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Abstract and Contributions

Since side-channel analysis poses a serious threat to cryptographic devices, it became an
extensively researched area. Two topics related to side-channel analysis are the main aim
of this dissertation thesis: efficient attack implementations and fault-tolerance of SCA
countermeasures.

Three approaches for time-efficient enhancements of correlation power analysis are pro-
posed: efficient computations, trace aggregation, and edge-detection-based key candidate
selection. All three approaches proved to be functional and useful by experimental evalu-
ations. We also evaluate how different dependable architectures based on different kinds
of redundancy affect resistance to side-channel analysis. The results show, that the in-
fluence is not statistically significant. In accordance with this result, architectures for
dependable and secure design were proposed. These architectures are based on hardware
modular redundancy and masking schemes. The case study shows, that the proposed
architectures keep the simplicity of the modular redundancy architectures and the SCA
resistance of masking schemes, while it significantly saves resources.

In particular, the main contributions of the dissertation thesis are as follows:

1. Evaluation of multiple approaches to first-order and higher-order correlation compu-
tations and a proposal of time-efficient and numerically stable implementations.

2. An efficient method for speeding up power analysis based on an aggregation of power
traces.

3. Improved correlation distinguisher based on edge detection, especially useful in noisy
environments.

4. Comprehensive evaluation of the influence of dependable architectures on the resist-
ance against side-channel analysis.

5. Area-efficient architectures for dependability and the resistance to side-channel ana-
lysis.
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Chapter 1

Introduction

Computers, communication networks, and other electronic systems became an essential
part of our everyday lives. We pay by cards, communicate by smartphones, drive smart
cars, watch smart TVs, wear smart clothes and so on. As these systems can be connected
over the Internet, they are making our lives easier as so as they are posing a threat to our
privacy. As strangers reading our text messages or controlling our smart lightbulbs are
usually undesirable, our data and communication need to be protected by cryptography.
These smart devices have also pervaded areas, where human lives, health or property
depend on the proper functionality of the devices, like automotive industry (e.g. smart
cars) or medical appliances (e.g. pacemakers). Electronic systems utilized in these areas
need to fulfill strict dependability properties.

1.1 Motivation

As implied above, some electronic systems need to be designed with regard to both the
security and dependability. Cryptographic units need to be involved and protected against
attackers to ensure the security properties, while fault-tolerant architectures need to be
used for the implementation of all parts of these systems to make the whole systems de-
pendable. Fault-tolerant design and attack countermeasures have a significant influence
on physical properties like area or power consumption and the mutual influence of these
design approaches is the aim of this thesis. It is mainly focused on the side-channel pro-
tection of dependable systems.

Numerous experimental evaluations are required to be performed in order to conduct
the research. For this reason, we decided to dedicate a reasonable amount of research
to efficient evaluations of attacks. Specifically, we focused on correlation power analysis
and leakage assessment using Welch’s t-test.

1



1. Introduction

1.2 Problem Statement

Many approaches to make a design fault-tolerant exist. These fault-tolerant architectures
affect physical properties of the original design, like area, power consumption, execution
time and others. A change of any physical property of the design can affect its security, as
these physical properties are exploited by recognized side-channel analysis. This influence
needs to be explored and evaluated.

Another problem of devices designed to be both dependable and secure is a significant
overhead. Fault-tolerant architectures usually demand high area and/or power and/or time
overhead and the same applies to countermeasures against side-channel attacks. Therefore,
when a design combines these two approaches, the overhead is cumulative. A proposition
of composite architectures leading to a reduction of the overhead is desired.

For a comprehensive evaluation of side-channel resistance, a significant amount of stat-
istical computations needs to be performed. The complexity of these computations depends
on multiple characteristics of the evaluation. We decided to explore the possibilities of ad-
justing these characteristics to speed up these evaluations.

1.3 Goals of the Dissertation Thesis

1. Analysis of possibilities to speed up the correlation power analysis and test vector
leakage assessment.

2. Comprehensive evaluation of the influence of fault-tolerant architectures on resistance
against side-channel analysis.

3. Proposition of architectures combining fault-tolerance and resistance to side-channel
analysis with regard to the overhead.

1.4 Structure of the Dissertation Thesis

The thesis is organized into 5 chapters as follows:

Chapter 1 — Introduction: Describes the motivation behind our efforts together with
brief problem description. There is also a list of goals of this dissertation thesis.

Chapter 2 — Background and State-of-the-Art: Introduces the reader to the ne-
cessary theoretical background and surveys the current state-of-the-art.

Chapter 3 — Enhancements of Correlation Power Analysis: Describes our propos-
itions of speeding up correlation power analysis and test vector leakage assessment.

Chapter 4 — Dependability vs. Security: Presents an evaluation of the influence
of fault-tolerant architectures on the resistance against side-channel analysis.

2



1.4. Structure of the Dissertation Thesis

Chapter 5 — Conclusions: Summarizes the results of our research, suggests possible
topics for further research, and concludes the thesis.
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Chapter 2

Background and State-of-the-Art

In this chapter, we present the work related to the topic of this thesis. In Section 2.1, an
overview of the non-profiled side-channel attacks and a deeper description of correlation
power analysis is presented as so is an overview of SCA countermeasures. Common de-
pendable architectures based on various kinds of redundancy are described in Section 2.2.
Existing research of the influence of fault-attack countermeasures on resistance against
SCA is presented in Section 2.3. Differences between principles of fault-attack counter-
measures (existing work) and dependable architectures (our approach) are also explained
in this section.

2.1 Side-Channel Analysis

Side-channel analysis is a group of attacks exploiting physical properties (so-called side-
channels) of a device under attack (usually an encryption module). Therefore, these at-
tacks pose a threat even to cryptographically strong ciphers. The basic principle stands
on an assumption that the activity of the side-channel is somehow dependent on the secret
information (usually the cipher key) used by the device. Many exploitable side-channels
exist, e.g. power consumption [2], electromagnetic radiation [3], time [4] or temperature [5].
The most common side-channel is power consumption, which is our primary focus in this
research, but the further mentioned principles are also applicable to other side-channels,
especially electromagnetic radiation [6].

2.1.1 Simple Power Analysis

In 1999, Paul Kocher et al. introduced two attacks to lay a foundation of side-channel
analysis research — simple power analysis and differential power analysis [2]. Simple
power analysis permitted to identify particular operations of the encryption from a very
small amount of power traces (or even a single one) and extract the secret information.
This attack is especially efficient against software implemented asymmetric ciphers based
on modular exponentiation like RSA [7], where square and multiply algorithm permits us

5



2. Background and State-of-the-Art

to visually identify the difference between an input bit being logical one (both square and
multiply are processed) and logical zero (only the square is processed). Furthermore, this
attack was later adjusted to other types of ciphers, e.g. in [8], simple power analysis of AES
[9] exploiting key expansion procedure was presented.

2.1.2 Differential Power Analysis

The other attack presented by Kocher et al., differential power analysis, proved itself
to be even more beneficial for side-channel analysis research. In comparison with SPA, it
is a more complex attack, but also a more powerful attack. DPA exploits the fact that the
power consumption of the device under attack at a certain point in time is proportional
to the currently processed data. Even a difference in a single bit leads to minor differences
in power consumption. The attack assumes that an attacker is able to measure the power
consumption of the device during encryption and that he is also able to feed the device
with arbitrary input data (plaintext).

At first, the attacker collects power traces (the actual amount depends on the device
under attack, it can be from tens up to millions or even more) during the encryption while
the device is fed with random plaintexts. The collected power traces are then analyzed
in the following way. A hypothetical value — an internal value of the encryption algorithm,
which is predicted using a function of (a part of) a key and (a part of) plaintext or ciphertext
— is computed for each part of the key (e.g. byte of the key), each key candidate and
each measured encryption. (The partitioning of the key is important to keep the amount
of possible key candidates feasible.) Then, for each part of the key and each key candidate,
the power traces are partitioned into two sets according to the value of one of the bits (e.g.
LSB or MSB). Power traces in these two sets are averaged and the two average traces are
subtracted. In the case of a wrong key candidate, the trace resulting from the subtraction
is nearly constant at zero (with some insignificant peaks caused by noise), while in the case
of the correct key candidate, a major peak appears in time points, where the hypothetical
value is processed. The whole cipher key is extracted this way.

2.1.3 DPA Derivatives

Differential power analysis became a highly researched topic and many enhancements and
derivatives were proposed. An attack built on the DPA basis, but using electromagnetic
radiation as a side-channel, was proposed in [3]. Messerges et al. [10] proposed a multi-bit
DPA which uses partitioning of the power traces into two sets by Hamming weight of hypo-
thetical value. Another approach is to correlate power consumption estimates (which are
based on a model of the power consumption, e.g. Hamming weight of a hypothetical value
or Hamming distance between hypothetical values in two consequent states of encryption)
to the measured power consumption [11]. This approach is usually called correlation power
analysis and its comprehensive description is presented further. In [12], Gierlichs et al. pro-
posed a ranking of the key candidates using mutual information between the hypothetical
leakage and the measured power consumption (mutual information analysis).

6



2.1. Side-Channel Analysis

In summary, all these (and other) works generalized differential power analysis to a fam-
ily of attacks, where an attacker chooses a side-channel (usually power or electromagnetic
radiation), a model of the side-channel (e.g. power model), and a distinguisher — stat-
istical method for ranking of the key candidates (difference of means (the original DPA),
correlation (CPA), mutual information (MIA), euclidean distance, etc). An overview of dis-
tinguishers is presented in [13] while the comparison of them was recently published in [14].

2.1.4 Correlation Power Analysis

This section contains a comprehensive description of correlation power analysis for which
we present multiple enhancements in Chapter 3 of this thesis.

The first step of the attack is a power measurement. The total number of n power
traces is measured containing s samples each, feeding the device under attack with random
plaintexts. We can consider the collected power traces a matrix n× s.

In the next step, a power model needs to be chosen. For example, in the case of AES,
it is usually the Hamming weight of the first S-box output (in the case of a software imple-
mentation) or the Hamming distance between the output of the last round (the ciphertext)
and the output of the last but one round (in the case of a hardware implementation). The
power model is used for calculation of hypothetical leakage for each of n encryptions and
for each of hypothetical key candidates. The key and the plaintext (or the ciphertext)
gets split into b smaller parts (e.g. 16 bytes in the case of AES-128). We calculate the
hypothetical leakage value for each of n plaintexts (or ciphertexts), each of c possible key
candidates (e.g. 256 possible values of a byte) and we repeat this for each of b parts of the
key. As a result, we have b matrices n× c of hypothetical values.

Since we assume a linear dependence between the measured variables [11], Pearson
correlation coefficient is used. The Pearson correlation coefficient between random variables
X and Y is defined as follows [15]:

ρX,Y =
cov(X, Y )

σXσY
, (2.1)

with cov(X, Y ) being the covariance between variablesX and Y , and σX , σY being standard
deviations of variables X, Y respectively.

The measured power trace matrix (n× s) is correlated with hypothetical value matrix
(n × c). This is repeated for each of b parts of key resulting in b correlation matrices
c×s. A vector of all samples corresponding to one key candidate is a correlation trace. All
b parts of the key can be extracted e.g. by looking for the highest (absolute) value in each
of correlation matrices or by a visual examination of each correlation trace (while looking
for high peaks, sharp edges or another anomaly).

2.1.5 Higher-Order Analysis

This section presents a brief description of multivariate and univariate higher-order ana-
lysis.
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2. Background and State-of-the-Art

2.1.5.1 Multivariate Higher-Order Analysis

Higher-order differential power analysis was first mentioned by Kocher et al. [2] as an attack
that combines one or more samples within a single power trace. This kind of attack is useful
when related intermediate cipher values are processed at a different time, e.g. in the case
of masked software implementations. It is referred to as multivariate higher-order analysis.
Nevertheless, finding these time points to combine is a complex task [16].

2.1.5.2 Univariate Higher-Order Analysis

Different situation may occur in hardware implementations, where the intermediate values
may be masked in parallel (as discussed in Section 2.1.6.1), i.e. they manifest themselves
at the same time. Attacker can overcome this by performing a univariate higher-order
analysis, which is performed at each sample independently. For univariate second-order
analysis, every power sample gets mean-free squared [17]:

t′i = (ti − µt)2, (2.2)

where µt is a sample mean at given sampling point. For univariate d-order analysis, where
d > 2, every power sample gets additionally standardized:

t′i = (
ti − µt
st

)d, (2.3)

where st is a sample standard deviation at given sampling point.

2.1.6 Countermeasures

Many countermeasures against side-channel attacks were proposed over the years. We
focus on the ones implemented in hardware. These can be divided into two main categories:
hiding and masking. In this section, we provide a brief overview of hiding, while we look
deeper into masking, as masking schemes serve as a basis to our dependable architectures
presented in Section 4.2.

2.1.6.1 Masking

Masking countermeasures are based on randomizing internal values of encryption so that
these do not correlate with any of the input values. The most common method is Boolean
masking [18]. Alternatively, multiplicative [19] or affine [20] masking can be used.

In Boolean masking, each intermediate value x is split into n shares xi, where

x =
n⊕
i=1

xi (2.4)

. Multiple masking schemes resistant to side-channel analysis at arbitrary order even
at presence of glitches were proposed, for example threshold implementation [21, 22, 23],
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2.1. Side-Channel Analysis

domain-oriented masking [24] or consolidated masking schemes [25]. These schemes are also
proved to be resistant to fault-sensitivity analysis [26, 27]. We provide deeper description
of threshold implementation since we use it for a case study of architectures presented
in Section 4.2.

