊆ γ(d̂(ŝ)). (6.9)

78

6.1. Input-based Three-valued Abstraction Refinement Using Abstraction Analogues

Using Equation 6.9, we can strengthen the step soundness requirement from Equation 6.4
to use f̂ instead of f̂n, i.e.

∀(ŝ, î) ∈ Ŝ × Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . f(s, i) ∈ γ(f̂(ŝ, î)). (6.10)

As such, we managed to separate the step behaviour described by f̂ from the concern of
mitigating the state-space explosion (and the subsequent refinement) in d̂n. While the
input-based framework allows us to keep the concerns mixed together, their separation
allows for easier reasoning.

Example 6.1.5. In the machine-check strategy of input-splitting with decay discussed
in Section 4.6, the initial decay function d0 decays each three-valued bit to ‘X’. The decay
function can later be refined not to decay bits determined to be important. This prevents
irrelevant computations from causing state-space explosion but can increase the number
of necessary refinement loop iterations drastically. In the other strategies discussed in
Section 4.6, the decay function is an identity function in every refinement loop iteration.

Step behaviour. The step behaviour function f̂ should be computable reasonably
fast while fulfilling Equation 6.10. The function f : S × I → S is defined in terms of the
description functions init and next, so we will define the function f̂ : Ŝ × Î → Ŝ as

f̂(ŝ, î) def=

 ˆinit(p̂, î) ŝ = ŝ0,

ˆnext(p̂, ŝ, î) ŝ ̸= ŝ0.
(6.11)

The abstract system instantiation parameters p̂ can be produced from p by simply con-
verting the concrete variables to single-concretization abstract variables (assuming single-
concretization abstractions exist in the domain). The functions ˆinit and ˆnext are verifica-
tion analogues of the functions init and next used for computing abstract states (they are
the abstract analogues of the concrete functions). Rewriting step soundness from Equation
6.10, we require that

∀î ∈ Î . ∀i ∈ ζ (̂i) . init(p, i) ∈ γ(ˆinit(p̂, î)),
∀(ŝ, î) ∈ (Ŝ \ {ŝ0})× Î . ∀(s, i) ∈ γ(ŝ)× ζ (̂i) . next(p, s, i) ∈ γ(ˆnext(p̂, ŝ, î)).

(6.12)

For each function in the simulable description g : V → R, its abstract analogue will have
the appropriate abstract domains V̂ and R̂ with concretization functions γV : V̂ → 2V \{∅}
and γR : R̂ → 2R \ {∅}, resulting in ĝ : V̂ → R̂. We can strengthen the requirement in
Equation 6.12 to require each such function to fulfil

∀v̂ ∈ V̂ . ∀v ∈ γV (v̂) . g(v) ∈ γR(ĝ(v̂)). (6.13)

This is a very nice and natural requirement for the abstract analogues of the functions in
the simulable description. Furthermore, we can see that for bit-vectors, the requirement
corresponds to the concept of the approximate abstract transformer from Subsection 5.2.2.
As the signatures of the functions do not change except for the types, we can translate
to abstract analogues by simply translating the types in the simulable description to their
abstract domains, ensuring that Equation 6.13 holds for each one.

79

6. Created Formal Verification Tool machine-check

6.1.2 The Refinement Algorithm
While the refinement algorithm has no impact on soundness, it is crucial for the reduction
of state space explosion. As such, we want to choose intelligently, deducting how the AGA
should be changed so that we strike a balance between the state space size and refinement
speed. In other words, we need a good heuristic.

An unknown result of verification will be caused by some culprit, a path that ends with
an unknown labelling that prevents a known result of model-checking. We are trying to
refine q̂n and d̂n to q̂n+1 and d̂n+1 so that the culprit will hopefully disappear, with the
offending state replaced by states where the labelling is known.

For practical systems, we can purely structurally deduce that many of the inputs in
q̂n and decayed parts of states in d̂n cannot cause the culprit labelling to be unknown,
because they do not act as inputs of any operations that play a role in the part of the state
responsible for the labelling result. As such, we can use a fairly simple marking algorithm
for the refinement. After finding the culprit with path (ŝ0, ŝ1, . . . , ŝc):

1. Mark the variables of the last state of the culprit ŝc that can have an effect on the
unknown labelling.

2. Set k equal to c.

3. If k is zero or ŝk is fully unmarked, stop.

4. Mark the decay of variables in d̂n(f̂(ŝk−1)) that could have had an effect on the
unknown labelling.

5. Mark through f̂ backwards, starting with marked parts of ŝk, marking the inputs
of operations in f̂ that could have had an effect on marked operation outputs, until
obtaining the marking of ŝk−1 and the output of q̂n(ŝk−1).

6. Decrement k and go to Step 3.

After stopping, we will have the candidates for refinement of q̂n and d̂n marked and can
choose some of them to perform the actual refinement, during which we ensure that Equa-
tions 6.7 and 6.9 hold to avoid loss of soundness.

Example 6.1.6. Let us consider an example system that reads a Boolean value v from
the input during initialisation and later uses it after an initially-zeroed counter t counts to
3, disregarding the inputs after initialisation:

init_ex(p, i) = (0, i),
next_ex(p, (t, v), i) = (min(t+ 1, 3), v).

(6.14)

Let us assume that we use a three-valued abstraction for v. We want to verify that it
is possible to reach a state where t is 3 and v is 1, i.e. EF[t = 3 ∧ v = 1]. Using the
input splitting strategy, we first construct the reachable state space as in Figure 6.1a).

80

6.1. Input-based Three-valued Abstraction Refinement Using Abstraction Analogues

Figure 6.1: An example of a lasso-shaped state space before refinement and the culprit.

Model-checking produces the result ⊥. If, instead of ŝ3, we reached another state ŝ where
L̂(ŝ, v = 1) ̸= ⊥, the property could have been determined to hold. As such, we want to
make sure that the culprit shown in Figure 6.1b), the path (ŝ0, ŝ1, ŝ2, ŝ3) with the labelling
L̂(ŝ3, v = 1) = ⊥, is no longer present in the state space after refinement. As for labellings,
L̂(ŝ3, v = 1) only depends on v̂. Therefore, starting the marking loop:

1. We mark v̂ in ŝ3.

2. There is no decay, so we mark backwards through ˆstep_ex, where the marked v̂ only
depends on v̂ in ŝ2. Therefore, we end up with marked v̂ in ŝ2.

3. We mark backwards twice in the same fashion, marking v̂ in ŝ1 and later in ŝ0.

4. We now have v̂ marked in ŝ0. Since ŝ0 was constructed using the ˆinit_ex function,
we mark backwards through ˆinit_ex, marking the input î0.

5. We are done with marking. The only marked input is î0, so we choose it for refine-
ment.

After refinement, it will be possible to verify that EF[t = 3 ∧ v = 1] holds.

The marking algorithm can be further improved not to deduce only structurally, but
to also consider the abstract values of the inputs of the abstract operations in f̂ . For
example, with reasonable decisions for the generating automatons, it is unnecessary to
mark variables with a single-concretization abstract value, as no refinement of the variables
they are dependent on will refine the single-concretization abstract value further.

81

6. Created Formal Verification Tool machine-check

Example 6.1.7. Let us consider that a logical AND is performed with two abstract values.
It is reasonable to ensure that if both have a single concretization, we produce a result
with a single concretization, corresponding to the concrete logical AND operation. After
we ensure this, when performing the logical AND where only one of the abstract values has
a single concretization, we can mark only the value with multiple concretizations, knowing
that the single-concretization value is not the one that may cause a result with multiple
concretizations. This will be later expanded upon in Subsection 6.2.1.

To combine the improved marking algorithm with the translation of simulable descrip-
tions, in addition to the abstract analogues, we will also create verification analogues to
structures and functions that will make it possible to execute the marking algorithm, called
the refinement analogues.

6.2 Translation to Abstraction and Refinement Analogues
I will now show how to perform translation to abstraction and refinement analogues. I will
assume that the underlying operations for the variables are implemented, and will focus
on how to rewrite the description code.

6.2.1 Functions without Control Flow
Let us first consider the function fn1 in Figure 6.2, which simply performs a logical AND
of its two inputs and returns the output. As discussed in Subsection 6.1.1, it is enough to
convert the types and ensure that the function fn1_abstr fulfils Equation 6.13. Clearly,
with no control flow, it should be enough to ensure that each called function fulfils the
equation. The abstraction analogues of functions in the description must fulfil it, so we can
call them, and it is only necessary to consider the operations on the abstract data types
such as â&̂b̂.

Example 6.2.1. For variables â and b̂ in a three-valued bit-vector domain, we can use the
three-valued logic for logical operations and the algorithms introduced in Chapter 5 for
arithmetic operations. For example, in the abstract analogue, the function fn1_abstr
called with arguments â = “XXXXXXXX” and b̂ = “00001111” will produce “0000XXXX”.

The refinement analogue, named fn1_refin in Figure 6.2, performs backwards mark-
ing, using abstract variable values for added deductive capability. The refinement analogues
of the init and next functions are called in Step 5 of the refinement algorithm in Subsec-
tion 6.1.2. To ensure that functions can call each other within the refinement analogues,
each function has a refinement analogue, similarly to the abstract analogues.

Similarly to fn1_abstr, fn1_refin has two inputs â and b̂, which are used to allow
marking based on abstract variable values. The third input is ĉmark, which contains the
marking of the result of fn1_abstr. The task is to compute the markings of the inputs
â and b̂ of fn1_abstr.

82

6.2. Translation to Abstraction and Refinement Analogues

function fn1(a, b)
c← a&b ▷ Compute the logical AND
return c ▷ Return the result

end function

function fn1_abstr(â, b̂)
ĉ← â&̂b̂ ▷ Compute the logical AND in abstract domain
return ĉ ▷ Return the result

end function

function fn1_refin(â, b̂, ĉmark)
ĉ← â&̂b̂ ▷ Compute the abstract variables
âmark,0 ← Unmarked ▷ Have all markings except ĉmark unmarked
b̂mark,0 ← Unmarked
(âmark,1, b̂mark,1)← MarkLogicalAnd(â, b̂, ĉmark) ▷ Compute operation markings
âmark,2 ← JoinMarkings(âmark,0, âmark,1) ▷ Join them with previous markings
b̂mark,2 ← JoinMarkings(b̂mark,0, b̂mark,1)
return (âmark,2, b̂mark,2) ▷ Return marks of the original inputs

end function
Figure 6.2: A function without control flow and its abstract and refinement analogues.

As we want to use the abstract variables for the computation of markings, we compute
the values of the non-input abstract variables first (here, ĉ). We then consider all markings
except for the result marking to be unmarked at first and start marking in a backward
order of operations. Since variables can be used multiple times as operation inputs, it is
necessary to join all the markings introduced by operations. At the end, markings of the
abstract inputs are returned.

Example 6.2.2. Using three-valued bit-vector abstraction, it is reasonable to mark each
bit separately. Let us continue from Example 6.2.1 and suppose that we marked all bits
of the output of fn1_abstr, which I will write as cmark = 111111112, and we want to
propagate the marking to its inputs.

Deducing mentally from fn1_abstr with arguments â = “XXXXXXXX” and b̂ =
“00001111”, we see that that b is fully known, so it does not need to be considered further.
We put bmark = 000000002. While â is fully unknown, considering the logic AND operation,
the upper four bits of â could not have caused the problem as the zeroed upper four bits
of b̂ ensure they have no impact. Therefore, we put amark = 000011112. That is also what
fn1_refin will return, provided the functions MarkLogicalAnd and JoinMarkings
are implemented reasonably.

83

6. Created Formal Verification Tool machine-check

function fn2(a, b)
if a ≤ b then ▷ Compute the minimum

c← a
else

c← b
end if
return c ▷ Return the minimum

end function

function fn2_abstr(â, b̂)
ŵ ← ˆ̂a ≤ b̂ ▷ Three-valued condition
if CanBeTrue(ŵ) then

ĉ1 ← Taken(â) ▷ the then branch can be taken
else

ĉ1 ← NotTaken ▷ the then branch cannnot be taken
end if
if CanBeFalse(ŵ) then

ĉ2 ← Taken(b̂) ▷ the else branch can be taken
else

ĉ2 ← NotTaken ▷ the else branch cannot be taken
end if
ĉ← ϕ(ĉ1, ĉ2) ▷ Use the ϕ function
return ĉ ▷ Return the result

end function
Figure 6.3: A function with branching and its abstract analogue.

6.2.2 Functions with Conditional Branches
Control flow is a notable complication to translation to the abstract analogue: the under-
lying description language only supports concrete control flow (e.g. exactly one branch is
taken in conditional branch statements), not abstract control flow (where both branches
can be taken). Therefore, the constructs must be rewritten. As I will only consider con-
ditional branches, we can cleanly resolve this with some inspiration from static program
analysis [83, 84].

Let us consider the function fn2 in Figure 6.3, where the value of c depends on the
branch taken. Since the value of â ≤ b̂ is a Boolean, its most reasonable abstraction is a
three-valued Boolean (functionally equivalent to a single-bit three-valued bit-vector). Of
course, our description language cannot branch based on that, so we duplicate the branches:
one of them will be taken depending on if â ≤ b̂ can be true, the other depending on if it
can be false. To ensure that ĉ has the correct value afterwards, we will combine the values
assigned to in the duplicate branches, combining them using a phi function [83]. To avoid
the need for a special abstract domain value signifying that the branch was not taken, we

84

6.3. Implementation Specifics

can wrap the value in an enumeration that will either be Taken (with the given value) or
NotTaken (with no value).

While the construction of the abstract analogue is heavily complicated by control flow,
the refinement analogue is already based on the abstract analogue and it is therefore almost
unaffected. It is, however, necessary to mark the condition variable if the branch taken
could have affected some later variable that is marked.

Example 6.2.3. Continuing with three-valued bit-vector abstraction, let us consider that
fn2_abstr is called with arguments â = “X0000000” and b̂ = “00001111”. The condition
ŵ is ‘X’ and therefore, ĉ1 = Taken(“X0000000”) and ĉ2 = Taken(“00001111”). As both
are taken, they will be combined by the ϕ function to “X0001111”. In this instance, the
marking will be propagated back to â, but if ĉ1 was instead set e.g. to a constant, it would
not be. As such, it is necessary to ensure the marking is propagated to â through ŵ if ĉ is
marked.

6.3 Implementation Specifics
I chose to implement machine-check in the compiled programming language Rust and
represent the descriptions in Rust as well, motivated by many factors2 including

◦ its meta-programming support,

◦ the similarity to the ubiquitously used C language in simpler constructs but simpler
syntax without many pitfalls,

◦ its applicability to embedded programming making it worthwhile for processor de-
scription writers to learn,

◦ the availability of fast standard containers and well-supported libraries for e.g. Rust
abstract syntax tree parsing.

The choice to use the Rust language heavily improved the speed of development compared
to my previous model checker written in the C++ language [A.4]. Furthermore, the ver-
ification analogues are compiled, allowing the use of compiler optimisations for quicker
verification. For the main focus, which is machine-code verification, the compilation is not
problematic as the processor description is compiled once and the machine code is provided
as a parameter to the resulting executable, as discussed in Chapter 3.

To solve the problems of library and binary distribution in languages such as C, the
Rust language features a built-in package system. A package contains at most one library
crate and an arbitrary number of binary crates and can be published in a public package
repository, identified by its name. The default package repository for Rust is crates.io,
where the crates comprising machine-check are published.

2More details on Rust can be found e.g. in the Rust language book or the Rust reference, both available
online from https://www.rust-lang.org/learn.

85

crates.io
https://www.rust-lang.org/learn

6. Created Formal Verification Tool machine-check

The package organisation has allowed me to expose the types and functions available
to the description writer in the machine−check package (which only contains a library
crate since it has to be combined with a system description and construction), while the
implementation details are hidden in other packages. The interface is as streamlined as pos-
sible, consisting of custom data types, macros machine_description and bitmask_switch,
the run function yield the constructed system to machine-check, and other functions to
support the construction of systems based on command-line arguments.

The internal implementation of machine-check is split between three basic concepts,
organised in three Rust packages:

◦ State space generation and model checking (machine−check−exec). Imple-
ments an instance of input-based Three-valued Abstraction Refinement framework
described in Chapter 4, with explicit abstract states.

◦ Abstraction and refinement domains (mck3). Implements the abstraction and
refinement analogues of bit-vectors and bit-vector arrays. Fast bit-vector arithmetic
described in Chapter 5 is implemented here.

◦ Translation to verification analogues (machine−check−machine). Implements
the translation, described in Chapter 3 and Section 6.2, in the machine_description
macro.

The lines of code grouped by the concepts can be seen in Figure 6.4. It can be seen that the
translation is the most demanding, followed by the implementation of the abstraction and
refinement domains. The implementation of state space generation and model checking is
third by far. Common third-party Rust libraries with permissive licences are used when
possible, such as for abstract trees of Rust code (the syn crate) or command-line argument
parsing (the clap crate), so that the least amount of custom code is necessary, increasing
speed of development and reducing support baggage.

6.3.1 Resolution of Introduced Complications
While the Rust language constructs are fairly regular compared to C, the description code
in the machine_description macro still must be coerced to a Single Static Assignment
form with simple constructs before performing the translation to abstraction and refinement
analogues, which is complicated by some issues.

Panic. In Rust, the concept of panic forms a deviation from function behaviour fol-
lowing their signature. Panic can occur everywhere and results in program termination by
default. Panics are highly useful in practice, allowing immediate termination due to an
unexpected situation or a detected bug, and they are useful for processor descriptions as
well: for example, calling an illegal instruction can result in a panic. In machine-check,

3The package name mck was used instead of the more conventional name machine−check−types
as it appears ubiquitously in translated system descriptions, and a short name improves their readability
and reduces their length drastically.

86

6.3. Implementation Specifics

7167; 44%

5547; 34%

2100; 13%

1435; 9%

Translation to abstraction and refinement analogues

Abstraction and refinement domains

State space generation and model checking

Support code

Figure 6.4: Categories of lines of Rust code in machine-check version 0.3.0. There are
16249 lines of code in total. Blank and comment lines are not counted.

I decided to support panics by always checking an inherent property of the system AGϕ,
where ϕ means no panic is issued in the given state. That way, verification of illegally-
formed systems (e.g. machine-code systems with illegal machine-code instructions) always
produces a special inherent violation result. To implement panic checking, I change the
return value of every function before translation to include the information about whether
panic was raised and rewrite function calls to propagate the information.

Inside macro expansion. As the Rust macro model guarantees that macros are
expanded outside-in and there is currently no way to arbitrarily expand the macros inside,
the expansion of macros inside machine_description must be done manually. This means
that only the bitmask_switch macro is supported, together with some simple standard
Rust macros invoking panics (panic, unimplemented, todo). In conjunction with the macro
expansion, use declarations are resolved, so e.g.

1 use ::machine_check::Bitvector;
2 fn example_3(a: Bitvector<8>) {}

87

6. Created Formal Verification Tool machine-check

turns into
1 use ::machine_check::Bitvector;
2 fn example_3(a: ::machine_check::Bitvector<8>>) {}

After macro expansion and use resolving, language constructs are normalised, variables
are uniquely named (eliminating the need for scopes) and converted into the Single Static
Assignment (SSA) form which is easy to work with. As Rust variable types do not have to
be explicitly stated, being inferred otherwise, basic type inference is done before finishing.
Panic conversion is handled throughout.

The chosen strategy of meta-programming with macros is remarkably drop-in: standard
Rust code can be written with little regard to formal verification. Incorrect Rust code will
produce an error, as will code that cannot be translated, with a more-or-less helpful code
span and reason. Only a simple imperative subset of Rust code (described in Section 3.3)
is currently supported, but more features can be supported in the future for simpler and
more elegant descriptions.