Threshold Implementation Threshold implementation is a Boolean masking scheme
provably secure against side-channel analysis of arbitrary order d even in presence of glitches.
While the information is split into n shares xi (as in Equation 2.4), all the transformations
applied to the shares need to satisfy specific properties.

In the case of linear transformations, the implementation is straightforward. For
every transformation z = L(x) over GF (2m), which is linear over GF (2), an equation

z =
n⊕
i=1

zi =
n⊕
i=1

L(xi) = L(
n⊕
i=1

xi) = L(x) (2.5)

holds. Therefore, each share can be independently processed by linear transformations
causing no side-channel leakage.

Situation is more complicated regarding non-linear transformations. Each trans-
formation z = N(x, y, . . .), which is not linear over GF (2), is realized using shared functions
f1, f2, . . . , fn satisfying three properties: non-completeness, correctness, and uniformity.

Non-completeness: Every function is independent of at least one share of each of the
input variables (x, y, . . . ), for example:

z1 = f1(x2, x3, . . . , xn, y2, y3, . . . , yn, . . .)

z2 = f2(x1, x3, . . . , xn, y1, y3, . . . , yn, . . .) (2.6)

. . .

zn = fn(x1, x2, . . . , xn−1, y1, y2, . . . , yn−1, . . .)

Correctness: Sum of the outputs of the functions is the correct output of the original
transformation:

z =
n⊕
i=1

zi =
n⊕
i=1

fi(. . .) = N(x) (2.7)

Uniformity: For each shared function, for each unshared input combination, each
shared output value must be equally probable.

2.1.6.2 Hiding

Basic area-efficient hiding countermeasures can be deployed using simple signal-to-noise
ratio reduction — switching capacitors, noise generation, pipelining [28], etc. Another
approach is to hide information in time, which is usually implemented in software [29], but
it can be also used in hardware implementations [30].

Another kind of hiding technique is based on so-called dual-rail with precharge logic.
Design protected by these countermeasures is built using special logic gates providing the
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2. Background and State-of-the-Art

same switching activity for any logic transition. This makes the power consumption caused
by the switching activity constant and independent of the processed internal values. There
are many schemes using this principle, e.g. WDDL [31, 32] or STTL [33]. An overview
of DPL techniques is presented in [34].

Countermeasures based on dynamic reconfiguration are entangled with reconfigurable
logic, especially FPGAs. There are multiple approaches to dynamic reconfiguration as
a side-channel analysis countermeasure. For example, a coarse grain reconfigurable ar-
chitecture based on leak-resistant arithmetic [35] is proposed in [36]. Approach based
on temporal jitter is explained in [37]. In [38], multiple countermeasures using FPGA-
specific design units are proposed. Countermeasure based on a dynamically adjustable
decomposition of S-box using configurable look-up table (CFGLUT) is presented in [39].

2.1.7 Leakage Assessment

Side-channel analysis became a well-known threat and many countermeasures were pro-
posed, therefore a need for evaluation and comparison of the countermeasures emerged.
At first, statistical tests based on mutual information were proposed [40, 41]. Nevertheless,
these tests need to estimate the probability distribution of the leakage and they cannot tar-
get a certain statistical order. Later, tests based on Student’s t-distribution were proposed
[42]. In multiple works, e.g. [43] or [23], Welch’s t-test was used for leakage assessment
without a deeper examination of the procedure. In [16], Schneider and Moradi provide an
extensive evaluation of leakage assessment (including multivariate and higher-order eval-
uation) using Welch’s t-test, which became a widely used method for leakage evaluation.
More methods for leakage assessment were recently published: chi-square test-based [44]
or deep learning-based [45].

2.1.7.1 Non-Specific Welch’s t-test

We focus on non-specific, fixed vs. random Welch’s t-test in this thesis, as it is proposed
in [16].

Welch’s t-test serves to test a null hypothesis that two population sets have the same
mean, hence we use it to test whether samples of both sets were drawn from the same
population. It is a generalization of Student’s t-test for populations with different variances
[46]. While µ1 and µ2 are sample means of the two sets, s21 and s22 are sample variances
of the sets and n1 and n2 are cardinalities of the sets, we can compute Welch’s statistic t
as

t =
µ1 − µ2√
s21
n1

+
s22
n2

(2.8)

and degrees of freedom v as

v =
(
s21
n1

+
s22
n2

)2

(
s21
n1

)2

n1−1 +
(
s22
n2

)2

n2−1

(2.9)
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.

In the case of non-specific test, no assumption on the implementation is needed in con-
trast to the specific test. Fixed vs. random test means, that one population set contains
traces measured when fixed inputs are fed to the device, while the other set consists
of traces acquired using random inputs. This approach demands a specific manner of trace
collection. Before each encryption, either (preselected) fixed or random input is chosen
with the same probability (a coin is flipped). Having the two sets of power traces contain-
ing s samples each, the t characteristic and degrees of freedom v are computed for each
of s sample points independently. For simplicity, usually a threshold |t| > 4.5 is defined
to reject the null hypothesis (that the samples from both fixed and random sets are drawn
from populations with the same means) without considering the degrees of freedom.

2.2 Dependable Architectures

Dependable systems are an intensively researched area. Fault-tolerant digital design needs
to be deployed in order to make the system dependable. In this research, we mostly focus
on the most prominent redundancy architectures. Usually, we distinguish three types
of redundancy: space redundancy, time redundancy, and information redundancy [47],
[48].

2.2.1 Space Redundancy

Space redundancy architectures deploy additional hardware resources (i.e. area overhead)
to provide the desired dependability properties. The most simple example of space re-
dundancy is modular redundancy. Modular redundancy is based on the replication of the
whole design and evaluation of the outputs using various comparison logic. Regarding the
number of modules, three basic modular redundancy architectures can be distinguished:
duplex (or also dual modular redundancy), triple modular redundancy, and N-modular
redundancy.

2.2.1.1 Duplex

Duplex (DMR) scheme consists of two copies of the original design. Outputs of these
two modules are compared and if they differ, an error is reported. This scheme is able
to detect at least a single fault, while its overhead is more than 100% (one extra module
and a comparator). A typical implementation of duplex can be seen in Figure 2.1

2.2.1.2 Triple Modular Redundancy

TMR uses three copies of the original design. The outputs are processed using majority
voter(s), providing the correct result in the case of at least one fault. To protect the design
also against a fault in the voters, three majority voters need to be deployed. The overhead
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2. Background and State-of-the-Art

Figure 2.1: Diagram of typical implementation of DMR

Figure 2.2: Diagram of typical implementation of TMR

of this scheme is more than 200% (2 extra modules and voters). A typical implementation
of TMR can be seen in Figure 2.2

2.2.1.3 N-Modular Redundancy

NMR is a generalization of TMR. It consists of N modules and it is able to mask at least
n = (N − 1)/2 faults. The overhead of this scheme is at least (N − 1)× 100%.
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2.2.2 Time Redundancy

Time redundancy improves dependability properties using additional time. An elementary
example is repeating the whole algorithm. The main disadvantage of time redundancy
techniques is the fact, that usually only transient faults can be detected or corrected.

2.2.3 Information Redundancy

Even though information redundancy can demand both area and time, it is considered
a different type of redundancy. Information redundancy techniques primarily include error
detection/correction codes like parity, Hamming code, cyclic codes, etc.

2.3 Fault Attack Countermeasures vs. Side-Channel Res-
istance

Both fault-tolerant and attack-resistant techniques are deeply researched, but there is a lack
of research about their mutual influence and interplay. To the best of our knowledge, the
only publications somehow related to this topic are dedicated to the influence of fault
attack countermeasures on side-channel resistance. These are presented in this section.

Fault-tolerant techniques are similar to countermeasures against fault-injection attacks.
Nevertheless, there are significant differences. The main objective of fault-tolerance as
a dependability property serves primarily to protect the device against spontaneously in-
troduced faults and to provide the correct output even if a fault occurs (or at least to detect
that the output is incorrect). It needs to protect against both transient and permanent
faults in any part of the design. On the other hand, fault-tolerance as a countermeasure
against fault attacks serves to protect against intentionally introduced faults. Its purpose
is rather to prevent an attacker from revealing secret information than providing the cor-
rect output. Also, not all parts of the design are usable for fault injection. For this reason,
fault-injection countermeasures often protect only some parts of the design (usually the
non-linear ones). Finally, most of the fault attacks are based on transient faults only.

Regazzoni et al. [49],[50] focused on influence of fault attack countermeasures on power
analysis resistance. They compared differential power analysis resistance of several AES
S-box implementations protected by various error detection and error correction codes
(parity-based codes, residue-based codes, Hamming codes). These implementations were
synthesized using ST-Microelectronics 90nm CMOS standard cell library. They performed
differential power analysis using noise-free traces generated by the SPICE simulator. They
concluded that used fault attack countermeasures are making the device more vulnerable
to differential power analysis.

A more comprehensive comparison was introduced in [51]. This research was focused
on implementations of S-box and MixColumns functions protected by space redundancy
and information redundancy architectures. These protected functions were part of the
whole AES design (in contrast with Regazzoni et al.) implemented in Xilinx Spartan-6
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2. Background and State-of-the-Art

FPGA on Sakura-G board. These implementations were compared by the minimal number
of power traces necessary to reveal the correct cipher key. Authors concluded that these
methods have a negative influence on attack-resistance.

In contrast with the above-mentioned work, we focus on fault-tolerance in the
context of the reliability in this work. Fault attacks are not a part of our main
concern!
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Chapter 3

Enhancements of Correlation Power
Analysis

Side-channel analysis poses a serious threat to electronic devices. Fast execution of these
attacks is crucial for their experimental evaluations (e.g. the ones presented in Chapter 4
of this thesis). In this chapter, we propose three approaches to increase the time efficiency
of correlation power analysis. The time complexity of both parts of the attack (the mea-
surement part and the computational part) is dependent on the number of measurements
n and the number of samples per power trace s. In Section 3.1, we deal with efficiency
of the correlation computations and Welch’s t-test. We present an evaluation and a com-
parison of three algorithms for the first-order analysis, evaluation, and comparison of two
approaches to higher-order analysis and we present results of our OpenMP and OpenCL
based implementations. A time optimization of correlation evaluation based on decreasing
the number of samples s by aggregation of the samples is presented in Section 3.2. Finally,
in Section 3.3, we propose an improvement of the correlation distinguisher based on ad-
vanced identification of the correct key candidate in order to decrease the number of traces
n.

The work presented in Section 3.1 was done in cooperation with Petr Socha (a master
student under the supervision of the author of this thesis). It was partially presented
at international conferences DDECS 2017 [A.2] and MECO [A.7].

The work introduced in Section 3.2 was presented at an international conference MECO
2018 [A.5].

The work presented in Section 3.3 was done in cooperation with Petr Socha (a master
student under the supervision of the author of this thesis). It was partially presented
at an international conference DSD 2018 [A.6] and it was invited to Microprocessors and
Microsystems journal, where an extended version was recently accepted for publication
[A.8].

All implementations and improvements discussed in Sections 3.1 and 3.3 are included
in our open-source side-channel toolkit SICAK [60], allowing anyone for further usage and
improvements. This toolkit was presented at workshop Trudevice 2019 [A.17].
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3.1 Efficient Computations

To perform a power attack against modern low-power devices, we need to obtain a huge
amount of power traces. Also, higher-order power analysis demands more power traces
than the first-order analysis [52], [53]. Therefore, the correlation calculation can get highly
time demanding. Several implementations of correlation power analysis have been pub-
lished (e.g. [54], [55]), however the methods used for computing correlation coefficients
may suffer from poor numerical stability [56]. In [57], various aspects of CPA are dis-
cussed, some algorithms are suggested and compared; however, presented methods may
be numerically unstable as well. A numerically stable approach of computing correlations
for side-channel attacks is introduced in [17]; however, no implementation or performance
comparison of discussed methods is presented.

To the best of our knowledge, no comparison of hereby presented Pearson correlation
coefficient computation methods, that would provide tangible figures and discuss their
properties, is available in the open literature.

In this section, we present multiple approaches to the univariate first-order and higher-
order analysis. We focus on the correlation power analysis and test vector leakage as-
sessment using a non-specific methodology based on Welch’s t-test [42]. We describe the
principles of these methods, discuss their advantages and limitations and we examine the
computational and memory demands of the approaches using our open-source CPU and
GPU-accelerated implementations.

In Section 3.1.1, we present methods for first-order analysis using Pearson correlation
coefficient, introduce the mathematical background for each method, discuss their advant-
ages and disadvantages and propose efficient implementations. A GPU-accelerated imple-
mentation is also described. In Section 3.1.2, two computational approaches to higher-order
analysis are discussed. An implementation of first-order and higher order Welch’s t-test is
described in Section 3.1.3. A performance evaluation and a comparison of the methods for
attacking AES cipher are presented in Section 3.1.4 and we conclude our results in Section
3.1.5.

3.1.1 First-Order Analysis

In the process of obtaining the correct key, a Pearson correlation coefficient between each
sample and the power model must be computed as described in Section 2.1.4.

Each of n measurements of power traces is done with s samples per trace, resulting
in a vector of random variables X = [X1, ..., Xs], one for each sample.

The plaintext/ciphertext used while measuring the traces, after being processed by an
appropriate power model, results in a vector of variables Y = [Y1, ..., Yc], one for each
of c key candidates.

To obtain the correct key, the correlation coefficient between each sample per trace
and each key candidate must be computed. The result of the algorithm is the correlation
matrix C of size s× c, where Ci,j = ρXi,Yj , computed for each part of key separately.
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The correct key can be found in the correlation matrix C simply by searching for the
maximal and the minimal correlation coefficient, or by some other statistical method.