Bit-vector arrays. While implementing the operations for three-valued bit-vectors
and bit-vector marking is fairly simple, a problem that can slow down the verification
drastically arises when indexing arrays. In case the index variable is partially or even fully
unknown, a large amount of elements must be considered during the read operations (which
must join all of them to obtain the result) and the write operations (which must, for all
of the elements, join the previous value and the written value, as it is unknown whether
the specific element will be actually written to). As elements with the same values can be
considered together, I implemented the arrays by only storing the leftmost elements with
the same value in an indexed map and operating on ranges of the same elements, avoiding
many unnecessary computations in practice.

Candidate importance. For machine-code systems, it is typically desirable to refine
the Program Counter before any other variables. While the concept of the Program Counter
is unknown to machine-check, I was successful in achieving the behaviour generally, by
adding an importance counter to variable markings. When marking an indexing operation
with a not-fully-known index, the index is marked with an incremented importance. The
candidate for refinement with the highest importance is selected at the end of the refinement
algorithm. As the Program Counter is typically used to index the program memory in order
to retrieve the instruction to be executed, this simple improvement is enough for reasonable
refinement choices in simple machine-code programs. Of course, further improvements may
be added in the future.

6.4 Verification of AVR Programs
To show the feasibility of using machine-check for verification of machine-code programs
on actual processors, I have written a machine-check description of the 8-bit micro-
controller AVR ATmega328P, and compiled it to create the tool machine-check-avr. I
evaluated the verification capability using simple programs, experimentally verifying some

88

6.4. Verification of AVR Programs

of their interesting properties4. Notably, I was able to find a bug in a real-world program
I have written previously by verifying its simplified version.

6.4.1 Description Details and Evaluation Setup
The system description consists of approximately 3000 lines, out of which approximately
2000 are lines of Rust code, the rest are comments and blank lines. The description could
be made more compact in the future by increasing the amount of constructs that can be
translated. That said, the AVR instruction set itself contains around a hundred instruc-
tions [13], the exact number depending on whether instructions sharing operation codes
are counted multiple times, and whether variants of the same instruction with different
behaviour are counted separately. The description is limited: enabling interrupts is not
supported, and only the General-Purpose I/O (GPIO) peripheral is supported. Using an
unimplemented feature or an illegal operation (such as the execution of an illegal instruc-
tion) results in a panic.

A distinct complication to describing real-world processors is the presence of memory
addresses that have special behaviour when read or written, usually as parts of memory-
mapped peripherals. For example, in ATmega328P, the GPIO peripheral address PINB is
usually used for reading the state of the pins on the microcontroller port B, but writing to
it toggles the output values of the pins where the bit value 1 is written. This behaviour
can be described easily using machine-check descriptions.

The description was written without considerations for formal verification with one
exception: applying the xor instruction on the same register with itself is a common way
to set it to zero, but is problematic for verification using only three-valued bit-vector
abstraction, so I added a kludge that immediately sets the register to zero in this case.

The length of the system description in the macro machine_description is not prob-
lematic for the Rust compiler, but the rust-analyzer extension of Visual Studio Code,
which I use for development, produces an error due to too many tokens generated by
the macro5. This means that a manual compilation is necessary after modifying the de-
scription instead of background compilation as the code is written, which reduces ease of
development. This problem could be resolved in the future by e.g. reducing the number
of tokens after translating or improving support for splitting the translation into multiple
machine_description macros.

The evaluation of machine-check-avr was performed on a machine with the Ryzen
5600 processor in a Linux virtual machine with 8 GB of 3200 MT/s RAM available. The
programs were compiled/assembled using Microchip Studio 7.0.132. The tool was built in
release configuration using Rust 1.80.0. Building from a clean slate, the core machine-
check libraries were built in 18 seconds, and building machine-check-avr after that

4The programs, the evaluation script containing the properties, and the reference measurements are
available at https://doi.org/10.5281/zenodo.13377030.

5I use the version 0.3.2029 of rust-analyzer. The same error is described in https://github.com/
rust-lang/rust-analyzer/issues/10855, and it seems the token limit currently cannot be changed.

89

https://doi.org/10.5281/zenodo.13377030
https://github.com/rust-lang/rust-analyzer/issues/10855
https://github.com/rust-lang/rust-analyzer/issues/10855

6. Created Formal Verification Tool machine-check

took 59 seconds. The built machine-check-avr executable can verify properties of AT-
mega328P machine-code programs. The name of the machine-code Intel HEX file and
the property to be verified are supplied on the command line. For evaluation, the default
strategy of input splitting with no decay was used.

6.4.2 Toy Programs
In my diploma thesis [A.4], I evaluated my previous model checker on simple toy programs,
and it was able to verify some of their action-reaction deadline properties [A.4, p. 49-60].
Concisely, the programs are:

◦ Basic branch. Checks the value of an input pin and sets the output pin value
accordingly.

◦ Blink. Toggles an output pin (using PINB) with a 5-millisecond delay between
successive toggles.

◦ Gate array. Emulates five classic logic gates (buffer, inverter, AND, OR, XOR)
using GPIO.

◦ Switch with momentary selection. A mode input determines if the primary
input should behave as a momentary or toggle switch of the output pin. Inspired by
microcontroller-assisted relay switching schemes for e.g. guitar pedals.

◦ Independent nondeterminism. Uses single-bit branches to set different register
bits in succession, providing a verification challenge to the previous tool due to the
amount of non-determinism.

With the exception of the basic branch program, the toy programs were implemented
in assembly language. The basic branch program was implemented in C and is compiled
to different machine code in the debug and release configurations, so I used both for
verification. As the deadline properties in the previous checker are incomparable to CTL
properties, I have used these CTL properties for verification with machine-check-avr:

◦ Reachability of the loop start with appropriate GPIO direction settings.
AF[(PC = w) ∧ a ∧ b], where w is the program counter at the start of the main
program loop, a represents the equality of all used GPIO direction registers to their
intended values, and b represents the equality of all used GPIO output registers to
their intended values at the start of the program loop.

◦ Invariant lock. AG[a ⇒ AG[a]]. Once the used GPIO direction registers are set
to the appropriate values, they never change.

◦ Recovery. AG[EF[(PC = w) ∧ b]]. It is always possible to return to the start of
the program loop with the used GPIO output registers set to their intended values
at the start of the program loop.

90

6.4. Verification of AVR Programs

Table 6.1: Measurements of machine-code verification of toy programs using machine-
check-avr. For the states and transitions, the first number shows the total generated
number, while the second number shows the number in the final state space.

Program name Property name Result Refin. States Transitions CPU time [s] Memory[MB]

Basic branch (debug) Inherent ✓ 2 22 / 22 26 / 25 <0.01 6.26

Basic branch (debug) Reachability ✓ 0 13 / 13 14 / 14 <0.01 3.75

Basic branch (debug) Invariant lock ✓ 2 23 / 23 28 / 26 0.01 6.20

Basic branch (debug) Recovery ✓ 2 23 / 23 28 / 26 <0.01 6.15

Basic branch (release) Inherent ✓ 2 22 / 22 26 / 25 <0.01 6.24

Basic branch (release) Reachability ✓ 0 13 / 13 14 / 14 <0.01 3.75

Basic branch (release) Invariant lock ✓ 2 23 / 23 28 / 26 0.01 6.15

Basic branch (release) Recovery ✓ 2 23 / 23 28 / 26 <0.01 6.20

Blink Inherent ✓ 0 513 / 513 514 / 514 <0.01 4.46

Blink Reachability ✓ 0 513 / 513 514 / 514 <0.01 4.56

Blink Invariant lock ✓ 0 513 / 513 514 / 514 <0.01 4.32

Blink Recovery ✓ 0 513 / 513 514 / 514 <0.01 4.32

Gate array Inherent ✓ 987 4796 / 4030 6761 / 5018 11.56 14.32

Gate array Reachability ✓ 0 8 / 8 9 / 9 <0.01 3.76

Gate array Invariant lock ✓ 987 4796 / 4027 6771 / 5015 13.39 14.66

Gate array Recovery ✓ 987 4798 / 3828 6773 / 4816 12.19 14.13

Independent nondet. Inherent ✓ 384 1228 / 909 1987 / 1294 2.7 8.63

Independent nondet. Reachability ✓ 0 5 / 5 6 / 6 <0.01 3.67

Independent nondet. Invariant lock ✓ 384 1228 / 910 1997 / 1295 2.81 8.59

Independent nondet. Recovery ✗ 193 624 / 474 1011 / 668 1.3 7.65

Momentary selection Inherent ✓ 29 1878 / 1858 1930 / 1888 1.84 9.40

Momentary selection Reachability ✓ 0 7 / 7 8 / 8 <0.01 3.77

Momentary selection Invariant lock ✓ 29 1879 / 1859 1938 / 1889 1.87 9.66

Momentary selection Recovery ✓ 29 1879 / 1860 1938 / 1890 1.78 9.52

The inherent property of the machine-code system, ensuring that no panics occur, is verified
separately from other properties. While verifying the other properties, it is assumed that
the inherent property holds.

Note 6.4.1. In the independent nondeterminism program, no output was used, so instead
of the output value register, the relevant working register was used for verification.

The results for the toy programs are shown in Table 6.1. All of the properties were
verified in fairly little time and memory. Only the verification result of the recovery of
the independent nondeterminism program is false, which I investigated. As the program
zeroes the working register and conditionally performs inclusive-OR to it in the program
loop, recovery to a zeroed working register can be impossible, so the verification result is
correct.

91

6. Created Formal Verification Tool machine-check

1 #include <avr/io.h>
2 int factorial(uint8_t n) {
3 if (n == 0) {
4 return 1; // factorial of 0 is 1
5 }
6 return n * factorial(n − 1); // compute the factorial recursively
7 }
8 int main(void) {
9 DDRD |= 0xFF; // set port D as output

10 while (1) {
11 // get the value 0−7 from the lower 3 bits of port B
12 uint8_t read_value = PINB & 0x07;
13 // write the factorial result to port D
14 PORTD = factorial(read_value);
15 }
16 }

Figure 6.5: The factorial program, written in C.

6.4.3 Factorial: Stack Overflow Avoidance
To show a more interesting application of machine-code verification, I wrote a program
that computes the factorial of an input number between 0 and 7, shown in Figure 6.5. The
output overflows above 5! = 120, but the focus here is on recursion behaviour rather than
the output. The program uses recursive calls, which grow the program stack, threatening
to overwrite other variables located in memory (stack overflow). It is impossible to verify
that stack overflow cannot occur using source-code verification unless the verification is
tightly integrated into the compiler. A machine-code verifier, on the other hand, can verify
the impossibility of stack overflow exactly using the property AG[t], where t determines
the stack pointer position.

In the AVR architecture, there is a single stack that grows downwards, typically from the
end of the memory, and the Stack Pointer (SP) is pre-decremented and post-incremented,
i.e. it always points to the byte below the innermost stack byte [13]. As such, it is possible
to verify that the stack overflow does not occur by ensuring SP ≥ v, where v is the highest
non-stack variable byte. As the Stack Pointer is 16-bit but retained in two 8-bit registers
SPL (Stack Pointer Low) and SPH (Stack Pointer High) on AVR, SP ≥ v can be rewritten
to SPH > vhigh ∨ (SPH = vhigh ∧ SPL ≥ vlow). Using binary search, it is possible to find
the highest value of v where no stack overflow occurs.

The results of verification of the factorial program are shown in Table 6.2. In addition
to the properties verified in the toy programs, I also verified stack properties. The com-
piled machine code uses the recursive calls in the debug target without optimisation. In
the release target, the factorial function is transformed into iterative computation in the
resultant machine code, which reduces the maximum stack size.

The inherent, reachability, and invariant lock properties hold, which is expected. It
is also expected that recovery is impossible: the output is zero at the start of the main
program loop, but non-zero afterwards, and it is impossible for the output to become zero
again, even though the output value is factorial modulo 256: factorials up to 5! = 120
are non-zero modulo 256 trivially, 6! mod 256 = 208, and 7! mod 256 = 176. I found the

92

6.4. Verification of AVR Programs

Table 6.2: Measurements of machine-code verification of the factorial program using
machine-check-avr.

Target Property name Result Refinements States Transitions CPU time [s] Memory [MB]
Debug Inherent ✓ 576 68027 / 56847 70700 / 58192 68.32 107.96
Debug Reachability ✓ 0 20 / 20 21 / 21 <0.01 3.69
Debug Invariant lock ✓ 576 68027 / 56847 70716 / 58192 93.99 113.02
Debug Recovery ✗ 576 68027 / 56847 70716 / 58192 85.07 109.15
Debug Stack above 0x08DD ✓ 576 68027 / 56847 70716 / 58192 84.15 111.61
Debug Stack above 0x08DE ✗ 3 840 / 748 855 / 756 0.05 7.83
Release Inherent ✓ 45 5883 / 4272 6090 / 4378 1.08 14.89
Release Reachability ✓ 0 20 / 20 21 / 21 <0.01 3.81
Release Invariant lock ✓ 45 5883 / 4272 6094 / 4378 1.19 15.55
Release Recovery ✗ 45 5883 / 4272 6094 / 4378 1.2 15.18
Release Stack above 0x08FB ✓ 45 5883 / 4272 6094 / 4378 1.18 15.26
Release Stack above 0x08FC ✗ 0 20 / 20 21 / 21 <0.01 3.78

maximum stack size needed by manually binary-searching until I determined the properties
that together give the maximum value of v.

As the maximum SRAM location for ATmega328P is 0x08FF, the maximum stack size
is only 4 bytes for the release target, which corresponds to a call to the main function from
the initialisation code and a later call from main to factorial. For the debug target, the
maximum stack size is 34 bytes. In addition to the 2 bytes corresponding to the call to
main, the factorial function is called at most 8 times (decreasing from a value of 7 to a
value of 0 inclusively). It pushes two registers to the stack in its prelude, so that each call
of the function together with the prelude takes up 4 bytes, resulting in 2 + 8 · 4 = 34.

These maximum stack sizes might seem small as ATmega328P has 2048 bytes of SRAM,
but excessive recursion might preclude the use of a cheaper microcontroller. For example,
the related AVR ATtiny24A has only 128 bytes of SRAM, so even 34 bytes used by the stack
can be problematic. Using machine-check-avr, it is possible to select the appropriate
device while ensuring the stack never overwrites other variables.

6.4.4 Digital Calibration: Finding a Bug in a Realistic Program
In my previous bachelor thesis, I used the AVR ATtiny24A microcontroller for digital
calibration of an analog Voltage-Controlled Oscillator (VCO) [A.6, p. 28-30, 42-43, 48-
50]. The calibration is based on monotonicity of adjustment: as a digital potentiometer
controlling the VCO input voltage is adjusted in a specified direction, the VCO output
frequency rises. The optimal potentiometer setting is found using binary search based on
whether the VCO frequency is lower or higher than desired. The calibration program was
able to adjust the VCO satisfactorily for musical audio and is a practical example of where
a low-cost microcontroller may be used.

I simplified the calibration program, using the core calibration routine and replacing
the frequency estimation using a timer peripheral (input) and SPI digital potentiometer

93

6. Created Formal Verification Tool machine-check

1 #define F_CPU 1000000
2 #include <avr/io.h>
3 #include <util/delay.h>
4
5 int main(void) {
6 DDRC |= 0x01;
7 DDRD |= 0xFF;
8 while (1) {
9 while ((PINC & 0x2) == 0) {}

10 // signify we are calibrating
11 PORTC |= 0x01;
12
13 // start with MSB of calibration
14 uint8_t search_bit = 7;
15 uint8_t search_mask = (1 << search_bit);
16 uint8_t search_val = search_mask;
17
18 while (1) {
19 // wait a bit
20 _delay_us(10);
21 // write the current search value
22 PORTD = search_val;
23 // wait a bit
24 _delay_us(10);
25
26 // get input value and compare it to desired
27 uint8_t input_value = PINB;
28
29 if ((input_value & 0x80) == 0) {
30 // input value lower than desired
31 // we should lower the calibration value
32 search_val &= ∼search_mask;
33 }
34
35 if (search_bit == 0) {
36 // all bits have been set, stop
37 break;
38 }
39
40 search_bit −= 1;
41 // continue to next bit
42 search_mask >>= 1;
43 // update the search value with the next bit set
44 search_val |= search_mask;
45 }
46 // calibration complete, stop signifying that we are calibrating
47 PORTC &= ∼0x01;
48 }
49 }

Figure 6.6: The simplified calibration program, written in C.

control (output) with GPIO read and write, respectively, so that I could verify the program
using the current machine-check-avr. I considered only a single calibration for easier
verification. The simplified program is shown in Figure 6.6.

I used the release configuration of the calibration program and verified the same kinds
of properties as in the factorial example, as shown in the columns in Figure 6.3 denoted as
Original. The inherent, reachability, and invariant lock properties hold as expected. The
maximum stack size is 2 bytes, caused by a call to main from initialisation code.

94

6.4. Verification of AVR Programs

Table 6.3: Measurements of machine-code verification of the calibration program using
machine-check-avr.

Program Property name Result Refin. States Transitions CPU time [s] Memory [MB]
Original (debug) Inherent ✓ 513 13575 / 13213 14599 / 13727 25.75 31.55
Original (debug) Reachability ✓ 0 17 / 17 18 / 18 <0.01 3.64
Original (debug) Invariant lock ✓ 513 13575 / 13213 14602 / 13727 31.43 32.61
Original (debug) Recovery ✗ 513 13575 / 13213 14602 / 13727 28.82 31.62
Original (debug) Stack above 0x08FD ✓ 513 13575 / 13213 14602 / 13727 29.66 32.16
Original (debug) Stack above 0x08FE ✗ 0 17 / 17 18 / 18 <0.01 3.72
Original (release) Inherent ✓ 512 11253 / 10830 12275 / 11343 24.53 27.32
Original (release) Reachability ✓ 0 15 / 15 16 / 16 <0.01 3.86
Original (release) Invariant lock ✓ 512 11253 / 10830 12278 / 11343 29.33 28.39
Original (release) Recovery ✗ 512 11253 / 10830 12278 / 11343 27.12 27.45
Original (release) Stack above 0x08FD ✓ 512 11253 / 10830 12278 / 11343 27.8 28.12
Original (release) Stack above 0x08FE ✗ 0 15 / 15 16 / 16 <0.01 3.70

Fixed (debug) Inherent ✓ 513 13575 / 13213 14599 / 13727 26.21 31.40
Fixed (debug) Reachability ✓ 0 17 / 17 18 / 18 <0.01 3.81
Fixed (debug) Invariant lock ✓ 513 13575 / 13213 14602 / 13727 31.26 32.69
Fixed (debug) Recovery ✓ 513 13575 / 13213 14602 / 13727 29.11 31.72
Fixed (debug) Stack above 0x08FD ✓ 513 13575 / 13213 14602 / 13727 29.49 32.26
Fixed (debug) Stack above 0x08FE ✗ 0 17 / 17 18 / 18 <0.01 3.80
Fixed (release) Inherent ✓ 512 12526 / 12158 13548 / 12671 24.9 29.68
Fixed (release) Reachability ✓ 0 15 / 15 16 / 16 <0.01 3.76
Fixed (release) Invariant lock ✓ 512 12526 / 12158 13551 / 12671 29.66 30.73
Fixed (release) Recovery ✓ 512 12526 / 12158 13551 / 12671 27.3 29.76
Fixed (release) Stack above 0x08FD ✓ 512 12526 / 12158 13551 / 12671 28.23 30.62
Fixed (release) Stack above 0x08FE ✗ 0 15 / 15 16 / 16 <0.01 3.74

While I did expect the recovery property to hold, machine-check-avr determined that
it does not hold. I investigated further and realised that the lowest output bit is cleared
in search_val but not in PORTD. As the output can never recover to being fully zero, the
recovery property is violated.

I fixed the problem by writing search_val to PORTD before breaking from the loop. The
results are shown in the columns in Figure 6.3 denoted as Fixed. The recovery property is
no longer violated.