Different approaches to implementing the computation of the correlation coefficient
on a statistical sample will be described in the following subsections since the selected
method of processing the data has a significant effect on both time and memory perform-
ance, as well as on some other properties of the calculation. Additionally, a description
of our implementation is presented for each approach as so as a description of a GPU-
accelerated implementation.

3.1.1.1 Two-Pass Approach

Given that cov(X, Y ) = E[(X − µX)(Y − µY )] and σ2
X = E[(X − µX)2], with µX , µY

being means of X, Y respectively [15], we can express the Pearson correlation coefficient
in a format more suitable for processing of the statistical sample:

ρX,Y =
E[(X − µX)(Y − µY )]√

E[(X − µX)2]
√

E[(Y − µY )2]
. (3.1)

Based on Equation 3.1, a two-pass algorithm for the correlation computation can be
easily designed. When the correlation is computed on a statistical sample, letter r will be
used instead of letter ρ. Assuming we have datasets X = {x1, ..., xn} and Y = {y1, ..., yn}
with cardinalities n and sample means x and y, we can write:

rX,Y =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2

√
n∑
i=1

(yi − y)2

. (3.2)

The first time the data sets are passed, the sample means x and y are calculated. With
the second pass, the variances (thus standard deviations) and the covariance are calculated,
allowing to easily compute the final correlation coefficients.

Unless the number of statistical samples n is very large, this method is numerically
stable and it is giving accurate results [56]. However, the two-pass (adj.) computation is
undesirable, especially for large data sets.

For once, the time necessary for the calculation grows with more statistical samples
in the set, thus the time performance issue gets significant where more power traces may
be needed (on FPGAs, when processing higher-order analysis, etc.) [57]. Multi-pass al-
gorithms are impractical in this case since the distributed memory access may dominate
the computation time and memory consumption may be unbearable.

Also, the final application asks for the ability to stop the computation, check the
results and, in the case of need, continue the computation with more measured statistical
samples (i.e. power traces), allowing e.g. to find out the number of power traces necessary
to obtain the correct key candidate. A new added statistical sample in this case requires
to pass through all the already processed data once again.
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Implementation By going through all the data, a vector X = [x1, ..., xs] of s sample
means, one for each of s samples per trace, and a vector Y = [y1, ..., yc] of c sample means,
one for each of c key candidates, are calculated.

In the second pass, with the precomputed sample means, vectors containing variances
σ2
X = [σ2

X1
, ..., σ2

Xs
] and σ2

Y = [σ2
Y1
, ..., σ2

Yc
], as well as a covariance matrix K of size s× c,

where Ki,j = cov(Xi, Yj), are easily computed, from which the final correlation matrix C
is easily derived.

The whole process is repeated for each part of the key with the same measured power
traces (X), but a different power model, based on the plaintext/ciphertext used (Y ).

Our early implementation of the two-pass algorithm, written in C++ using stand-
ard template library, including the power-model computation, is unbearably slow for
a large amount of traces, while still faster than some universal mathematical software
(e.g. Wolfram Mathematica).

3.1.1.2 Näıve One-Pass Approach

When we expand the Equation 3.1 using the linearity of the expectation and the variance
[15], we obtain:

ρX,Y =
E[XY ]− E[X]E[Y ]√

E[X2]− E[X]2
√

E[Y 2]− E[Y ]2
, (3.3)

giving us a convenient one-pass approach to the computation of the correlation coefficient:

rX,Y =

n
n∑
i=1

xiyi −
n∑
i=1

xi

n∑
i=1

yi√
n

n∑
i=1

x2i − (
n∑
i=1

xi)
2

√
n

n∑
i=1

y2i − (
n∑
i=1

yi)
2

. (3.4)

In a single pass through all the data (statistical samples), the sums
∑n

i=1 xiyi,
∑n

i=1 xi,∑n
i=1 x

2
i ,
∑n

i=1 yi and
∑n

i=1 y
2
i are computed, allowing to easily calculate the sample means,

the variances, and the covariance, and finally the correlation coefficients.
This approach promises a better time performance of the implemented calculation since

all the data need to be accessed only once. Also, since the summation of disjoint pools
of statistical samples (measured power traces) is an independent operation, this kind of one-
pass calculation allows for a straightforward parallelization.

Since the critical part of the computation is the summation, the algorithm can be
stopped at any time, providing the answer based on processed samples, and then resumed
with a little extra effort.

However, this method suffers from poor numerical stability [56]. Consider the denom-
inator of the Equation 3.4, where the sample variance is computed as a difference of two
positive floating-point numbers. Due to this subtraction, severe cancellations may oc-
cur, leaving the result dominated by the roundoff. A similar situation may occur in the
numerator of the Equation 3.4.
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Implementation In a single pass through the measured data and power model, a vector
of sums SX = [

∑n
k=1 x1k , ...,

∑n
k=1 xsk ] of power traces for each sample and a vector of their

powers SX2 = [
∑n

k=1 x
2
1k
, ...,

∑n
k=1 x

2
sk

], as well as vectors of sums of the power model
SY = [

∑n
k=1 y1k , ...,

∑n
k=1 yck ] and SY2 = [

∑n
k=1 y

2
1k
, ...,

∑n
k=1 y

2
ck

] are computed, as well as
a matrix of sums SXY of size s× c, where SXYi,j =

∑n
k=1 xikyjk . From these, based on the

Equation 3.4, the final correlation matrix C is easily computed.
The bottleneck of the whole computation is the multiplication and the summation while

creating the matrix SXY. Fine-grain parallelization of this operation results in a very good
scalability of this algorithm. The minimum amount of the working memory needed is
bounded only by the size of vectors and the matrix of sums, mentioned above.

Our implementation, written in C/C++ and using OpenMP, gets much faster than our
two-pass implementation, also thanks to the better memory usage. The final correlation
computation was separated from the power model computation, where a rearrangement
of the data for a better correlation computation performance also happens. The time
performance of the power model computation is well satisfactory on its own, as well as it
is scalable.

3.1.1.3 Incremental One-Pass Approach

The poor numerical stability of the näıve one-pass algorithm, combined with the necessity
to process a lot of statistical samples in a reasonable time, demands a better approach. This
new approach should preferably maintain both the time complexity of the näıve one-pass
algorithm and the numerical stability of the two-pass algorithm.

Let’s assume that we have datasets X = {x1, ..., xn} and Y = {y1, ..., yn} with cardin-
alities n. Let’s assume that X ′ = X ∪{xn+1} and Y ′ = Y ∪{yn+1} are the datasets created
by adding some new samples to the sets.

A recurrent formula for the sample mean can be easily obtained and is widely known:

x′ = x+
xn+1 − x
n+ 1

. (3.5)

Now, let’s assume we have the sample variance defined as σ2
X = 1

n

∑n
i=1(xi−x)2, where

n is the cardinality of the dataset. Let M2,X =
∑n

i=1(xi − x)2, therefore σ2
X = 1

n
M2,X .

For the dataset X ′ created by adding a new statistical sample to the set X, we would
like to calculate the variance as σ2

X′ = 1
n+1

M2,X′ . Using the Equation 3.5, a recurrent
formula for the sum M2,X′ can be directly used [58]:

M2,X′ = M2,X + (xx+1 − x)(xx+1 − x′). (3.6)

For the covariance, a similar recurrent formula exists. Assume a dataset consisting
of pairs S = {(xi, yi)|xi ∈ X, yi ∈ Y }, representing a pair of random variables X and
Y , with the cardinality n and the sample means x and y. The sample covariance is
defined as cov(X, Y ) = 1

n

∑n
i=1(xi − x)(yi − y). Let C2,S =

∑n
i=1(xi − x)(yi − y), then

cov(X, Y ) = 1
n
C2,S.
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Let’s assume that S ′ = S ∪ {(xn+1, yn+1)} = {(x′i, y′i)|x′i ∈ X ′, y′i ∈ Y ′} is a new dataset
created by adding a new pair of samples. The covariance of the dataset S ′ can be then
computed as cov(X ′, Y ′) = 1

n
C2,S′ , where [59]:

C2,S′ = C2,S +
n

n+ 1
(xn+1 − x)(yn+1 − y). (3.7)

Substituting the sums in the Equation 3.2 for C2,S, M2,X and M2,Y , we get the final
correlation coefficient:

rX,Y =
C2,S√

M2,X

√
M2,Y

. (3.8)

Using these recurrent formulas, one can calculate correlation coefficients, even for a large
number of statistical samples (measured power traces), assuring the numerical stability
of the computation [59].

This approach, allowing online and direct update of all the values every time a new
sample is added to the dataset, is well-suited for parallel CPU computations. This al-
gorithm can be parallelized just as easily, as the näıve one-pass algorithm.

Implementation The incremental one-pass algorithm keeps a matrix and vectors of the
same values as the two-pass algorithm does (unlike näıve one-pass algorithm, which keeps
sums of powers), but rather than computing them in two passes, it uses recurrent update
formulas, mentioned earlier.

In a one-pass, sample mean vectors X = [x1, ..., xs] and Y = [y1, ..., yc] are calculated
using the Equation 3.5. In the same pass, variance vectors M2,X = [M2,X1 , ...,M2,Xs ] and
M2,Y = [M2,Y1 , ...,M2,Yc ] are computed using Equations 3.5 and 3.6 and the covariance
matrix K, where Ki,j = C2,Si,j

and Si,j = {(x, y)|x ∈ Xi, y ∈ Yj}, gets computed using the
Equation 3.7. The final matrix C with Pearson correlation coefficients is then obtained
using the Equation 3.8.

While this algorithm is numerically stable [59], it keeps the online character of the
näıve one-pass algorithm and allows optimized distributed memory access and thus a good
time performance, as well as a good memory space performance. The bottleneck of the
implementation remains in the update of the covariance matrix K, allowing to parallelize
easily (e.g. using OpenMP). The algorithm is also capable of stopping, giving out the
results and continuing the computation with more statistical samples, thus, for example,
allowing to find out the number of traces needed to obtain the correct key.

3.1.1.4 GPU-Accelerated Implementation

As the correlation computations for side-channel analysis require a large amount of the
same computations over different data, i.e. it follows single instruction, multiple data
principle, using a GPU to accelerate the computations is an obvious option.

Unfortunately, the most promising incremental one-pass approach proved not to be
ideal for implementation on GPU, as it requires to update all the variables (averages, vari-
ances, covariances) with every measurement processed, resulting in poor workload balance.
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Therefore, an algorithm combining the two-pass approach and the incremental one-pass
approach is proposed instead. In the first pass, sample mean vectors X = [x1, ..., xs] and
Y = [y1, ..., yc] are calculated using the Equation 3.5. In the same pass, variance vectors
M2,X = [M2,X1 , ...,M2,Xs ] and M2,Y = [M2,Y1 , ...,M2,Yc ] are computed using Equations 3.5
and 3.6, as in the case of the incremental one-pass implementation described in Section
3.1.1.3. In the second pass, the covariance matrix K of size s× c, where Ki,j = cov(Xi, Yj)
is computed and the correlation matrix C is easily derived, as it is described in Section
3.1.1.1.

Since the GPU acceleration is done using OpenCL with multiplatformity in mind, there
are no vendor-specific optimizations used. It is fair to assume that with such optimizations
present (e.g. using cuBLAS, the nVidia computational library optimized at assembler level
for the maximum performance), the running time would be lower. Also, low-end GPUs
are not well suited for double-precision computation; single-precision computation may be
much faster, however, numerical instabilities may occur for large datasets.

3.1.2 Higher-Order Analysis

In this section, we focus on univariate higher-order analysis, as it is described in Section
2.1.5.2. Two different approaches to the univariate higher-order analysis are described
in the following subsections.

3.1.2.1 Näıve Multiple-Pass Approach

The most straightforward way to perform any kind of higher-order analysis is to preprocess
the power traces according to the Equations 2.2 and 2.3 mentioned in Section 2.1.5.2, and
then run the first-order analysis algorithm (e.g. CPA or t-test). The biggest drawback
of this approach is the same as in the case of any multi-pass statistical algorithm: adding
new statistical samples to the statistical set requires launching the whole computation from
the beginning (since the sample mean, used for the preprocessing, changes with new data).

3.1.2.2 Incremental One-Pass Approach

Formulas allowing for robust one-pass higher-order analysis are given in [17, 16]. These
take advantage of the fact that mean and variance of the higher-order preprocessed
power traces can be expressed using central moments of the raw power traces. To
estimate the n-th central moment, formulas similar to the ones mentioned in Section 3.1.1.3
are presented, allowing to estimate the n-th central moment of the set created by adding
one or more new traces to an existing set. These formulas operate with mean-free values
as well and therefore avoid numerical instabilities.

Unfortunately, to update the estimate of n-th central moment, all the i-th central
moments, 2 <= i < n, are required. To express the variance of the d-th-order power
traces, the 2d-th and d-th central moments are necessary. In consequence, for the d-th
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order analysis, all the 2d central moments need to be kept and updated with every new
power trace.

To estimate the covariance between the higher-order power traces and power predic-
tions, similar formulas are given as well. For a d-th order analysis, d “adjusted central
sums” need to be kept and updated.

These facts represent both time and memory penalties in comparison with the prepro-
cessing approach – a cost for not being required to run the whole computation again with
new power traces available. In the case of very large datasets, this approach would be
a preferred option. Unlike the preprocessing approach, these formulas allow for online pro-
cessing of power traces. It is also notable, that correlation matrices/t-values from central
moments can be derived from first-order up to the order of the computation; unlike the
preprocessing approach, where only the selected order is computed.