The bug affects the original calibration program by reducing the number of used digital
potentiometer values6 from 256 to 128, which is hard to find because the output quality is
degraded but not significantly enough to be noticeable without special care. It is slightly
lucky that the reachability property uncovered the bug: no bug would be uncovered if the
initial value had the lowest bit set to 1. To thoroughly reveal the problems with unusable
output values, the recovery property would ideally be parameterised, so it could be verified
that all output values from 0 to 255 are used.

6The MCP4251 digital potentiometer has 257 steps, but one step is ignored in the calibration program.

95

6. Created Formal Verification Tool machine-check

The bug would be hard to find when using the ubiquitous source-code verification with
LTL properties. While it would be possible to rewrite the code so it does not use AVR-
specific peripherals and functions, the need to write an LTL property that would detect
the bug, e.g. F(PORTD = 2), is not obvious when we do not know about the bug yet.
Furthermore, the reachability property does not detect a bug where output values become
blocked indefinitely for some reason. On the other hand, the property AG[EF[PORTD=x]]
parameterised with x from 0 to 255 directly corresponds to ensuring all output values can
be used without being blocked indefinitely, which is what we would ideally want.

6.4.5 Assessment of Capabilities and Possible Improvements
The tool I have created during my doctoral studies, machine-check, is capable of ver-
ifying CTL properties of machine-code systems. I was able to verify important proper-
ties including maximum stack size and recovery in programs for the AVR ATmega328P
microcontroller. The programs were simpler than typical real-world AVR programs, with
only general-purpose I/O peripherals used, but their intricacy was approaching real-world
programs ideal for the low-cost and low-power ATtiny devices. The verification results
matched expectations, except for one case where the unexpected result was caused by a
previously undiscovered bug in the verified program, which demonstrates the capability for
bug-finding.

Compared to previous work on machine-code verification, machine-check is built
around general principles rather than tailored to a specific architecture or device. As
such, there is notably no special handling of e.g. the Program Counter or Stack Pointer
registers. This can lead to sub-optimal choices of refinement but makes the reasoning
straightforward without architecture-dependent decisions. There is little need to consider
the verification internals when writing the processor description.

Overall, I am satisfied with the theoretical and practical groundwork used to implement
machine-check, with the combination of translation of simulable descriptions presented
in Chapter 3 and discussed more extensively in this chapter, the input-based TVAR frame-
work presented in Chapter 4, and the bit-vector abstraction with fast abstract arithmetic
presented in Chapter 5. However, for real-world use, further improvements are necessary:

◦ Working with machine-check is currently not very user-friendly. Currently, verifica-
tion is done using a command-line tool that takes the machine code and the property
in a very simple format and outputs the result and further information when done.
The property format could be made more user-friendly, minimal witnesses of the
result could be given, a graphical user interface could be added for visualisation,
etc. Special care should be taken so that more processor peripherals can be easily
implemented so that real-world programs can be verified without any simplification.

◦ While the time and memory necessary for verification were reasonable for simple
programs, it would not be for more complex programs. The abstraction domains
and refinement strategies can be extended and tuned generally without any system-
dependent information so that the number of states and refinements is lower. While

96

6.4. Verification of AVR Programs

I would expect general improvements to provide usable results for verification of
real-world machine-code programs, the descriptions could be also extended with ver-
ification hints (e.g. that the Program Counter is the most important variable) if the
general approach is insufficient.

All things considered, the techniques I have introduced during my doctoral studies and
implemented in machine-check make it possible to verify interesting and useful properties
of machine-code programs. There are still practical issues precluding serious non-academic
use of the tool. However, in my opinion, it is only a matter of time and work before
machine-code verification can be successfully used to improve practical systems.

97

Chapter 7
Conclusion

At the outset of my doctoral studies, I set out to improve the state of the art in formal
verification of programs in machine code, which had been under-researched. During my
studies, I have successfully introduced three novel techniques to resolve known challenges,
published them, and implemented them in my free and open-source formal verification
tool machine-check. To my knowledge, it is the first publicly available, free, and open-
source tool of its kind. The introduced techniques and their implementations form a solid
foundation of machine-code verification through abstraction-based model checking.

7.1 Summary
In Chapter 1, I introduced the concept of and need for formal verification of machine-code
programs, enumerated my contributions, and provided an overview of the organisation of
this thesis.

In Chapter 2, I introduced the background of the work. I showed how source-code,
machine-code, and hardware systems have some basic commonalities despite their differ-
ences, and noted that machine-code systems are formed by machine-code programs together
with the guarantees about the processor they are executed on, with possible additional
guarantees. I introduced basic formalisms for model checking and discussed the grouping
of advanced techniques. I introduced the concept of abstraction refinement. I discussed
the state of the art in verification of digital systems and noted that abstraction refinement
is commonly used in the best verification tools to mitigate the problem of exponential
explosion. I noted that verification of machine-code systems is highly under-researched
and that a major problem specific to machine-code verification has been the difficulty of
supporting easy writing of processor descriptions while ensuring that advanced verification
techniques such as abstraction refinement can be used.

In Chapter 3, I presented my technique that solves the difficulty. The descriptions in
are written in the Rust programming language and meta-programming is used to trans-
form them into verification equivalents, usable for model-checking with abstraction re-
finement. I discussed how this solution is fully automatic and opaque to the processor

99

7. Conclusion

description writer, allowing those not familiar with formal verification to write the descrip-
tions. I showed an example of a simplified RISC processor described in a way it can be
transformed into verification equivalents and discussed the subset of the Rust language
that can be used in the descriptions.

In Chapter 4, I discussed a novel Three-Valued Abstraction Refinement (TVAR) frame-
work I introduced to be able to verify properties that are not verifiable by the conventional
Counterexample-guided Abstraction Refinement (CEGAR). I noted the problems of pre-
vious TVAR frameworks and based my framework on a novel input-based approach. I for-
mally proved that my framework produces correct results and does so in finite time for
finite systems as long as requirements are met. I experimentally evaluated an implementa-
tion of an instance of the introduced framework in machine-check, showing its potential
to reduce exponential explosion on simple digital systems.

In Chapter 5, I showed how I and my supervisor resolved a problem in previous ap-
proaches to machine-code model checking that used three-valued bit-vector abstraction,
namely that it was not possible to adequately resolve arithmetic operations. We were
able to devise an algorithm that produces correct results with linear complexity provided
the original non-abstract operation has constant complexity. We then proved that the
operation results are optimal for addition, subtraction, and general summation. For multi-
plication, we devised an algorithm that produces optimal results with quadratic complexity.

In Chapter 6, I discussed my publicly available, free, and open-source tool machine-
check that I created during my doctoral research, implementing the techniques from Chap-
ters 3, 4, and 5. I discussed how the techniques are combined, and noted some further
implementation difficulties and their resolution. I evaluated the tool using machine-code
programs for the ATmega328P microcontroller and was able to verify their interesting
properties. Notably, I found a bug in a real-world program from my previous bachelor
thesis [A.6] using a simplified program that retained its core behaviour.

7.2 Contributions of the Dissertation Thesis
In my dissertation thesis, the results of my doctoral research are described and brought
into general context. In Chapter 2, the theoretical background and the state of the art are
discussed, and valuable insights frame the subject matter:

◦ All digital systems have basic commonalities: finite-length bit-vector variables, index-
able arrays of bit-vectors, and fixed-point bit-vector operations. These commonalities
are instrumental for the effective expression of the system using other system levels.
The systems can be formalised as Moore machines.

◦ The commonly used temporal logics are Computation Tree Logic (CTL), Linear Time
Logic (LTL), and CTL*, especially as there are known algorithms for model-checking
against them that depend only linearly on the size of the state space.

100

7.3. Future Work

◦ Model-checking is often used with abstraction, which can further be extended for
abstraction refinement. The two main methodologies for abstraction refinement are
Counterexample-guided Abstraction Refinement (CEGAR) and Three-valued Ab-
straction Refinement (TVAR).

◦ Use of CEGAR is very common in state-of-the-art verification tools, typically com-
bined with symbolic verification techniques and using Satisfiability Modulo Theories
(SMT) solvers.

◦ The focus on CEGAR and degenerate temporal properties, especially reachability, in
source-code verification tools may present blind spots in verification, as can the re-
liance on compilers to produce the correct machine code that is not formally verified.
Using Three-valued Abstraction Refinement (TVAR) makes it possible to verify prop-
erties not verifiable using CEGAR, and using machine-code verification can reveal
problems not possible to find using source-code verification.

In the following chapters, I described three novel techniques I devised during the course of
my research:

◦ Simulable machine-code system descriptions translated to their verification equiva-
lents by meta-programming, combining a previously published overview [A.2] with
added material original to the thesis.

◦ A Three-Valued Abstraction Refinement framework (TVAR) using input-based in-
stead of state-based splitting to resolve problems of previous TVAR frameworks and
provide a simpler representation, containing material available as a preprint [A.3].

◦ Fast algorithms for computation of the best results of arithmetic operations on three-
valued abstract bit-vectors, containing previously published material [A.1].

Finally, I described the combination of the techniques in my implementation of the formal
verification tool machine-check that I created during my doctoral research, and showed
that the tool is capable of machine-code program verification.

7.3 Future Work
There are possibilities for further research based on the foundations laid by the work
described in this thesis, although hampered by the fact that no machine-code verification
tool other than machine-check is currently practically available, and machine-check is
currently more limited by practical rather than theoretical problems. The time and memory
requirements of formal verification are the main theoretical problem: even the source-code
verification tools, despite decades of research, have problems formally verifying some rather
simple programs. Possible extensions of machine-code verification, such as verification of
real-time properties, have been already researched formally in other contexts, such as

101

7. Conclusion

hardware verification. There might be some adjustments necessary for the machine-code
level, but I would not expect them to be drastic due to the digital system commonalities.

Despite the fact that machine-check is able to verify simple digital systems includ-
ing some machine-code systems, its practical usability is currently not good enough yet
for serious use. Currently, the most significant problems are practical, such as the user-
friendliness of the interface or the ability to write descriptions more elegantly and use more
advanced Rust constructs. Programmers unfamiliar with formal verification will only start
using formal verification tools if there is a simple and understandable process for obtaining
useful verification results, helping them with development. Only then will we be closer to
the overarching goal of formal verification, designing safe, secure, and useful systems.

102

Bibliography

[1] B. Fung. We finally know what caused the global tech outage - and how much it
cost. CNN Business, July 2024. URL https://edition.cnn.com/2024/07/24/tech/
crowdstrike-outage-cost-cause/index.html. Accessed on 23 August 2024.

[2] T. Hannaford. Microcode (0x129) update for Intel Core 13th and 14th Gen desk-
top processors. URL https://community.intel.com/t5/Processors/Microcode-
0x129-Update-for-Intel-Core-13th-and-14th-Gen-Desktop/m-p/1624688. Ac-
cessed on 23 August 2024.

[3] AMD-SB-7014. SMM lock bypass. URL https://www.amd.com/en/resources/
product-security/bulletin/amd-sb-7014.html. Popularly known as the SinkClose
vulnerability. Accessed on 23 August 2024.

[4] B. Toulas. New AMD SinkClose flaw helps install nearly undetectable malware.
Bleeping Computer, August 2024. URL https://www.bleepingcomputer.com/news/
security/new-amd-sinkclose-flaw-helps-install-nearly-undetectable-
malware/. Accessed on 23 August 2024.

[5] C. E. Shannon. A symbolic analysis of relay and switching circuits. Transactions of
the American Institute of Electrical Engineers, 57(12):713–723, 1938. doi:10.1109/T-
AIEE.1938.5057767.

[6] International Organization for Standardization. ISO/IEC 9899:1999. Standard, In-
ternational Organization for Standardization, Geneva, Switzerland, December 1999.
Informally known as the C99 standard of the C language.

[7] A. Biere. The AIGER And-Inverter Graph (AIG) format version 20071012. FMV
Technical Reports, 07/1, 2007. doi:10.35011/fmvtr.2007-1.

[8] A. Biere, K. Heljanko, and S. Wieringa. AIGER 1.9 and beyond. FMV Technical
Reports, 11/2, 2011. doi:10.35011/fmvtr.2011-2.

103

https://edition.cnn.com/2024/07/24/tech/crowdstrike-outage-cost-cause/index.html
https://edition.cnn.com/2024/07/24/tech/crowdstrike-outage-cost-cause/index.html
https://community.intel.com/t5/Processors/Microcode-0x129-Update-for-Intel-Core-13th-and-14th-Gen-Desktop/m-p/1624688
https://community.intel.com/t5/Processors/Microcode-0x129-Update-for-Intel-Core-13th-and-14th-Gen-Desktop/m-p/1624688
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7014.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-7014.html
https://www.bleepingcomputer.com/news/security/new-amd-sinkclose-flaw-helps-install-nearly-undetectable-malware/
https://www.bleepingcomputer.com/news/security/new-amd-sinkclose-flaw-helps-install-nearly-undetectable-malware/
https://www.bleepingcomputer.com/news/security/new-amd-sinkclose-flaw-helps-install-nearly-undetectable-malware/
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.35011/fmvtr.2007-1
https://doi.org/10.35011/fmvtr.2011-2

Bibliography

[9] A. Niemetz, M. Preiner, C. Wolf, and A. Biere. Btor2, BtorMC and Boolector 3.0.
In H. Chockler and G. Weissenbacher, editors, Proceedings of the 30th International
Conference on Computer Aided Verification, CAV 2018, pages 587–595, Cham, 2018.
Springer International Publishing. ISBN 978-3-319-96145-3. doi:10.1007/978-3-319-
96145-3_32.

[10] Intel Corporation. Hexadecimal object file format specification. Technical report, Intel
Corporation, 1988. URL https://archive.org/details/IntelHEXStandard.

[11] The LLVM Compiler Infrastructure. LLVM bitcode file format. URL https:
//llvm.org/docs/BitCodeFormat.html. Accessed on 24 August 2024.

[12] ATmega48A/PA/88A/PA/168A/PA/328/P Data Sheet. Microchip Technology
Inc., October 2018. URL http://ww1.microchip.com/downloads/en/DeviceDoc/
ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf. DS40002061A.

[13] AVR Instruction Set Manual. Microchip Technology Inc., February 2021. URL
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-
Manual-DS40002198.pdf. DS40002198B.

[14] S. A. Seshia, N. Sharygina, and S. Tripakis. Modeling for verification. In E. M. Clarke,
T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
75–105. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-8.
doi:https://doi.org/10.1007/978-3-319-10575-8_3.

[15] H. S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edition, 2012. ISBN
0321842685.

[16] E. M. Clarke, T. A. Henzinger, and H. Veith. Introduction to model checking. In
E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model
Checking, pages 1–26. Springer International Publishing, Cham, 2018. ISBN 978-3-
319-10575-8. doi:10.1007/978-3-319-10575-8_1.

[17] J. Bradfield and I. Walukiewicz. The mu-calculus and model checking. In E. M. Clarke,
T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
871–919. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-8.
doi:10.1007/978-3-319-10575-8_26.

[18] N. Piterman and A. Pnueli. Temporal logic and fair discrete systems. In E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Check-
ing, pages 27–73. Springer International Publishing, Cham, 2018. ISBN 978-3-319-
10575-8. doi:10.1007/978-3-319-10575-8_2.

[19] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement. In E. A. Emerson and A. P. Sistla, editors, Proceedings of the

104

https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://archive.org/details/IntelHEXStandard
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/BitCodeFormat.html
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf
https://doi.org/https://doi.org/10.1007/978-3-319-10575-8_3
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_2

Bibliography

12th International Conference on Computer Aided Verification, CAV 2000, pages 154–
169, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45047-4.
doi:10.1007/10722167_15.

[20] E. Clarke, A. Gupta, and O. Strichman. SAT-based counterexample-guided abstrac-
tion refinement. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 23(7):1113–1123, 2004. doi:10.1109/TCAD.2004.829807.

[21] S. Chaki and A. Gurfinkel. BDD-based symbolic model checking. In E. M. Clarke,
T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
219–245. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-8.
doi:10.1007/978-3-319-10575-8_8.

[22] A. Biere and D. Kröning. SAT-based model checking. In E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
277–303. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-8.
doi:10.1007/978-3-319-10575-8_10.

[23] D. Dams and O. Grumberg. Abstraction and abstraction refinement. In E. M. Clarke,
T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
385–419. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-8.
doi:10.1007/978-3-319-10575-8_13.

[24] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Interval anal-
ysis and machine arithmetic: Why signedness ignorance is bliss. ACM Transactions
on Programming Languages and Systems, 37(1):1:1–1:35, 2014. doi:10.1145/2651360.

[25] A. Mine. The octagon abstract domain. In Proceedings of the 8th Work-
ing Conference on Reverse Engineering, WCRE 2001, pages 310–319, 2001.
doi:10.1109/WCRE.2001.957836.

[26] B. Schlich and S. Kowalewski. [mc]square: A model checker for microcontroller code.
In Proceedings of the Second International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, ISOLA 2006, pages 466–473, 2006.
doi:10.1109/ISoLA.2006.62.

[27] T. Reinbacher, M. Horauer, and B. Schlich. Using 3-valued memory representation
for state space reduction in embedded assembly code model checking. In Proceedings
of the 12th International Symposium on Design and Diagnostics of Electronic Circuits
Systems, DDECS 2009, pages 114–119, 2009. doi:10.1109/DDECS.2009.5012109.

[28] B. Schlich. Model checking of software for microcontrollers. ACM Trans-
actions on Embedded Computing Systems, 9(4), April 2010. ISSN 1539-9087.
doi:10.1145/1721695.1721702.

105

https://doi.org/10.1007/10722167_15
https://doi.org/10.1109/TCAD.2004.829807
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1145/2651360
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1109/ISoLA.2006.62
https://doi.org/10.1109/DDECS.2009.5012109
https://doi.org/10.1145/1721695.1721702

Bibliography

[29] R. P. Kurshan. Transfer of model checking to industrial practice. In E. M. Clarke,
T. A. Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
763–793. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-8.
doi:10.1007/978-3-319-10575-8_23.

[30] D. Beyer. State of the art in software verification and witness validation: SV-COMP
2024. In B. Finkbeiner and L. Kovács, editors, Proceedings of the 30th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2024, pages 299–329, Cham, 2024. Springer Nature Switzerland. ISBN 978-
3-031-57256-2. doi:10.1007/978-3-031-57256-2_15.

[31] L. Westhofen, P. Berger, and J.-P. Katoen. Benchmarking software model checkers on
automotive code. In R. Lee, S. Jha, A. Mavridou, and D. Giannakopoulou, editors,
Proceedings of the 12th International Symposium on NASA Formal Methods, NFM
2020, pages 133–150, Cham, 2020. Springer International Publishing. ISBN 978-3-
030-55754-6. doi:10.1007/978-3-030-55754-6_8.

[32] D. Beyer. SV-COMP 2024: Benchmark verification tasks. URL https://sv-
comp.sosy-lab.org/2024/benchmarks.php. Accessed on 12 June 2024.

[33] CPAchecker: A software verification tool for configurable program analyses. URL
https://cpachecker.sosy-lab.org/. Accessed on 25 August 2024.

[34] Ultimate program analysis framework. URL https://ultimate-pa.org/. Accessed
on 25 August 2024.

[35] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann, A. Nutz,
C. Schilling, and A. Podelski. Ultimate Automizer with SMTInterpol. In Proceedings
of the 19th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2013, pages 641–643, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. ISBN 978-3-642-36742-7. doi:10.1007/978-3-642-36742-7_53.

[36] Z. Baranová, J. Barnat, K. Kejstová, T. Kučera, H. Lauko, J. Mrázek, P. Ročkai,
and V. Štill. Model checking of C and C++ with DIVINE 4. In Proceedings of the
15th International Symposium on Automated Technology for Verification and Analysis,
ATVA 2017, volume 10482 of LNCS, pages 201–207. Springer, 2017. doi:10.1007/978-
3-319-68167-2_14.