3.1.3 Welch’s t-test

For computation of Welch’s t characteristic and degrees of freedom v, sample means and
variances need to be computed (or higher moments in the case of higher-order test). The
implementation of Welch’s t-test is easily derived from first-order incremental one-pass ap-
proach described in Section 3.1.1.3 or higher-order incremental one-pass approach described
in Section 3.1.2.2 respectively.

In comparison with correlation analysis, Welch’s t-test does not demand covariances
to be computed, which is the bottleneck of correlation analysis computations. Therefore,
the evaluation of Welch’s t-test is much less computational demanding.

3.1.4 Results

In this section, we compare the time performance and the scalability of implementations
stated earlier. The CPU running times were partially measured on two different CPUs:
Intel i5 2400 (hereafter referred to as CPU1) and Intel Xeon E312xx (CPU2). Additionally,
nVidia GeForce GTX 1050 was used for GPU computations using OpenCL. Power traces
are signed 16-bit integers, power predictions unsigned 8-bit integers, the computation is
done in double-precision floating-point. All the algorithms are implemented in C/C++ for
the sake of the best performance. Wall-clock time is presented and hereafter referred to as
running time. Parallel computational threads are hereafter referred to as threads.

3.1.4.1 First-Order CPA

In this section, we compare the time performance and the scalability of the above-described
first-order implementations of correlation power analysis of AES-128 using three different
approaches.

Two-Pass Approach Our original two-pass implementation, written in C++ using
STL, combines the computation of correlations and the power model computation. The
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Table 3.1: Running time of the two-pass algorithm for various numbers of power traces
and samples, in seconds (CPU1)

# of traces /
# of samples per trace

100 1k 10k 100k

10 0.009 0.127 1.882 73.56
100 0.084 1.361 16.70 794.5

1,000 0.704 11.58 149.6 6 964

Table 3.2: Running time of the näıve one-pass algorithm for various numbers of power
traces and 1,000 samples per trace, in seconds (CPU1)

# of traces /
# of threads

100 1k 10k 100k 1M

1 0.253 2.035 19.80 198.7 2006
2 0.162 1.097 10.42 103.7 1049
4 0.116 0.617 5.648 56.47 587.7

library containers and a poor memory cache usage, caused by the organization of the
computation, lead to a very poor time performance.

Table 3.1 presents the running time for various numbers of power traces and samples
per trace, using a single thread.

As can be seen, for 100,000 power traces and 1,000 samples per trace, the computing
time gets unbearably high. This leads to the need for other implementations.

Näıve One-Pass Approach The optimized näıve one-pass algorithm, implemented
in C language, takes the measured data and the pre-computed power model (see Sec-
tion 3.1.4.1), and results with the correlation matrix for each part of key candidate, and
the best key candidate based on the max/min correlation coefficient.

Since the näıve one-pass algorithm is well parallelizable, our implementation uses
OpenMP to achieve better time performance.

Tables 3.2 and 3.3 present the running time for various numbers of power traces, samples
per trace and numbers of threads.

As can be seen, the näıve one-pass algorithm has good scalability. Also, the computa-
tion time grows linearly with the number of traces.

The scalability of the algorithm gets better with a higher number of samples per trace.
This is due to the fine-grain parallelism, implemented over the computation of the matrix
sized s× c, where s is the number of samples per trace.

Figure 3.1 demonstrates the scalability of the näıve one-pass algorithm. Compared
to our original two-pass algorithm, our implementation of the näıve one-pass algorithm
gets up to 35× faster when processing 100,000 power traces with 1,000 samples per trace.
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Figure 3.1: Comparison of the time performance of the two-pass and the näıve one-pass
algorithm for various numbers of power traces, 1,000 samples per trace, and in a case of the
näıve one-pass algorithm, various numbers of threads (CPU1)

Table 3.3: Running time of the näıve one-pass algorithm for various numbers of samples
per trace and 100,000 power traces, in seconds (CPU1)

# of samples per trace /
# of threads

10 100 1,000

1 2.616 19.53 198.7
2 2.165 10.93 103.8
4 2.271 6.795 56.47
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Table 3.4: Running time of the incremental one-pass algorithm for various numbers
of power traces and 1,000 samples per trace, in seconds (CPU1)

# of traces /
# of threads

100 1k 10k 100k 1M

1 0.292 2.435 23.75 236.7 2383
2 0.184 1.320 12.69 124.9 1267
4 0.132 0.790 7.134 69.52 719.1

Table 3.5: Running time of the incremental one-pass algorithm for various numbers
of samples per trace and 100,000 power traces, in seconds (CPU1)

# of samples per trace /
# of threads

10 100 1,000

1 4.074 24.69 236.7
2 3.720 14.43 124.9
4 3.707 10.99 69.52

Table 3.6: Running time of the incremental one-pass algorithm for various numbers
of power traces and 2,000 samples per trace, in seconds (CPU2)

# of power traces 2,000 4,000 8,000 16,000 32,000
1 CPU thread 18 41 72 143 289
2 CPU threads 10 20 41 85 169
4 CPU threads 6 12 25 51 105

GPU 2 5 10 19 40

Incremental One-Pass Approach Our implementation of the incremental one-pass
algorithm, also written in C language, has very similar characteristics, as the näıve one-
pass algorithm.

Tables 3.4 and 3.5 present the running time of the incremental one-pass algorithm for
various amounts of power traces, samples per trace and threads.

As can be seen in Figure 3.2, the incremental algorithm is approximately 1.2× slower,
than the näıve one-pass algorithm.

Table 3.6 presents a comparison of running times of the OpenMP implementation (using
various numbers of threads) and the OpenCL GPU-accelerated implementation of incre-
mental one-pass algorithm for various amounts of power traces. Running times of GPU-
accelerated version includes data transfers between the main memory and GPU memory.

Separate Power Model Computation Our original two-pass implementation com-
putes both the power leakage model and the correlation coefficients. For the one-pass
implementations, we have separated the power model computation from the correlation
computation.
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Figure 3.2: Comparison of the time performance of the näıve and the incremental algorithm
for various numbers of power traces and 1,000 samples per trace, using 1 or 4 threads
(CPU1)

Table 3.7: Running time of the power model precomputation, in seconds (CPU1)

# of traces /
# of threads

100 1k 10k 100k 1M

1 0.005 0.052 0.509 5.097 49.80
2 0.002 0.027 0.266 2.665 25.22
4 0.003 0.015 0.141 1.355 13.13

The power model computation implementation takes the plaintext/ciphertext, used
while measuring, and results with the pre-computed power model organized for the best
correlation computation performance. Its running time depends linearly on the number
of power traces and the scalability is quite satisfactory.

In comparison with correlation coefficients computation, one can neglect the power
leakage model computation time as insignificant, as can be seen in Table 3.7.
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Table 3.8: Running time of the preprocessing of power traces for 2,000 samples per trace,
in order to perform arbitrary-order analysis, in seconds (CPU2)

# of power traces 2,000 4,000 8,000 16,000 32,000
preprocessing
1 CPU thread

<1 1 2 4 8

preprocessing + CPA
1 CPU thread

18 42 74 147 297

preprocessing + CPA
4 CPU threads

6 13 27 55 113

preprocessing + CPA
GPU

2 6 12 23 48

3.1.4.2 Higher-Order Analysis

Both presented approaches to the higher-order analysis will be discussed and examined
in this section: using preprocessing and using one-pass higher-order formulas.

Preprocessing The preprocessing approach to the higher-order analysis consists of pre-
processing of the power traces according to the order of the attack, as described in Sec-
tion 3.1.2.1, and running of the first-order analysis, as is evaluated in Section 3.1.4.1. The
order of the attack does not affect the complexity of the preprocessing. Running time for
2,000 samples and various numbers of power traces is presented in Table 3.8.

As mentioned before, obtaining results for a different order, as well as adding new
power traces to the dataset, requires running the preprocessing and analysis again from
the beginning. This drawback is solved by higher-order one-pass formulas.

One-Pass Formulas Using formulas in [17], side-channel analysis up to arbitrary order
may be performed in a way that allows for simple addition of new power traces, and
for merging results based on processing different power traces sets together. Unlike the
first-order attack and the higher-order preprocessing approach, this algorithm requires 2d
central moments to be computed for each sampling point. Furthermore, in the case of CPA
attack, d “adjusted central sums”, which serve to compute the covariance between higher-
order power traces and power predictions, must be computed as well. These facts represent
a significant performance penalty, as can be seen in Table 3.9 and Figure 3.3, where higher-
order CPA running time is presented. The running time grows linearly with the number
of power traces. Running time for various numbers of samples per trace is in Table 3.10.

3.1.4.3 Welch’s t-test

Welch’s t-test, unlike CPA, does not require covariance, i.e. d “adjusted central sums”
matrices, to be computed. Since this is the bottleneck of the CPA computation, the t-test
computation is much faster for the same number of power traces. Running time of first-
order and higher-order t-test computation on 1 CPU thread is presented in Table 3.11.
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Figure 3.3: Comparison of the time performance of the CPA for various orders of the
attack, using one-pass formulas (CPU2)

Table 3.9: Running time of the higher-order CPA one-pass algorithm for 2,000 samples per
trace, in seconds (CPU2)

(a) 1 CPU thread

# of power traces 2,000 4,000 8,000 16,000 32,000
1st order 18 41 72 143 289
2nd order 61 122 244 489 975
3rd order 132 265 529 1056 2124
4th order 235 469 941 1881 3758
5th order 377 759 1523 2995 6043

(b) 4 CPU threads

# of power traces 2,000 4,000 8,000 16,000 32,000
1st order 6 12 25 51 105
2nd order 19 37 77 152 304
3rd order 43 79 158 310 618
4th order 69 138 277 547 1101
5th order 103 204 418 846 1633
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Table 3.10: Running time of the higher-order CPA one-pass algorithm for 32,000 power
traces and various numbers of samples per trace, 1 CPU thread, in seconds (CPU2)

# of samples per trace 500 1,000 2,000
1st order 79 152 289
2nd order 243 485 975
3rd order 517 1038 2123
4th order 908 1803 3758
5th order 1411 3797 6043

Table 3.11: Running time of first-order and higher-order Welch’s t-test one-pass algorithm
for 2,000 samples per trace and various numbers of power traces, 1 CPU thread, in seconds
(CPU2)

# of power traces 32,000 64,000 128,000 256,000 512,000
1st order <1 1 3 6 12
2nd order 1 3 6 12 25
3rd order 2 5 11 23 46
4th order 4 9 19 41 80
5th order 7 14 28 57 117

3.1.5 Conclusions

We have compared three algorithms for calculating Pearson correlation coefficients of two
large matrices. This calculation is necessary for performing the CPA. The comparison was
based on both mathematical and performance properties.

A simple two-pass algorithm proved to be slow, high memory demanding and not well
parallelizable. Compared to that, a näıve one-pass algorithm is much faster, low memory
demanding and well parallelizable, but not numerically stable. Finally, we presented an in-
cremental version of the one-pass algorithm, which is, unlike the näıve one-pass algorithm,
numerically stable, while being only about 20% slower. This incremental version of the
one-pass algorithm also preserves other advantages, including low memory demands, satis-
factory scalability and an ability to resume the stopped calculation with more added power
traces.

While many researchers may still use a straightforward, two-pass algorithm or numer-
ically unstable näıve one-pass algorithm, our comparison proves the incremental one-pass
algorithm to be the best choice for researchers who are mounting CPA attack on any
cryptographic device. We have not found any such comparison, providing tangible figures,
in the open literature. The incremental one-pass implementation helps us to speed up CPA
significantly. It also allows for an analysis of an unlimited amount of power traces thanks
to its constant memory demands.

Additionally, we presented an algorithm combining two-pass and incremental one-pass
algorithm, which is suitable for a GPU-accelerated implementation. This implementation
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provides additional speedup of the CPA computations even with a low-end GPU.
We have also compared two different approaches to higher-order side-channel analysis

regarding their mathematical, performance and usage properties.
Näıve approach to the higher-order analysis, i.e. preprocessing, performs nearly as fast

as in the case of the first-order analysis and the computation time does not depend on the
selected order. However, for very large datasets, this approach may become troublesome
because of its high memory demands and usage properties. Addition of new power traces
requires running the whole computation from scratch.

Using one-pass formulas for the same purpose allows for simple addition of new power
traces to the dataset. Unfortunately, both memory demands and time complexity of this
approach grow with the order of the analysis. On the other hand, all orders up to the
specified order can be easily derived from the algorithm working variables. These usage
properties make the one-pass approach a better choice for very large power trace datasets
and experimental work.

Higher-order analysis is necessary for attacking cryptographic implementations secured
against side-channel attacks, e.g. when the masking is employed. It is also necessary for
evaluating the leakage of cipher implementations and the efficiency of countermeasures.
Our optimized implementations allow us to choose the right approach for a specific task
and significantly speed up these computations.

Additionally, we evaluated the running time of Welch’s t-test using the incremental
one-pass approach for both first-order and higher-order analysis. Since Welch’s t-test does
not require computation of covariance, which is the bottleneck of CPA computations, its
running times are dramatically lower for any order.
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3.2 Aggregation of Traces

In this section, we present our work about speeding up the correlation computations by
decreasing the number of samples per power trace. The main idea of this research is
to somehow aggregate the traces. As the power model usually represents some intermediate
value exhibited in the device during a single clock cycle, the most straightforward way is
to integrate the traces by time for each clock cycle. Therefore, the number of samples per
trace will be close to the number of clock cycles of one encryption (usually tens) instead
of the usual hundreds or thousands. We show how this simple trace aggregation affects the
efficiency of the attack. Specifically, we show how it affects the number of traces needed
to reveal the correct key and how it affects the overall calculation time of the attack on three
different FPGA platforms.