[37] Machine learning based symbolic execution (MLB-SE). URL https://github.com/
MLB-SE/Experiment. Accessed on 25 August 2024.

[38] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik. JBMC: A bounded
model checking tool for verifying Java bytecode. In H. Chockler and G. Weissenbacher,
editors, Proceedings of the 30th International Conference on Computer Aided Verifi-
cation, CAV 2018, pages 183–190, Cham, 2018. Springer International Publishing.
ISBN 978-3-319-96145-3. doi:10.1007/978-3-319-96145-3_10.

106

https://doi.org/10.1007/978-3-319-10575-8_23
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-030-55754-6_8
https://sv-comp.sosy-lab.org/2024/benchmarks.php
https://sv-comp.sosy-lab.org/2024/benchmarks.php
https://cpachecker.sosy-lab.org/
https://ultimate-pa.org/
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-319-68167-2_14
https://github.com/MLB-SE/Experiment
https://github.com/MLB-SE/Experiment
https://doi.org/10.1007/978-3-319-96145-3_10

Bibliography

[39] M. Mues and F. Howar. GDart: An ensemble of tools for dynamic symbolic execution
on the Java Virtual Machine (competition contribution). In D. Fisman and G. Rosu,
editors, Proceedings of the 28th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2022, pages 435–439, Cham, 2022.
Springer International Publishing. ISBN 978-3-030-99527-0. doi:10.1007/978-3-030-
99527-0_27.

[40] C. Artho, P. Parízek, D. Qu, V. Galgali, and P. L. Yi. JPF: From 2003 to 2023. In
B. Finkbeiner and L. Kovács, editors, Proceedings of the 30th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, TACAS
2024, pages 3–22, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-57249-4.
doi:10.1007/978-3-031-57249-4_1.

[41] A. Biere, N. Froleyks, and M. Preiner. Hardware Model Checking Competition 2020,
HWMCC 2020. URL https://fmv.jku.at/hwmcc20/. Accessed on 12 June 2024.

[42] A. Goel and K. Sakallah. AVR: Abstractly verifying reachability. In A. Biere and
D. Parker, editors, Proceedings of the 26th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2020, pages 413–
422, Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-45190-
5_23.

[43] A. R. Bradley. Understanding IC3. In A. Cimatti and R. Sebastiani, editors, Proceed-
ings of the 15th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2012, pages 1–14, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-31612-8_1.

[44] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength verifica-
tion tool. In T. Touili, B. Cook, and P. Jackson, editors, Proceedings of the 22nd
International Conference on Computer Aided Verification, CAV 2010, pages 24–
40, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-14295-6.
doi:10.1007/978-3-642-14295-6_5.

[45] D. Beyer, P.-C. Chien, and N.-Z. Lee. Bridging hardware and software analysis with
Btor2C: A word-level-circuit-to-C translator. In S. Sankaranarayanan and N. Shary-
gina, editors, Proceedings of the 29th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, TACAS 2023, pages 152–172,
Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-30820-8. doi:10.1007/978-
3-031-30820-8_12.

[46] J. Regehr and A. Reid. HOIST: A system for automatically deriving static analyz-
ers for embedded systems. ACM SIGOPS Operating Systems Review, 38(5):133–143,
October 2004. ISSN 0163-5980. doi:10.1145/1037949.1024410.

107

https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-031-57249-4_1
https://fmv.jku.at/hwmcc20/
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1145/1037949.1024410

Bibliography

[47] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by abstract interpreta-
tion. ACM Transactions on Embedded Computing Systems, 4(4):751–778, November
2005. ISSN 1539-9087. doi:10.1145/1113830.1113833.

[48] E. G. Mercer and M. Jones. Model checking machine code with the GNU debugger. In
Proceedings of the 12th International SPIN Workshop, volume 3639 of Lecture Notes
in Computer Science, pages 251–265, San Francisco, USA, August 2005. Springer.
doi:10.1007/11537328_20.

[49] T. Mehler. Challenges and Applications of Assembly-Level Software Model Checking.
Dissertation thesis, University of Dortmund, 2006. URL http://hdl.handle.net/
2003/22435.

[50] T. Noll and B. Schlich. Delayed nondeterminism in model checking embedded systems
assembly code. In K. Yorav, editor, Proceedings of the 3rd Haifa Verification Confer-
ence, HVC 2008, pages 185–201, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
ISBN 978-3-540-77966-7. doi:10.1007/978-3-540-77966-7_16.

[51] T. Reinbacher, J. Brauer, M. Horauer, and B. Schlich. Refining assembly code static
analysis for the Intel MCS-51 microcontroller. In Proceedings of the Fourth IEEE
International Symposium on Industrial Embedded Systems, SIES 2009, pages 161–
170, 2009. doi:10.1109/SIES.2009.5196212.

[52] J. Brauer, T. Noll, and B. Schlich. Interval analysis of microcontroller code using
abstract interpretation of hardware and software. In Proceedings of the 13th Interna-
tional Workshop on Software & Compilers for Embedded Systems, SCOPES 2010, New
York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781450300841.
doi:10.1145/1811212.1811216.

[53] D. Gückel. Synthesis of State Space Generators for Model Checking Microcontroller
Code. Dissertation thesis, Fakultät für Mathematik, Informatik und Naturwis-
senschaften der RWTH Aachen, November 2014. URL http://aib.informatik.rwth-
aachen.de/2014/2014-15.pdf.

[54] S. Biallas, J. Brauer, and S. Kowalewski. Arcade.PLC: a verification platform for
programmable logic controllers. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012, pages 338–341, 2012.
doi:10.1145/2351676.2351741.

[55] J. Davis, A. Slobodova, and S. Swords. Microcode verification – another piece of
the microprocessor verification puzzle. In G. Klein and R. Gamboa, editors, Proceed-
ings of the 5th International Conference on Interactive Theorem Proving, ITP 2014,
pages 1–16, Cham, 2014. Springer International Publishing. ISBN 978-3-319-08970-6.
doi:10.1007/978-3-319-08970-6_1.

108

https://doi.org/10.1145/1113830.1113833
https://doi.org/10.1007/11537328_20
http://hdl.handle.net/2003/22435
http://hdl.handle.net/2003/22435
https://doi.org/10.1007/978-3-540-77966-7_16
https://doi.org/10.1109/SIES.2009.5196212
https://doi.org/10.1145/1811212.1811216
http://aib.informatik.rwth-aachen.de/2014/2014-15.pdf
http://aib.informatik.rwth-aachen.de/2014/2014-15.pdf
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1007/978-3-319-08970-6_1

Bibliography

[56] S. Goel, A. Slobodova, R. Sumners, and S. Swords. Verifying x86 instruction
implementations. In Proceedings of the 9th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2020, page 47–60, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370974.
doi:10.1145/3372885.3373811.

[57] CVE-2022-22819. LPC55Sxx SB2 loader vulnerability. URL https:
//community.nxp.com/t5/LPC-Microcontrollers-Knowledge/LPC55Sxx-SB2-
loader-vulnerability/ta-p/1433661. CVE-2022-22819. Accessed on 18 February
2024.

[58] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.
doi:10.1016/0167-6423(83)90017-5.

[59] S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and
3-valued abstraction-refinement. In W. A. Hunt and F. Somenzi, editors, Proceedings
of the 15th International Conference on Computer Aided Verification, CAV 2003,
pages 275–287, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-
45069-6. doi:10.1007/978-3-540-45069-6_28.

[60] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t Know in the µ-
calculus. In R. Cousot, editor, Proceeding of the 6th International Conference on
Verification, Model Checking, and Abstract Interpretation, VMCAI 2005, pages 233–
249, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-30579-8.
doi:10.1007/978-3-540-30579-8_16.

[61] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not losing is better
than winning: Abstraction and refinement for the full µ-calculus. Information and
Computation, 205(8):1130–1148, 2007. ISSN 0890-5401. doi:10.1016/j.ic.2006.10.009.

[62] P. Godefroid. May/must abstraction-based software model checking for sound verifi-
cation and falsification. In O. Grumberg, H. Seidl, and M. Irlbeck, editors, Software
Systems Safety, volume 36 of NATO Science for Peace and Security Series, D: Infor-
mation and Communication Security, pages 1–16. IOS Press, 2014. doi:10.3233/978-
1-61499-385-8-1.

[63] F. Belardinelli, A. Ferrando, and V. Malvone. An abstraction-refinement framework
for verifying strategic properties in multi-agent systems with imperfect information.
Artificial Intelligence, 316:103847, 2023. doi:10.1016/J.ARTINT.2022.103847.

[64] S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic, 3(4):
150–155, 1938. ISSN 00224812. doi:10.2307/2267778.

[65] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued tempo-
ral logics. In N. Halbwachs and D. Peled, editors, Proceedings on 11th International

109

https://doi.org/10.1145/3372885.3373811
https://community.nxp.com/t5/LPC-Microcontrollers-Knowledge/LPC55Sxx-SB2-loader-vulnerability/ta-p/1433661
https://community.nxp.com/t5/LPC-Microcontrollers-Knowledge/LPC55Sxx-SB2-loader-vulnerability/ta-p/1433661
https://community.nxp.com/t5/LPC-Microcontrollers-Knowledge/LPC55Sxx-SB2-loader-vulnerability/ta-p/1433661
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1007/978-3-540-45069-6_28
https://doi.org/10.1007/978-3-540-30579-8_16
https://doi.org/10.1016/j.ic.2006.10.009
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.3233/978-1-61499-385-8-1
https://doi.org/10.1016/J.ARTINT.2022.103847
https://doi.org/10.2307/2267778

Bibliography

Conference on Computer Aided Verification, CAV 1999, pages 274–287, Berlin, Hei-
delberg, 1999. Springer Berlin Heidelberg. doi:10.1007/3-540-48683-6_25.

[66] M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation for
three-valued program analysis. In D. Sands, editor, Proceedings of the 10th European
Symposium on Programming, ESOP 2001, pages 155–169, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-45309-3. doi:10.1007/3-540-45309-1_11.

[67] K. Larsen and B. Thomsen. A modal process logic. In Proceedings of the Third
Annual Symposium on Logic in Computer Science, LICS 1988, pages 203–210, 1988.
doi:10.1109/LICS.1988.5119.

[68] G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial state
spaces. In C. Palamidessi, editor, Proceedings of the 11th International Conference
on Concurrency Theory, CONCUR 2000, pages 168–182, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg. ISBN 978-3-540-44618-7. doi:10.1007/3-540-44618-4_14.

[69] P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model
checking. In E. Brinksma and K. G. Larsen, editors, Proceedings of the 14th Interna-
tional Conference on Computer Aided Verification, CAV 2002, pages 137–151, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg. doi:10.1007/3-540-45657-0_11.

[70] P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In L. D.
Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Proceedings of the 4th In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI 2003, pages 206–222, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
ISBN 978-3-540-36384-2. doi:10.1007/3-540-36384-X_18.

[71] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In K. Jensen
and A. Podelski, editors, Proceedings of the 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2004, pages
546–560, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-24730-
2. doi:10.1007/978-3-540-24730-2_40.

[72] S. Shoham and O. Grumberg. 3-valued abstraction: More precision at less
cost. Information and Computation, 206(11):1313–1333, 2008. ISSN 0890-5401.
doi:10.1016/j.ic.2008.07.004.

[73] O. Kupferman. Automata theory and model checking. In E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
107–151. Springer International Publishing, Cham, 2018. ISBN 978-3-319-10575-8.
doi:10.1007/978-3-319-10575-8_4.

[74] D. Dams and K. S. Namjoshi. Automata as abstractions. In R. Cousot, editor, Proceed-
ings of the 6th International Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI 2005, pages 216–232, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg. ISBN 978-3-540-30579-8. doi:10.1007/978-3-540-30579-8_15.

110

https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-45309-1_11
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1007/3-540-44618-4_14
https://doi.org/10.1007/3-540-45657-0_11
https://doi.org/10.1007/3-540-36384-X_18
https://doi.org/10.1007/978-3-540-24730-2_40
https://doi.org/10.1016/j.ic.2008.07.004
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/978-3-540-30579-8_15

Bibliography

[75] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The Cyber-Physical Systems
Series. MIT Press, 1st edition, 1999. ISBN 9780262032704.

[76] Institute of Electrical and Electronics Engineers. IEEE standard multivalue logic
system for VHDL model interoperability (std_logic_1164). IEEE Std 1164-1993,
pages 1–24, 1993. doi:10.1109/IEEESTD.1993.115571.

[77] S. Yamane, R. Konoshita, and T. Kato. Model checking of embedded assembly pro-
gram based on simulation. IEICE Transactions on Information and Systems, E100.D
(8):1819–1826, 2017. doi:10.1587/transinf.2016EDP7452.

[78] E. Boros and P. L. Hammer. Pseudo-Boolean optimization. Discrete Applied Mathe-
matics, 123(1):155–225, 2002. ISSN 0166-218X. doi:10.1016/S0166-218X(01)00341-9.

[79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Pro-
ceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 1979, page 269–282, New York, NY, USA, 1979. Association
for Computing Machinery. ISBN 9781450373579. doi:10.1145/567752.567778.

[80] T. Reps and A. Thakur. Automating abstract interpretation. In B. Jobstmann and
K. R. M. Leino, editors, Proceedings of the 17th International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, pages 3–40, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg. ISBN 978-3-662-49122-5. doi:10.1007/978-3-662-
49122-5_1.

[81] J. Arndt. Bit wizardry, pages 2–101. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. ISBN 978-3-642-14764-7. doi:10.1007/978-3-642-14764-7_1.

[82] S. S. Skiena. Introduction to Algorithm Design, pages 3–30. Springer London, London,
2008. ISBN 978-1-84800-070-4. doi:10.1007/978-1-84800-070-4_1.

[83] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and re-
dundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1988, page 12–27, New
York, NY, USA, 1988. Association for Computing Machinery. ISBN 0897912527.
doi:10.1145/73560.73562.

[84] A. Møller and M. I. Schwartzbach. Static program analysis. URL http://cs.au.dk/
~amoeller/spa/. Department of Computer Science, Aarhus University. Accessed on
20 August 2024.

111

https://doi.org/10.1109/IEEESTD.1993.115571
https://doi.org/10.1587/transinf.2016EDP7452
https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/978-3-642-14764-7_1
https://doi.org/10.1007/978-1-84800-070-4_1
https://doi.org/10.1145/73560.73562
http://cs.au.dk/~amoeller/spa/
http://cs.au.dk/~amoeller/spa/

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Onderka, J., Ratschan, S. Fast three-valued abstract bit-vector arithmetic. In
Finkbeiner, B., Wies, T., editors, Proceedings of the 23rd International Confer-
ence on Verification, Model Checking, and Abstract Interpretation, VMCAI 2022,
pages 242–262. Springer Nature Switzerland, Cham, 2022. ISBN: 978-3-030-94583-1.
doi:10.1007/978-3-030-94583-1_12.

The paper has been cited in:

◦ Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S. Verifying the
verifier: eBPF range analysis verification. In Enea, C., Lal, A., editors, Pro-
ceedings of the 35th International Conference on Computer Aided Verification,
CAV 2023. Springer, Cham, 2023. ISBN: 978-3-031-37709-9. doi:10.1007/978-3-
031-37709-9_12.
◦ Shachnai, M., Vishwanathan, H., Narayana, S., Nagarakatte, S. Fixing La-

tent Unsound Abstract Operators in the eBPF Verifier of the Linux Kernel
(preprint). Accepted and scheduled to be presented at the Static Analysis Sym-
posium, SAS 2024. https://mshachnai.github.io/pubs/sas_24.pdf

[A.2] Onderka, J. Formal verification of machine-code systems by translation
of simulable descriptions. In Proceedings of the 13th Mediterranean Con-
ference on Embedded Computing, MECO 2024. Budva, Montenegro, 2024.
doi:10.1109/MECO62516.2024.10577942.

The paper has received the MECO 2024 conference award The Best Paper in Software
and Algorithms.

113

https://doi.org/10.1007/978-3-030-94583-1_12
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1007/978-3-031-37709-9_12
https://mshachnai.github.io/pubs/sas_24.pdf
https://doi.org/10.1109/MECO62516.2024.10577942

Remaining Publications of the Author
Relevant to the Thesis

[A.3] Onderka, J. Input-based framework for three-valued abstraction refinement
(preprint). arXiv:2408.12668 [cs.LO]. 2024. https://arxiv.org/abs/2408.12668.
The current version at the time of writing this thesis is available at https:
//arxiv.org/abs/2408.12668v2.

[A.4] Onderka, J. Deadline verification using model checking. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology. Prague, 2020.
http://hdl.handle.net/10467/87989.

115

https://arxiv.org/abs/2408.12668
https://arxiv.org/abs/2408.12668v2
https://arxiv.org/abs/2408.12668v2
http://hdl.handle.net/10467/87989

Remaining Publications of the Author

[A.5] Onderka, J. Pitch shifting of audio signals in real time using STFT on a Digital
Signal Processor. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology. Prague, 2018. http://hdl.handle.net/10467/77279.

[A.6] Onderka, J. Analog modular music synthesizer with digital control. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Electrical Engineering. Prague,
2022. http://hdl.handle.net/10467/101676.

117

http://hdl.handle.net/10467/77279
http://hdl.handle.net/10467/101676

	Introduction
	Contribution
	Organisation of This Thesis

	Background and State of the Art
	Digital Systems
	Digital System Levels
	Digital System Commonalities
	Formalisation as Moore Machines

	Property Specifications
	Formal Verification Using Model Checking
	Classic Model-Checking Formalisms

	Advanced Techniques for Model Checking
	Abstraction and Abstraction Refinement
	Methodologies
	Abstraction Domains

	State of the Art in Digital System Verification
	Source-Code Systems
	Hardware Systems
	Machine-Code Systems
	Comparison of System Levels

	Summary

	Machine-Code Verification Using Translation of Simulable Descriptions
	Verification of Machine-Code Systems
	Processor Descriptions
	Subset of the Rust Language Usable in Descriptions
	Further Notes

	Input-based Three-valued Abstraction Refinement Framework
	The Need for a New Three-valued Abstraction Refinement Framework
	Previous Work on Three-valued Abstraction
	Previous Frameworks and Their Problems

	State-based and Input-based Refinement
	Input-based Abstraction Framework
	Generating Automata
	High-level View of the Input-based Framework

	Soundness, Monotonicity, and Completeness
	Soundness Preservation through Modal Simulation
	Proof of Soundness
	Proof of Monotonicity
	Proof of Completeness

	Implementation and Experimental Evaluation
	Further Notes

	Abstract Three-valued Bit-vector Arithmetic
	Related Work
	Basic Definitions
	Abstract Bit Encodings
	Abstract Transformers
	Algorithm Complexity Considerations
	Naïve Universal Abstract Algorithm

	Formal Problem Statement
	Modular Extreme-Finding Technique
	Fast Abstract Addition
	Fast Abstract Multiplication
	Obtaining a Best Abstract Transformer
	At Most One Double-Unknown k-th Column Pair
	Multiple Double-Unknown k-th Column Pairs
	Implementation Considerations
	Fast Abstract Multiplication Algorithm

	Experimental Evaluation
	Visualisation and Interpretation

	Further Notes

	Created Formal Verification Tool machine-check
	Input-based Three-valued Abstraction Refinement Using Abstraction Analogues
	Abstract Generating Automatons and Soundness
	The Refinement Algorithm

	Translation to Abstraction and Refinement Analogues
	Functions without Control Flow
	Functions with Conditional Branches

	Implementation Specifics
	Resolution of Introduced Complications

	Verification of AVR Programs
	Description Details and Evaluation Setup
	Toy Programs
	Factorial: Stack Overflow Avoidance
	Digital Calibration: Finding a Bug in a Realistic Program
	Assessment of Capabilities and Possible Improvements

	Conclusion
	Summary
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author