We introduce the FPGA platforms, AES implementation and the experiment setup
in Section 3.2.1. Detailed results are presented in Section 3.2.2. We summarize and
conclude the experiment in Section 3.2.3.

3.2.1 Experiment Setup

In this section, we comprehensively describe the process of trace aggregation. We also
introduce the FPGA platforms and the AES implementation we used.

3.2.1.1 Hardware Platforms

We performed the experiment on three different FPGA platforms:

◦ Evariste III with Altera Cyclone III module — an open modular cryptographic plat-
form developed by Fischer et al. [61]

◦ Sakura-G — standard evaluation board for side-channel attacks based on Xilinx
Spartan-6 FPGA [62]

◦ DPAboard — open board for differential power analysis with Xilinx Artix-7 FPGA
developed by Bart́ık et al. [1]

The whole experiment is the same for all the platforms, only the clock frequencies differ.
Evariste III and Sakura-G run at 5 MHz while DPAboard runs at 6.25 MHz.

PicoScope 6404D was used for the measurement. The sampling rate was set to 625
MS/s. We collected 2000 samples per one power trace.

3.2.1.2 AES

AES cipher [9], specifically its 128-bit variant, is used for the experiment as it is one of the
most commonly used block ciphers. The 128-bit variant of AES consists of one initial round
and ten regular rounds. The initial round performs only an initial key addition. Each
regular round uses a different round key derived from the initial one. The regular rounds
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Figure 3.4: Diagram of AES implementation

consist of a key addition (AddRoundKey function), a non-linear transformation (SubBytes
function), and two linear transformations (ShiftRows and MixColumns functions) with an
exception of the last round, where the MixColumns function is omitted.

In our implementation, each round is processed by a combinational logic during one
clock cycle. Therefore, the whole encryption takes 11 clock cycles. A diagram of our AES
implementation can be seen in Figure 3.4.

3.2.1.3 Aggregation

The main idea of our trace aggregation approach is based on fact, that the intermediate
value used by the power model and the real power consumption are not correlated in one
specific power sample, but the correlating information is spread through the whole clock
cycle the intermediate value is processed within. As the number of samples is the same
during each clock cycle, we do not need to take it into account and the integration process
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Figure 3.5: Visualization of trace aggregation using various offsets

can be simplified to summation. Therefore, we preprocess each power trace by summarizing
the samples corresponding to each one clock cycle of the encryption. In our case, each clock
cycle corresponds to 125 samples (Evariste III and Sakura-G) or 100 samples (DPAboard).

We added up samples of each clock cycle of the encryption (11 cycles) and one before
and one after the encryption. We obtained 13 samples per trace instead of the original
2000 samples this way.

We also aggregated the traces with various starting samples that we call offsets. For
example, with offset 0, the first sample of the integration is the first sample of the clock
cycle; with offset 25, the first sample of the integration is the 26th sample of the clock
cycle, therefore the last sample is the 25th sample of the next clock cycle. We used five
offsets: 0, 25, 50, 75, and 100 in the case of Evariste III and Sakura-G, and 0, 20, 40, 60, 80
in the case of DPAboard. For simplicity, we will use relative designations of these offsets:
0, 1/5, 2/5, 3/5, and 4/5. Visualization of the offsets can be seen in Figure 3.5.

To summarize, we aggregated each power trace using 5 different offsets. Therefore, we
gained 5 traces of 13 samples for each of the original trace.

3.2.1.4 Evaluation

For each of the hardware platforms, we measured 30 sets of power traces. Then each
collected trace was aggregated using the method described above. Therefore, we obtained
5 aggregated power traces and the original one for each measured trace.

Having all the data collected, we performed the computational part of the attack. For
each of the 3 × 30 × (5 + 1) sets of power traces (3 platforms; 30 sets; 5 offsets + 1 non-
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Figure 3.6: Diagram of the used power model

aggregated) we found the minimal number of power traces needed to reveal the correct
cipher key using Hamming distance between output of the 9th round and output the 10th
round (ciphertext), as is depicted in Figure 3.6. These collected results are presented
in Section 3.2.2.

We also compared the calculation time for various numbers of traces to demonstrate
the efficiency of our approach. All time measurements were done on a computer equipped
with Intel i5 6440HQ CPU using the first-order incremental one-pass algorithm proposed
in Section 3.1.1.3.

3.2.2 Results

In this section, we present the results obtained from the experiment proposed in Section
3.2.1. First, we show how our method affects the number of power traces needed to reveal
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Table 3.12: Medians of numbers of power traces necessary to obtain the correct cipher key
for various FPGAs using the original traces and aggregated traces with various offsets

PPPPPPPPPPPPTraces

Platform
FPGA

Evariste III
Cyclone III

Sakura-G
Spartan-6

DPAboard
Artix-7

Original 779 1048 1967

Integrated

Offset 0 666 2202.5 1347.5
Offset 1/5 714.5 885 1359
Offset 2/5 737 993.5 1353
Offset 3/5 692.5 1722.5 1470.5
Offset 4/5 683.5 9718 1501.5

the correct key. Afterwards, we present a time comparison of common methods and our
new approach.

3.2.2.1 Power Traces Needed

We successfully performed the attack using the proposed approach with all the offsets and
on all the platforms. We compared the minimal number of traces needed to reveal the key
using the original traces and the preprocessed ones with various offsets. In Table 3.12, we
can see medians of minimal needed traces calculated from the results of all trace sets.

In the case of Evariste III and DPAboard, the number of traces needed is even lower
than with the original traces for all offsets.

In the case of Sakura-G, we can see significant differences between the offsets. Using
offsets 1/5 or 2/5 the results are slightly better than with the original traces, but in the
case of offset 4/5, the number of traces needed is more than 9 times higher. On the other
hand, the time saved by our method overcomes this increase, as is shown below.

Detailed results can be seen in Figure 3.7 (for Evariste III), Figure 3.8 (Sakura-G), and
Figure 3.9 (DPAboard).

3.2.2.2 Time Comparison

Considering the algorithm being linearly dependent on the number of samples, we expected
our approach to be significantly more time-efficient than the original method. As we can
see in Table 3.13, the correlation calculation using 13 samples per trace is approximately 50
times faster than the one using 2000 samples per trace. As the duration of the integration
is also much lower, the summary time consumption using our approach is roughly 40 times
lower than with the original approach. In Figure 3.10, we can see that this improvement is
constant with the number of power traces. To prevent the effect of badly chosen offset, one
can repeat the attack for multiple offsets and still perform the attack many times faster
than with the original approach.
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Figure 3.7: Plot of minimal power traces necessary to reveal the cipher key for the original
power traces and the aggregated power traces using the best and the worst offset, Altera
Cyclone III FPGA on Evariste III, 30 sets of traces (sorted by values for the original traces)

Table 3.13: Running time of correlation calculation using 2000 or 13 samples and running
time of integration preprocessing for various numbers of power traces in seconds

``````````````̀Procedure
# traces

1K 10K 100K 1M

Correlation
2000 samples 1.8 17.6 177 1850
13 samples 0.06 0.36 3.7 36

Integration 0.03 0.12 1.11 11
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Figure 3.8: Plot of minimal power traces necessary to reveal the cipher key for the original
power traces and the aggregated power traces using the best and the worst offset, Xilinx
Spartan-6 FPGA on Sakura-G, 30 sets of traces (sorted by values for the original traces)

3.2.3 Conclusion

We propose a new approach to fast evaluation of correlation coefficients when performing
correlation power analysis. It is based on power trace preprocessing. In each trace, we
integrate samples corresponding to each clock cycle of the encryption. This preprocessing
is easy to implement and marginally time demanding in comparison with the correlation
calculations. This approach makes the correlation calculations much faster as it drastically
decreases the number of samples per trace. We successfully confirmed these assumptions
in Section 3.2.2. We show, that the overall time of the calculation part of the attack is
approximately 40 times lower with our approach in comparison with the original method.

We also show, how the integration affects the number of power traces needed to obtain
the correct key. Three different platforms were used. On two platforms, the number
of traces was even lower than without the preprocessing. Also, on the third platform, our
approach is more time-efficient even though more power traces are demanded when using
some particular offsets.

Considering these facts, the presented method was confirmed as an excellent way
to speed up the correlation power analysis.
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Figure 3.9: Plot of minimal power traces necessary to reveal the cipher key for the original
power traces and the aggregated power traces using the best and the worst offset, Xilinx
Artix-7 FPGA on DPAboard, 30 sets of traces (sorted by values for the original traces)
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Figure 3.10: Plot of running times of the original method and our approach for various
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3.3 Key Candidate Selection

The examination and comparison of correlation traces, in order to obtain the correct key
candidate, can be done visually by the attacker. However, an algorithmization of this final
step of the CPA attack is highly relevant for batch attacking and the automatic evaluation
of the side-channel attack. The näıve way to automate this process is simply selecting
the key candidate which maximizes the Pearson correlation coefficient. In this work, we
propose an algorithmic way of extracting the key candidate based on a significant change
in the correlation trace rather than on the correlation coefficient magnitude.

We describe our approach and present solution for noise filtering and computational
aspects of edge detection in Section 3.3.1. Results of our experimental work is presented
in Section 3.3.2. We summarize and conclude our results in Section 3.3.3.

3.3.1 Our Approach

Our approach extends correlation power analysis, i.e. non-profiled side-channel attack,
and it is based on detecting a sudden change (edge) in a correlation trace (a time series
of a correlation coefficient). With this approach, we are able to

◦ significantly reduce the number of acquired power traces necessary to successfully
mount an attack in a noisy environment, and

◦ in some cases make the attack even feasible.

The reduction of the number of power traces reduces both the acquisition (measurement)
time and the time of the analysis.

3.3.1.1 Motivation

To evaluate the correlation analysis results, the attacker would visually examine the cor-
relation traces, looking for specific anomalies that might give him a hint about the right
cipher key. The näıve way to automate this process might be searching for the correlation
curve with the strongest (positive or negative) correlation and thus relevant key candidate.

As we described in Section 2.1.4, correlating our predictions with each sample point
in the power trace gives us a correlation matrix with dimensions s × c, with s being the
number of samples per trace and c being the number of all possible key candidates. Looking
for the maximum Pearson correlation coefficient in this matrix gives us a hint for selecting
the correct key candidate. In situation depicted in Figure 3.11(a), this approach works
just fine.

However, the shape of the correlation curve in time is still more informative, than the
magnitude of the correlation coefficient itself. In Figure 3.11(b), one can easily identify
the correct key candidate by the naked eye (red curve (2)), while looking for the Pearson
correlation coefficient with the highest absolute value fails, as in such a case the blue curve
(1) would be selected. Note that with more measurements and power traces available, the
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(a) Correlation traces based on a sufficient amount of power traces. The correct key candidate
is colored blue.

(b) Correlation traces based on an insufficient amount of power traces. Searching for a (negative)
maximum correlation coefficient leads us to the wrong key candidate, which is colored blue (1).
The correct key candidate is colored red (2).

Figure 3.11: Correlation traces (a time series of a Pearson correlation coefficient during
the encryption), for all 256 key candidates.
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Figure 3.12: Correlation trace obtained while attacking AES on DPAboard [1] (Artix 7
FPGA board with a switching power supply).

spike on the red curve (2) would grow bigger, while correlation at other samples would
converge to zero.

The algorithmic evaluation of the correlation coefficients using the näıve maximum
likelihood-based method may become even more problematic when there is a significant
noise present. Correlation trace for the correct key candidate can be seen in Figure 3.12.
This trace was obtained from a board featuring a switching power supply, which represents
a significant source of a background noise. Identifying the key candidate by the naked eye
is possible, but time demanding, and searching for the maximum/minimum of correlation
coefficients does not work well. Our observations led us to an idea of examining the pro-
gression of the correlation coefficient in time to algorithmically give the attacker a hint
about the correct key candidate, rather than examining its instantaneous magnitude. Ac-
cording to our research, when correlated working variable causes a change in the power
consumption of the device, an edge typically appears in the correlation trace. This problem
is very similar to image edge detection problem described in [63, 64].

Since edge detecting operators are very sensitive to noise, appropriate filtering/smoothing
of the correlation traces must be done first. In Section 3.3.1.2, we discuss filters that can be
used for smoothing the correlation traces. Section 3.3.1.3 discusses edge detectors explored
in this work. In Section 3.3.1.4, we describe how to combine filters and edge detecting op-
erators into one operation in order to reduce the computational complexity.
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3.3.1.2 Noise Filtering/Smoothing

In image processing, the typical choice is a Gaussian filtering [64, 63]. For our further ex-
perimental purposes, we have chosen two filters: the moving average filter and the Gaussian
filter.

Moving average filter is defined as follows: Assume that f(t) is a discrete variable, then
convolution

(f ∗ma(d))(t) =
1

d

t+d d
2
e−1∑

i=t−b d
2
c

f(i) (3.9)

is the result of filtering the variable f(t) using moving average filter with diameter d.

Gaussian filter is defined as follows: Assume that f(t) is a discrete variable, then
convolution

(f ∗ g(d, σ))(t) =

t+d d
2
e−1∑

i=t−b d
2
c

f(i) ·
exp(− (i−t)2

σ2 )

norm(d, σ)
(3.10)

is the result of filtering the variable f(t) using Gaussian filter with diameter d and devi-
ation σ, where

norm(d, σ) =

d d
2
e−1∑

j=−b d
2
c

exp(− j
2

σ2
) (3.11)

is the normalization, making sure that the sum of used Gaussian filter equals to 1.

3.3.1.3 Edge Detection

After the noise filtering, the edge detection takes place. There are two approaches to this:
a first derivative-based operator, and a second derivative-based (Laplace) operator [63].

When the first derivative approach is used, the filtered correlation traces are processed
with the first derivative operator, and then the search for the largest absolute value of the
derivative is done. When using the second derivative approach, the algorithm searches for
significant zero-crossings of the Laplacian of the correlation trace. Both approaches are
compared in Section 3.3.2.

3.3.1.4 Computational Approach

As suggested in [64], both derivative operators and filtering are performed using a discrete
convolution. The moving average filter with diameter d can be easily implemented as
a convolutional kernel:

ma(d) =
1

d
[1, 1, . . . , 1︸ ︷︷ ︸

d×

]. (3.12)
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Figure 3.13: Correlation trace from Figure 3.12 processed by first derivative operator
with Gaussian filtering.

In the case of the Gaussian filter with deviation σ, an appropriate convolutional kernel
of width d can be obtained using a formula

G(x, σ) ∝ exp(−x
2

σ2
), (3.13)

and making sure, that the sum of all the terms in the kernel is equal to 1. This can be
done by dividing every term of the kernel by the sum of all the kernel terms. For example,
Gaussian kernel g(d = 5, σ = 1) looks like

g(5, 1) = [0.06135, 0.2448, 0.3877, 0.2448, 0.06135]. (3.14)

For an approximation of the first derivative, the following convolutional kernel is used:

d1 = [−1, 0, 1], (3.15)

while for an approximation of the second derivative, the discrete Laplace kernel is used:

d2 = [1,−2, 1]. (3.16)

Thanks to the associativity of convolution, the smoothing and derivative operator can
be precomputed beforehand, resulting in one kernel performing both operations at once.
First derivative Gaussian convolution kernel can be obtained using a formula

G(x, σ)′ ∝ x

σ2
· exp(−x

2

σ2
), (3.17)
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and Laplacian of Gaussian convolution kernel can be obtained using a formula

∆G(x, σ) ∝ x2 − σ2

σ4
· exp(−x

2

σ2
). (3.18)

The edge detection on a correlation trace can now be done as a convolution, with time
complexity O(s × d), where s is the number of samples in the correlation trace, and d is
the diameter of the filter.

Searching for the correct key candidate in the correlation matrix consists of applying
this convolution on each row of the matrix and looking for the largest value (in the case
of the first derivative) or zero-crossings (in the case of Laplacian) in the resulting matrix.

3.3.2 Experimental Results

We have executed two classes of experiments:

1. We have evaluated all proposed distinguishers regarding the amount of correctly
revealed bytes of the AES-128 cipher key, for various fixed numbers of power traces
available. Results of this class of experiments are presented in Section 3.3.2.1.

2. We have evaluated the first derivative + Gaussian distinguisher regarding the filter
parameters (filter diameter and deviation). Results of this class of experiments are
presented in Section 3.3.2.2.

The platforms we used to evaluate presented methods were following:

◦ DPAboard [1] (open experimental board) with Xilinx Artix 7 FPGA in two revi-
sions: with a switching power supply, and with a low-noise power supply,

◦ Sakura-G board [62] with Xilinx Spartan 6 FPGA,

◦ Evariste III board [61] with Altera Cyclone III FPGA module.

While working with the DPAboard [1] with a switching power supply, we have exper-
ienced a lot of unwanted noise in the measured power traces. A correlation trace based
on these power traces is shown in Figure 3.12. The correlation trace processed with first
derivative operator is shown in Figure 3.13.

3.3.2.1 Evaluation of Proposed Distinguishers

We evaluated the following four distinguishers:

1. Standard CPA, maximizing the Pearson correlation coefficient,

2. Maximizing the first derivative of correlation traces smoothed using moving average,

3. Maximizing the first derivative of correlation traces smoothed using Gaussian filter,
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Table 3.14: The number of correctly guessed bytes of the key, Xilinx Artix 7 with a switch-
ing power supply.

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 0 0 0 0 0 0 0 2 4
First derivative + moving average (d=25) 0 0 0 0 0 11 16 16 16 16
First derivative + Gaussian (d=25, σ=12.0) 0 0 1 1 7 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=12.0) 0 0 0 0 0 0 1 6 9 9

Table 3.15: The number of correctly guessed bytes of the key, Xilinx Artix 7 with a low-
noise power supply.

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 0 2 3 14 16 16 16 16 16
First derivative + moving average (d=25) 0 3 6 13 16 16 16 16 16 16
First derivative + Gaussian (d=25, σ=10.0) 0 1 5 15 16 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=12.0) 0 1 2 5 5 6 7 7 7 7

Table 3.16: The number of correctly guessed bytes of the key, Sakura-G (Xilinx Spartan 6
with a low-noise power supply).

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 2 2 5 12 16 16 16 16 16 16
First derivative + moving average (d=30) 1 4 6 13 16 16 16 16 16 16
First derivative + Gaussian (d=25, σ=12.0) 2 3 6 12 16 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=12.0) 1 2 5 11 16 16 16 16 16 16

4. Searching for zero-crossings of the Laplacian of correlation traces smoothed using
Gaussian filter.

The distinguishers were tested on an AES cipher with 128-bit key, run on three plat-
forms mentioned above. Results are summarized in Tables 3.14, 3.15, 3.16, and 3.17. Each
table contains the number of successfully recovered bytes of key for numbers of power
traces varying between 100 and 100,000.

Tables 3.14 and 3.15 contain the results based on the correlation traces obtained from an
open DPA evaluation board DPAboard [1] with Xilinx Artix 7. We have evaluated these
distinguishers using two different revisions of the board: Table 3.14 and Figure 3.14(a)
present the results when using the DPAboard with a switching power supply. Table 3.15
and Figure 3.14(b) present the results when using the DPAboard with a low-noise power
supply.

As can be seen in Figure 3.14(a), in the case of noisy power traces obtained from
the board with a switching power supply, the performance of both first derivative-based
distinguishers is much better than the performance of the maximum Pearson correlation
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(a) DPAboard (Xilinx Artix 7 FPGA), powered by a switching power supply.
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(b) DPAboard (Xilinx Artix 7 FPGA), powered by a low-noise power supply.

Figure 3.14: The number of successfully recovered bytes of AES-128 cipher key using
different distinguishers, for various numbers of power traces.
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Figure 3.15: The number of successfully recovered bytes of AES-128 cipher key using
different distinguishers, for various numbers of power traces, using Sakura-G.
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Figure 3.16: The number of successfully recovered bytes of AES-128 cipher key using
different distinguishers, for various numbers of power traces, using Evariste III + Altera
Cyclone III.
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Table 3.17: The number of correctly guessed bytes of the key, Evariste III + Altera Cyclone
III with a low-noise power supply.

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 2 5 12 16 16 16 16 16 16
First derivative + moving average (d=25) 2 4 6 10 16 16 16 16 16 16
First derivative + Gaussian (d=25, σ=10.0) 2 3 4 11 16 16 16 16 16 16
Laplacian of Gaussian (d=25, σ=10.0) 0 1 1 2 2 2 6 8 11 11

coefficient method, which actually fails. While in the case of the first derivative approach we
needed just 2,500 power traces to successfully reveal all 16 bytes of the key, the maximum
Pearson correlation coefficient method did not reveal any byte of the key with the same
amount of power traces, and only 4 bytes with all of 100,000 available power traces.

Figure 3.14(b) presents the number of successfully recovered bytes of the key at Xilinx
Artix 7 platform with a low-noise power supply. As can be seen, even in a much less noisy
environment, our method provides better results. While in the case of the first derivative
approach we needed just 1,000 power traces to successfully reveal all 16 bytes of the key,
in the case of the maximum Pearson correlation coefficient method we needed 2,500 traces
to fully recover the whole key. The Laplacian of Gaussian distinguisher did not prove to be
any more effective than the standard CPA. This may be due to the higher noise sensitivity
of the second derivative approach.

Table 3.16 and Figure 3.15 present the results obtained while using Sakura-G board [62],
equipped with Xilinx Spartan 6 FPGA and a low-noise (linear) power supply. In this
case, all methods perform similar, although the first derivative-based distinguishers provide
a slightly better results when there is an insufficient amount of power traces available.

Table 3.17 presents the results for the Evariste III [61] with Altera Cyclone III FPGA
and a low-noise (linear) power supply. In this case, first derivative distinguishers and
standard CPA are comparable again. The first derivative approach may perform a little
better for a low amount of power traces, nevertheless, at least 1,000 power traces were
necessary for a recovery of the full key. The Laplacian of Gaussian operator did not prove
to be any useful in this case either, as can be seen in Figure 3.16.

3.3.2.2 Gaussian Parameters Evaluation

Previous results, summarized in Tables 3.14, 3.15, 3.16, and 3.17, indicate the first derivat-
ive distinguisher with Gaussian filtering to be the most promising method. It is particularly
successful in noisy environment, as demonstrated in Table 3.14 and Figure 3.14(a).

The performance of the edge detecting operator depends on the selection of its smooth-
ing filter parameters:

◦ diameter of the filter d, and

◦ deviation of the Gaussian σ.
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Table 3.18: The number of power traces necessary to obtain a full AES encryption key (16
bytes), running on DPAboard (Xilinx Artix 7 with a switching power supply).

Max. Pearson corr. coef. >100,000

First derivative + Gaussian (various parameter settings)
diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 13,400 13,400 13,400 13,400 13,400 13,400 13,400 13,400 13,400
2.0 9,400 7,500 7,500 7,500 7,500 7,500 7,500 7,500 7,500
4.0 9,400 4,600 4,500 4,400 4,400 4,400 4,400 4,400 4,400
8.0 9,400 4,000 3,700 2,400 2,400 2,400 2,400 2,400 2,400
12.0 9,500 3,900 3,100 2,400 2,400 2,400 2,400 2,400 2,400
16.0 9,500 3,900 3,100 2,400 2,400 2,400 2,400 2,400 2,400
20.0 9,500 3,900 3,100 2,400 2,400 2,400 2,400 2,400 2,800
24.0 9,500 3,900 3,100 2,400 2,400 2,500 2,400 2,400 2,800
30.0 9,500 3,900 3,100 2,400 2,400 2,500 2,400 2,800 2,800

Table 3.19: The number of power traces necessary to obtain a full AES encryption key (16
bytes), running on DPAboard (Xilinx Artix 7 with a low-noise power supply).

Max. Pearson corr. coef. 1,200

First derivative + Gaussian (various parameter settings)
diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000
2.0 11,300 3,800 3,800 3,800 3,800 3,800 3,800 3,800 3,800
4.0 10,500 600 600 600 600 600 600 600 600
8.0 9,900 700 600 500 500 500 500 500 500
12.0 9,900 900 600 500 500 500 500 500 500
16.0 9,900 900 600 500 500 600 600 600 600
20.0 9,900 900 600 500 500 500 600 600 600
24.0 9,900 900 600 500 500 500 600 600 600
30.0 9,900 900 600 500 500 500 600 600 600

In this section, we evaluate the first derivative distinguisher with Gaussian filtering,
using all the evaluation platforms listed in Section 3.3.2.1, and compare the results with
the maximum Pearson correlation coefficient method.

Table 3.18 presents the number of power traces necessary for obtaining the whole 16-
byte long AES key, using the open FPGA evaluation platform DPAboard [1] (Xilinx Artix
7) with a switching power supply. While for the maximum Pearson distinguisher, we could
not retrieve the whole key even with 100,000 power traces available, with optimal first
derivative distinguisher only 2,400 power traces are necessary to obtain the whole key.

Table 3.19 presents results obtained using the same evaluation platform, but equipped
with the low-noise power supply. In this case, less than a half of the power traces are
necessary for a successful attack when using first derivative distinguisher compared to the
standard CPA maximum Pearson correlation coefficient (500 vs 1,200).

Table 3.20 presents results obtained when using the Sakura-G [62] evaluation platform
(Xilinx Spartan 6), where the performance of both distinguishers is similar.
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Table 3.20: The number of power traces necessary to obtain a full AES encryption key (16
bytes), running on Sakura-G (Xilinx Spartan 6 with a low-noise power supply).

Max. Pearson corr. coef. 800

First derivative + Gaussian (various parameter settings)
diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000
2.0 6,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200
4.0 5,400 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200
8.0 5,400 1,200 1,000 900 900 900 900 900 900
12.0 5,400 1,200 900 900 900 800 800 800 800
16.0 5,400 1,200 900 900 900 800 800 700 700
20.0 5,400 1,200 900 900 800 800 700 700 700
24.0 5,400 1,200 900 900 800 800 700 700 700
30.0 5,400 1,200 900 900 800 800 700 700 700

Table 3.21: The number of power traces necessary to obtain a full AES encryption key (16
bytes), running on Evariste III + Altera Cyclone III with a low-noise power supply.

Max. Pearson corr. coef. 700

First derivative + Gaussian (various parameter settings)
diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 6,800 6,800 6,800 6,800 6,800 6,800 6,800 6,800 6,800
2.0 2,100 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400
4.0 1,900 900 800 800 800 800 800 800 800
8.0 9,900 900 900 700 700 700 700 700 700
12.0 9,900 900 900 900 700 700 700 700 700
16.0 9,900 900 900 900 700 700 700 600 600
20.0 9,900 900 900 900 800 700 700 700 700
24.0 9,900 900 900 900 800 800 900 700 700
30.0 9,900 900 900 900 800 900 900 700 700

Table 3.21 presents the results obtained using the Evariste III platform [61] + Altera
Cyclone III module. In this case, the optimal first derivative distinguisher performs slightly
better than the maximum Pearson method (600 vs 700).

As can be seen from results summarized in Tables 3.18, 3.19, 3.20, and 3.21, the selection
of the filter parameters (d, σ) is crucial for a satisfactory performance of a distinguisher
with Gaussian filtering. In our case, the deviation σ should be σ ≥ 8.0 to minimize
the number of power traces necessary for successful identification of the correct key. The
diameter d also influences the success of the method, although its impact is not that strong
as in the case of deviation. Nevertheless, the diameter d should be large enough to fit the
Gaussian with the selected deviation, in our case d ≥ 23.
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3.3.3 Conclusion

We have presented a new algorithmic approach to the final step of the CPA attack, which
is the selection of the correct key candidate from the correlation traces.

Selecting the key candidate which maximizes the correlation coefficient, according to the
maximum likelihood principle, is quite sufficient if the cryptographic device runs in an
environment well suitable for power trace measurements. However, this method may fail
in the presence of noise or interference in the production environment, caused e.g. by
a switching power supply.

We show that our distinguisher based on first derivative edge detection is more suc-
cessful when evaluating the correlation traces obtained in a noisy environment, such as
that made by the switching power supplies. Using our method, approximately 2,400 power
traces were necessary for a recovery of the whole key, while the maximization of the Pearson
correlation coefficient failed to do so even with 100,000 power traces.

While working with low-noise/linear power supplies and having a sufficient amount
of power traces available, both approaches work equally good. When the amount of power
traces is insufficient, our first derivative method may provide slightly better results. The
Laplacian of Gaussian based distinguisher did not prove to be much useful.

The extra time complexity of the proposed methods is insignificant compared to the
rest of the CPA attack. The resulting reduction of the power traces necessary to reveal the
cipher key is even more beneficial considering that the measuring of the power traces is
usually by far the most time-consuming part of the attack. Although the time complexity
of distinguishers with Gaussian filtering increases with increasing diameter d, the (very
slight) increase of time is more than compensated by reducing the time necessary for
both acquisition of power traces (i.e. measurement by an oscilloscope) and calculation
of correlation traces.
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Chapter 4

Dependability vs. Security

Sometimes, a digital device needs to be designed with regard to both dependability and se-
curity. For example, when a cryptographic module is designed as a part of a mission-critical
system. In this chapter, we discuss the problematics of digital design being dependable
and secure at the same time. We focus on basic fault-tolerant schemes based on mul-
tiple kinds of redundancy on the dependability side of the problem, while we focus on the
security issue of protection against side-channel analysis. In Section 4.1, the influence
of basic fault-tolerant architectures on resistance against side-channel analysis (specifically
correlation power analysis) is evaluated. We propose novel architectures based on simple
redundancy techniques and Boolean masking providing both fault-tolerance and resistance
to side-channel analysis in Section 4.2.

The experimental evaluation of results presented in Section 4.1 was done in cooperation
with a bachelor student Jan Ř́ıha. The main idea of the work discussed in the section was
presented at an international conference MECO 2016 [A.1] and PhD workshops PESW
2016 [A.9] and PAD 2016 [A.10]. The paper presented at MECO 2016 was invited for an
extension to Microprocessors and Microsystems journal, where an evaluation of the influ-
ence of space redundancy on SCA resistance was published [A.3], which we also published
at a workshop FCTRU 2016 [A.11]. The rest of this work was presented at an international
conference DSD 2017 [A.4], security workshops CryptArchi 2017 [A.14] and Trudevice 2018
[A.16], and a PhD workshop PAD 2017 [A.15].

The work introduced in Section 4.2 was presented at a workshop CryptArchi 2019 [A.18]
and at a PhD workshop PAD 2019 [A.19].
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4.1 Influence of Dependable Architectures on CPA-Resistance

The most straightforward way of designing a device fault-tolerant are simple fault-tolerant
architectures [47, 48, 65] described in Section 2.2. While using fault-tolerant design meth-
ods in cryptographic circuits, one important question arises: how do these methods influ-
ence the attack-resistance of the design?

In this section, we focus on the common fault-tolerant architectures, specifically space
redundancy, time redundancy, and information redundancy. We compare these architec-
tures with a simple (fault unprotected) implementation of the cryptographic algorithm.
As a reference design, we have chosen AES-128 without any SCA countermeasures, so we
can easily compare the influence of the fault-tolerant architectures. We experimentally
evaluate the resistance against side-channel analysis using correlation power analysis.

Similar work is presented by Regazzoni et al. [49, 50] and Dofe et al. [51], as described
in Section 2.3, but only fault-tolerance as a countermeasure against fault attacks is regarded
in these publications. Unlike the above mentioned studies, we focus on fault-
tolerance in context of dependability. While the referred works focus on protection
of S-boxes using error detection/correction codes like parity or Hamming code, we focus
on protection of the whole design (or major parts of it) using different kinds of redundancy.

Detailed description of the fault-tolerant architectures we used for the evaluation and
our expectations about their influence on CPA resistance are presented in Section 4.1.1.
In Section 4.1.2, we describe the experiment setup. Results of our experimental evaluation
are presented and discussed in Section 4.1.3 and our findings are concluded in Section 4.1.4.

4.1.1 Architectures

To evaluate and compare the influence of fault-tolerant design techniques on resistance
against CPA, we used a reference AES design (Section 4.1.1.1) and five AES designs em-
ploying various fault-tolerant design techniques:

◦ Information redundancy (Section 4.1.1.2)

◦ Space redundancy at round level (Section 4.1.1.3)

◦ Space redundancy at algorithm level (Section 4.1.1.4)

◦ Time redundancy at round level (Section 4.1.1.5)

◦ Time redundancy at algorithm level (Section 4.1.1.6)

4.1.1.1 Reference AES

Round based implementation of AES-128 described in Section 3.2.1.2 and depicted in Fig-
ure 3.4 is used as a reference design.
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Figure 4.1: Diagram of a round with parity checked SubBytes

4.1.1.2 SubBytes Parity Check

This fault-tolerant architecture is designed to detect a fault a by parity check in the modules
implementing SubBytes function (S-boxes) [66], which covers a large part of the area of AES
implementation. Since SubBytes, being a nonlinear function, does not preserve parity, we
needed to implement a parity predictor. We use two parity predictors implemented as
look-up tables. The first one is predicting the parity of the output using the input and the
second one is predicting the parity of the input using the output. Both predicted values
are compared with the real values and a fault is indicated when they differ. There are both
input and output parity checkers for each of 16 S-boxes. Diagram of a round with parity
checked SubBytes function is shown in Figure 4.1.

As this architecture introduces quite a low area overhead, we expect the power con-
sumption to be similar to the power consumption of the reference design and we also expect
this design not to affect the CPA resistance. On the other hand, this architecture does not
provide any fault correction. It provides just the fault detection; moreover, it is limited
to S-boxes only.

4.1.1.3 Space Redundancy — Round Level

Space redundancy is represented by the most common fault-tolerant architecture — triple-
modular redundancy [47]. It is based on three copies of a module and a majority voter.
When one of the modules is faulty, the majority voter ensures that the result is still correct.
A diagram of this architecture is shown in Figure 4.2.
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Figure 4.2: Diagram of AES secured by space redundancy at round level

In this case, we use TMR at round level, so the data path implementing a single round
of the design is triplicated.

This architecture causes high area overhead (the round logic is triplicated), which leads
to increased power consumption. This increase should triplicate the information available
in the power consumption, thus it should increase the signal to noise ratio, which would
make the device more vulnerable to CPA. On the other hand, the increased power con-
sumption may cause an increase in the noise (caused e.g. by power supply) and also the
power consumption of the majority voter can introduce some additional noise.

4.1.1.4 Space Redundancy — Algorithm Level

This architecture is another one based on TMR. In this case, the whole AES module is
triplicated and outputs are evaluated using three majority voters, therefore this architec-
ture masks a fault in any part of the whole design. A diagram of this architecture is shown
in Figure 4.3.

In this case, we also expect increased power consumption. In comparison with the
round level, the overall power consumption increase should be higher, but the additional
information in this increase should be the same. Therefore we expect this architecture
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Figure 4.3: Diagram of AES secured by space redundancy at algorithm level

to have the same or lower influence on CPA resistance than the architecture described
in Section 4.1.1.3.

4.1.1.5 Time Redundancy — Round Level

Time redundancy is based on repeating the same calculations on the same data multiple
times. In this architecture each round is run three times, each result is stored in a register
and then the results are compared by a majority voter similarly to the one in Section
4.1.1.3. Using this approach, the design is tolerant to transient faults only. A diagram
of this architecture is shown in Figure 4.4.

This architecture introduces minimal area overhead (only a voter and registers for a
result of each iteration are added). Compared to the reference circuit described in Section
4.1.1.1, the information available in the power consumption is exposed three times in the
circuit with time redundancy. We do not expect this scheme to affect the CPA resistance
significantly.

4.1.1.6 Time Redundancy — Algorithm Level

This architecture is very similar to the one in Section 4.1.1.5, instead of repeating each
round separately, the whole encryption is repeated. The results are also stored in registers
and then compared by a majority voter. A diagram of this architecture is shown in Figure
4.5.

We expect similarly small influence on CPA resistance as in the case of round level time
redundancy presented in Section 4.1.1.5.
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Figure 4.4: Diagram of AES secured by time redundancy at round level

4.1.2 Measurement

The hardware platform used for the measurement is described and the evaluation process
is discussed in this section.

4.1.2.1 FPGA Platform

Evariste III board with Altera Cyclone III FPGA module [61] has been chosen as an
evaluation platform. All AES variants were synthesized by Altera Quartus II 13.1. The
frequency of the FPGA was set to 1 MHz.

4.1.2.2 Power Analysis

The power consumption was measured by Agilent DSO 7104A oscilloscope. For each
encryption, a power trace of 1000 samples was measured.

We analyzed the data using the DPA with correlation distinguisher (CPA). Concerning
the power model, we use Hamming distance between the value at the beginning of the
10th round (state 9) and the end of the 10th round (ciphertext) (state 10), as it is depicted
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Figure 4.5: Diagram of AES secured by time redundancy at algorithm level

in Figure 3.6. The actual attack is described in Section 2.1.4. The key candidate with the
highest absolute value in a correlation trace was chosen as the correct key candidate.

4.1.2.3 Evaluation

The minimal amount of power traces sufficient to reveal the correct key candidate for all
bytes of the key is used as a quantification of the CPA resistance.

For each variant of AES, we collected 50 different sets of power traces, thus we obtained
50 quantifications for each variant.

4.1.3 Results

The evaluated architectures are compared by medians of the minimal numbers of power
traces sufficient to reveal the correct key and the interquartile ranges because the standard
deviation was up to 20% of the mean and quantiles are less susceptible to long-tailed
distributions and outliers than means [67].

The comparison of medians and interquartile ranges is shown in Table 4.1 with the
following meaning of the abbreviations:

◦ AES: Standard AES module (reference design, Section 4.1.1.1)

◦ AES-SPC: SubBytes parity check (Section 4.1.1.2)
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Table 4.1: Comparison of AES variants based on median and interquartile range of minimal
power traces necessary to obtain the correct key

Architecture Median Interquartile range Difference from AES

AES 850 175 0%
AES-SPC 950 250 +12%
AES-SR-R 900 275 +6%
AES-SR-A 812 150 -4%
AES-TR-R 1025 250 +21%
AES-TR-A 1037 275 +22%

◦ AES-SR-R: Space redundancy at round level (Section 4.1.1.3)

◦ AES-SR-A: Space redundancy at algorithm level (Section 4.1.1.4)

◦ AES-TR-R: Time redundancy at round level (Section 4.1.1.5)

◦ AES-TR-A: Time redundancy at algorithm level (Section 4.1.1.6)

As we can see in Table 4.1 and a box plot in Figure 4.6, the differences between
studied AES architectures lie within the interquartile ranges, therefore these differences
are not statistically significant. Almost all architectures show slightly positive (if any)
influence on CPA resistance. In the following subsections, we discuss obtained results and
we confront them with our assumptions stated in Section 4.2.

4.1.3.1 SubBytes Parity Check (AES-SPC)

This architecture made the design a little less vulnerable to CPA. This is probably caused
by the parity checkers, which act as a noise generator. Nevertheless, the influence is low.

4.1.3.2 Space Redundancy (AES-SR-R, AES-SR-A)

In this case, the difference from the reference AES is very low; nevertheless, the algorithm
level space redundancy is the only architecture reaching less resistance to CPA. In the
case of the round level space redundancy, the resistance is a bit increased. This result is
contrary to our assumptions. On the other hand, the results are both very similar to the
original AES implementation, so it is hard to make any conclusion.

4.1.3.3 Time Redundancy (AES-TR-R, AES-TR-A)

Despite our assumptions, the results of the time redundancy shown the highest influence
on the CPA resistance of the measured architectures. The medians are on the edge of the
interquartile range of the reference AES implementation. However, this result may have
another explanation: as long as we obtained 1000 samples per a power trace in all stud-
ied architectures and the encryption time of time redundancy architectures is three times
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Figure 4.6: Box plot of the minimal number of power traces necessary to reveal the correct
key for all measured AES architectures

higher, the sample resolution is three times lower in comparison with the rest of the archi-
tectures. This may be the reason for the increased resistance to CPA.

4.1.4 Conclusion

The influence of multiple fault-tolerant architectures using various kinds of redundancy
on resistance against side-channel analysis is experimentally evaluated and analyzed in this
work.

As we show in Section 4.1.3, the measured fault-tolerant architectures had minimal
influence on resistance against CPA. Most of the architectures even increased the resistance.

The parity check of SubBytes introduces noise and it slightly increases the resistance.
The space redundancy seems to balance the noise and information increase. The time
redundancy shows the highest influence but it is probably based on the longer duration
of encryption and it may be evaded by e.g. attacking a third of the power trace.

These results indicate that the studied fault-tolerant architectures can be used for
designing a fault-tolerant cryptographic device without making it more vulnerable to side-
channel analysis. The difference in SCA resistance is statistically insignificant and above
that, it is usually positive.

These results are in contradiction with the results of similar studies mentioned in Sec-
tion 2.3. There are multiple explanations to this difference: the fact that the other studies
focused mostly on securing the S-boxes only, different platforms used or others. Disregard-
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ing the reasons, in all studies, including ours, the influence proved to be quite small and
the differences in the results only strengthen the insignificance of the influence of evaluated
architectures on side-channel analysis resistance.
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4.2 Area-Efficient Dependable Architectures Exploiting Mask-
ing Scheme Randomness

One of the possible ways to protect a device against side-channel analysis is masking.
An overview of masking countermeasures is presented in Section 2.1.6.1, where multiple
schemes provably secure against SCA of arbitrary order, e.g. threshold implementation or
domain-oriented masking, are presented. Masking randomizes all the intermediate values
of a cryptographic algorithm and therefore it eliminates the side-channel leakage. Ran-
domization of inputs (and therefore outputs) for each encryption is a common property
of these schemes.

An easy way of increasing dependability is hardware (space) modular redundancy, which
is described in Section 2.2.1. These schemes are based on simple replication of logic mod-
ules. Common examples are DMR, TMR or NMR. These architectures detect and/or
correct both permanent or transient faults of common types (stuck-at-0, stuck-at-1, bit-
flipping). The biggest advantage is the simplicity making these architectures very universal
and popular. On the other hand, these architectures introduce very high overhead of area,
power, etc.

This work aims to propose architectures based on existing masking schemes and mod-
ular redundancy architectures. In comparison with existing methods, these architectures
decrease the overhead while they keep both the attack-resistance of masking schemes and
the simplicity and dependability properties of the existing modular redundancy architec-
tures. Specifically, we exploit the fact that a fault in the masked circuit causes different
(unmasked) outputs when different random masks are used. This property permits us
to build less redundant design utilizing the redundancy introduced by the masking scheme
itself.

The principles of the proposed architectures using various amounts of redundant mod-
ules are described in detail in Section 4.2.1. Case study of TMR-equivalent architecture
using TI of PRESENT cipher [68] is presented in Section 4.2.2, where also the reduction
of area overhead and leakage evaluation of the proposed architecture is discussed. Results
of our work are concluded in Section 4.2.3.

4.2.1 Methodology

To demonstrate our approach, we describe fault-tolerant architectures providing similar de-
pendability properties as TMR and NMR, but using a lower number of redundant modules.
The architectures rely on an assumption that a fault in the encryption leads to different
faulty output for the same but differently masked inputs. Note that in this work, we deal
only with fault-tolerance of the data paths. The control unit should be handled independ-
ently (as it also usually is in the case of the traditional modular redundancy architectures).

We assume round-based implementation of a symmetric cipher as depicted in Figure
4.7. Such a design can be divided into three parts: input logic (usually just input signals),
encryption logic (round logic and round register), and output logic (output signals and e.g.
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Figure 4.7: Diagram of round based cipher implementation

output multiplexers). Any single fault in encryption logic leads to different outputs for
different random masks with high probability, as such a fault is propagated through the
whole encryption process. On the other hand, a fault in the input or output logic can lead
to the same (unshared) outputs for different masks.

4.2.1.1 TMR-Equivalent

TMR architecture serves to correct a fault in one of three modules. We propose an ar-
chitecture with similar properties using two modules only. A diagram of the proposed
architecture can be seen in Figure 4.8. The two modules run the encryption in parallel
with the same masks. The outputs of the encryption are compared and, in the case they
differ, the encryption is repeated with new masks (same for both modules). For both mod-
ules, (unmasked) outputs of the consecutive encryptions are compared. There are three
possible results:

1. The consecutive outputs are equal for both modules. This result may be caused by
two reasons:

a) A transient fault occurred during the previous encryption.

b) A permanent fault occurred, but it is not detectable with the current mask.

Regardless of the reason, we assume that both of the current outputs are correct.

2. The consecutive outputs are equal for one of the modules. We assume that the
current output of the module with equal outputs is correct.
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Figure 4.8: Diagram of proposed TMR-equivalent architecture

3. The consecutive outputs are not equal for either of the modules. None of the outputs
is correct, fault in both modules is detected.

As mentioned above, the proposed architecture enables masking of a single fault, simil-
arly to TMR. In comparison with TMR, we spared one of three modules. The encryption
takes the same time as TMR unless a fault is introduced. Additionally, we can detect
(different) faults in both modules at the same time with no additional logic.

To protect the design also against a fault in the comparison logic, this needs to be
triplicated similarly as in the case of TMR. A diagram of an example of comparison logic
is in Figure 4.9. This logic is more complex than the majority voters in TMR. On the other
hand, the proposed comparison logic compares unmasked outputs allowing to use a shorter
comparator. The comparator is also multiplexed and it is used for comparison of outputs
of both modules as well as for comparison of outputs of two subsequent encryptions.

4.2.1.2 NMR-Equivalent

Since NMR is a generalization of TMR, we can analogically generalize our TMR-equivalent
architecture. Using the architecture proposed in the previous section, we only need one
faultless module at a time, since if not all outputs are the same, the correctly working

65



4. Dependability vs. Security

Figure 4.9: Diagram of proposed comparison logic for TMR-equivalent architecture

module(s) can be detected by repeating the encryption. Therefore, we only need n + 1
modules to tolerate n faults (instead of 2 × n + 1 in the case of NMR). Nevertheless, we
still need 2× n+ 1 very complex comparator circuits.

4.2.2 Case Study

In this section, we evaluate the TMR-equivalent architecture proposed in Section 4.2.1.1
using three-share threshold implementation of PRESENT cipher [68] as is described in [69].
The cipher is implemented in Spartan-6 FPGA on Sakura-G evaluation board [62]. Three
implementations are compared regarding the area of the design: single module, TMR, and
our TMR-equivalent architecture. All three designs were synthesized using Xilinx XST
(Xilinx ISE 14.7).

4.2.2.1 Results

A comparison of slice utilization for each of the implementations can be seen in Table
4.2. Our architecture is about 20% smaller than standard TMR. This difference can seem
smaller than expected considering the fact that two modules instead of three were used.
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Table 4.2: Comparison of area demands of evaluated implementations

Design Slice utilization Overhead

Single module 2199 0%
TMR 7180 227%
TMR-equivalent 5764 162%

This small difference is caused by the fact that PRESENT is a lightweight cipher, and
therefore the encryption modules are relatively small, while the comparison logic occupies
significant area. In the case of more robust ciphers like AES [9], the advantage of our
approach would be more significant.

4.2.2.2 Test Vector Leakage Assessment

Test vector leakage assessment was performed for each implementation. The leakage was
evaluated for 1,000,000 traces using non-specific, fixed vs. random, first-order Welch’s t-
test, as it is described in Section 2.1.7.1. PicoScope 6404D was used for the measurements.
Plots of t-values can be seen in Figure 4.10. As we can see, there is no leakage in the
case of a single module (4.10(a)) and TMR (4.10(b)). In the case of our TMR-equivalent
(4.10(c)), there is leakage in the end of the encryption. This leakage is caused by the
comparison of unmasked outputs in the comparison logic. Even though this leakage is
not a major security threat, as it only leaks information about the ciphertext, which is
considered a public information, we propose an alternative comparison logic.

Alternative Comparison Logic The problem of the side-channel leakage of the com-
parison logic can be solved by comparing masked outputs of the modules. This approach
only demands a larger comparator. Nevertheless, when a fault is detected and outputs
of two consecutive encryptions need to be compared, the outputs must be unmasked (as
different input masks are used). In this case, completely random input data (plaintext and
cipher key) are used for encryption and the encryption is repeated with different masks
until one of the modules is detected to be faulty (or until some threshold number of repeti-
tions is reached when the fault is considered to be transient). No useful data get unmasked
by a comparison logic designed in this way.

4.2.3 Conclusion

This work deals with an issue of having a device both secure and dependable. Glitch-
resistant masking schemes offer provable protection against side-channel analysis and ad-
ditionally against fault sensitivity analysis. Nevertheless, they introduce quite high area
overhead. When such a masked design needs to also fulfill dependability requirements, the
additional overhead introduced by e.g. simple modular redundancy schemes like TMR can
be unbearable.
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(a) Single module

(b) TMR

(c) TMR-equivalent

Figure 4.10: Plots of t-values
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We proposed architectures based on masking schemes exploiting their involved random-
ness. These architectures keep the simplicity of modular redundancy, while they decrease
the number of redundant modules and therefore they significantly decrease the area over-
head. In the case of TI of PRESENT cipher, the area overhead of standard TMR archi-
tecture is 227%, while the area overhead of our TMR-equivalent architecture is only 162%.
The saving would be even more significant for some more complex encryption scheme (e.g.
AES). Implemented architecture also passed the Welch’s t-test with an exception of output
unmasking in comparison logic. Nevertheless, an alternative comparison logic dealing with
this issue was also presented.

Considering these facts, we can conclude that we proposed a novel approach of secure
and dependable design, exploiting the redundancy introduced by a masking scheme, with
similar qualities and lower overhead in comparison with the original methods.
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Chapter 5

Conclusions

Since side-channel analysis poses a serious threat to cryptographic devices, it became an
extensively researched area. Two topics related to side-channel analysis are the main aim
of this dissertation thesis: efficient attack implementations and fault-tolerance of SCA
countermeasures.

An introduction to the topic and goals of this thesis are presented in Chapter 1.
In Chapter 2, the theoretical background and state of the art of the topic are presen-

ted. An overview of side-channel analysis attacks and countermeasures is introduced,
focusing on attacks evolved from differential power analysis and countermeasures based
on masking. An overview of common dependability architectures is also presented. Since,
to the best of our knowledge, there is no research about dependability issues in the context
of side-channel analysis resistance and countermeasures, an overview of a similar topic —
the influence of fault attack countermeasures on resistance against SCA — is presented
including a discussion about differences between this topic and ours.

Methods to speed up correlation power analysis are introduced in Chapter 3. A com-
parison of different approaches for correlation computations is presented together with
a proposal of efficient implementations of first-order and higher-order analysis. A method
of decreasing the complexity of the correlation computations by aggregation of power traces
is also presented. The last method proposes an algorithmic key candidate selection based
on edge detection.

An interplay between dependability and security is a topic of Chapter 4. Evaluation
of the influence of multiple dependable architectures on resistance to SCA is presented and
area-efficient architectures for dependable and SCA-resistant digital design are proposed.

In Chapter 5, the thesis is concluded. Summary and contributions are presented and
some future work is proposed.

5.1 Summary

Three approaches for time-efficient enhancements of correlation power analysis were pro-
posed. All three approaches proved to be functional and useful by experimental evaluations.
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How different dependability architectures based on different kinds of redundancy affect res-
istance to side-channel analysis is evaluated. The results show, that the influence is not
statistically significant. In accordance with this result, architectures for dependable and
secure design are proposed. These architectures are based on hardware modular redund-
ancy and masking schemes. The case study shows that the proposed architectures keep
the simplicity of the modular redundancy architectures and SCA resistance of masking
schemes, while it significantly saves resources.

All results were presented and discussed in the scientific community. In the first place,
it was published in proceedings of 5 international conferences and 2 journals, while some
of these works reached a considerable amount of citations.

5.2 Contributions of the Dissertation Thesis

1. Evaluation of multiple approaches to first-order and higher-order correlation com-
putations and a proposal of time-efficient and numerically stable implementations:
This work is based on existing algorithmic solutions, nevertheless a comprehensive
performance evaluation was presented and advantages and disadvantages of different
approaches were thoroughly discussed.

2. An efficient method for speeding up the power analysis based on an aggregation
of power traces: The method was experimentally evaluated on multiple platforms
and it drastically (tens of times) speeds up the computational part of correlation
power analysis.

3. Improved correlation distinguisher based on edge detection: An improvement of key
candidate selection from correlation traces based on edge detection using various
functions and various parameters is evaluated. The first derivative showed better
results than the original maximization of the Pearson correlation coefficient, espe-
cially in a noisy environment.

4. Comprehensive evaluation of the influence of dependable architectures on resistance
against side-channel analysis: An experimental evaluation of the influence of various
dependable architectures based on various kinds of redundancy on resistance against
side-channel analysis provides possibly surprising results, showing that the influ-
ence is minimal for all evaluated architectures. Therefore, fault-tolerant side-channel
countermeasures can be designed using these architectures.

5. Area-efficient architectures for dependability and resistance to side-channel analysis:
Architectures for both side-channel-resistant and fault-tolerant digital design are pro-
posed. These architectures keep the simplicity of hardware modular redundancy
architectures and SCA-resistance of masking schemes, while they significantly save
resource in comparison with a simple combination of the original approaches.
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5.3 Future Work

The author of the dissertation thesis suggests to explore the following:

◦ It would be interesting to evaluate the trace-aggregation technique using another
SCA distinguisher.

◦ The evaluation of the influence of dependable architectures on SCA resistance could
be extended by other platforms (e.g. ASIC) and/or more dependable architectures.
Also, a comparison using TVLA could be interesting.

◦ Continuation of this work on correlation distinguisher and a proposal for some new
improvements or whole new SCA distinguisher is one of the aims for our future
research.
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