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Abstract and contributions

This dissertation thesis deals with dependability models allowing calculating the rate of
events leading to a hazard state – a situation, where safety of the modeled dependable sys-
tem (e.g. railway station signaling and interlocking equipment, automotive systems, etc.)
is violated, thus the system may cause material loss, serious injuries or casualties. Hierarch-
ical dependability models based on multiple Markov chains are proposed. These models
allow expressing multiple redundancies made at multiple levels of a system consisting of
multiple cooperating blocks. The hazard rates of the blocks are calculated independently
and, when combined, they are used to calculate the hazard rate of the whole system.
The independent calculations are significantly faster than the calculation of a single model
composed of all models of the blocks. The dissertation thesis shows a method of reducing
Markov chains and using them to create hierarchical dependability models. Three example
studies are used to demonstrate the advantages of the hierarchical dependability models.
The models used in the first and the second study are related to railway interlocking equip-
ment, the third case study is an actual system used to detect the presence of a train and
eliminate the possibility of a train accident.

Keywords:
Fault tolerant systems, Hierarchical systems, Reliability, Reliability engineering, Rail-

way safety.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Mission-critical systems with guaranteed levels of safety and reliability parameters are used
in many applications (e.g. aviation, medicine, space missions, and railway applications,
etc.) with serious impacts to people and environment in case of their failure.

Such systems are composed of blocks based on various types of hardware (e.g. multi-core
and many-core systems, programmable hardware like FPGA, etc.). Due to heterogeneous
structure and several types of possible faults in various architectures and technologies, a
realistic model, which has to be a basis for necessary certifications of such systems, is
mostly complicated.

Currently used dependability parameters calculations/predictions are performed mostly
as a three-level top-down process:

1. Failure modes, effects, (and criticality) analysis [1], is mainly a qualitative analysis
used to study problems that might arise from malfunctions of the systems. It de-
termines, by failure mode analysis, the effect of each failure on system operation and
identifies single failure points, that are critical to mission success or crew safety. It
may also rank each failure according to the criticality category of failure effect and
probability occurrence.

2. (Several) components-based model(s) (fault trees, block diagrams, etc) [1] are con-
structed (e.g. by using Fault Tree Analysis [2]). Complex undesired events are defined,
resolved into its immediate causes until the elementary events/causes are identified.

3. The prediction of the failure rates of the elementary events is usually based on
MIL-HDBK-217 [3], PRISM [4], RIAC 217Plus [5], or a similar model.

Both fault trees and block diagrams are based on a decomposition of a modeled sys-
tem to several independent logical subsystems (components). The dependability of the
system is based on dependabilities of the components. This hierarchical approach allows
dependability parameters of large and complex systems to be calculated easily.

1



1. Introduction

The main disadvantage of these components-based models is their inability to model
online (self-)repairing capabilities of the systems (hot-swap modular systems, reconfigur-
able FPGAs, etc.). State-based models (Markov chains, Petri nets, etc.) are able to
model these capabilities easily. The disadvantage of using Markov modeling techniques
is state-explosion leading to difficulties in construction, and consequently leading to the
inability to compute realistic values of dependability characteristics.

Therefore, the main aim of this thesis is to propose a simplified dependability model and
methods for easier dependability parameters computations. These models are state-based,
thus they are able to model (self-)repairing capabilities easily, and they can be used to cre-
ate hierarchical dependability model of a system, and consequently they allow dependabil-
ity parameters of large and complex systems to be calculated without the state-explosion
issues.

The simplification of a model (called reduction in this thesis) is introduced in the first
part of this thesis. The reduction is the key step allowing hierarchical dependability models
to be built.

The reduced models are inexact, thus the main disadvantage of the proposed method
is the inaccuracy of the resulting dependability parameters values in specific case systems.
This issue is not critical, if the inexact results are proven as pessimistic. In other words,
the real system must be no less safe than the system modeled by the inexact model(s).
The reduced models are pessimistic, thus the results can be used as the guaranteed values
of the calculated dependability parameters.

The hierarchical models using multiple linked models to reflect the structure of a system
are presented in the second part of this thesis. Multi-level hierarchy may be used to describe
each part of a heterogeneous structure independently. The hazard rates of the reduced
lowest-level models are used in higher-level models, and so on, until a top-level model is
also reduced and its hazard rate is used as the hazard rate of the whole system.

The proposed hierarchical models can be used to

◦ calculate the Safety Integrity Level (SIL) [6] and Mean Time To Failure (MTTF),

◦ determine, whether an event can be tolerated/omitted safely (its hazard rate is lower
than a limit value specified by SIL),

◦ calculate hazard rates of systems containing heterogeneous structures and various
types of possible faults.

Hierarchical models consisting of multiple small models

◦ are easier to read/understand,

◦ are easier to modify/manipulate,

◦ allow the exponential number of states of the model to be avoided, thus the depend-
ability parameters are calculated significantly faster.

The proposed reduction method is demonstrated on two types of case study systems.
The first type contains multiple (up to 17) identical dependable blocks configured as an

2



1.2. Contributions of the Thesis

N-modular redundant system (NMR). Models of the internal block redundancy used in the
study systems are used as dependability models of railway/subway interlocking equipment
used in Czech Republic. The total hazard rate of this system and SIL value is calculated
in this case. This type is also used to present the ability of the proposed reduction to trade
off between accuracy and calculation time.

The first type of case study systems is also used to present the main disadvantage of
the reduction – the inaccuracy – and its solution – the partial reduction. The accuracy of
the partial reduction is significantly improved, but the system has to be replaced/repaired
before a prescribed operation time (e.g. a period of a preventive maintenance) is reached.
Due to the improvement of accuracy, the SIL classification can be significantly increased
(by 2 or 3 levels, when the warranty period is ca. 20 or ca. 15 years respectively in the
presented case studies).

The second type is a model of an actual modular system with hot-swap repair capability
that utilizes the reduction of a three-level heterogeneous dependability model based on
Markov chains and reliability block diagrams to calculate MTTF.

1.2 Contributions of the Thesis

The main aim of this thesis is to propose simplified dependability models and meth-
ods for easier dependability parameters computations. These models are able to model
(self-)repairing capabilities and they can be used to create a hierarchical dependability
model of a system, thus they allow dependability parameters of large and complex systems
to be calculated without the state-explosion issues.

The method is especially designed to

◦ allow the heterogeneous hierarchical dependability models to be built. Heterogeneous
models allow multiple types of dependability models to be used in a model of a
complex system.

◦ allow the dependability parameters calculations to be performed significantly faster
– even in the case of large complex systems, where the results of classical detailed
models are practically unreachable due to state explosion.

◦ provide pessimistic solution, i.e. the real system must be no less safe than the system
modeled by the proposed models. The solution can be strictly or partially pessimistic.
The partially pessimistic solution leads to the guaranteed levels of dependability
parameters at the expense of the reduced maximal allowed operational time of the
system.

The models and methods are experimentally verified on complex systems based on real
models of the railway interlocking equipment.

3



1. Introduction

1.3 Structure of the Thesis

The thesis is organized into 5 chapters as follows:

1. Introduction: Describes the motivation behind the efforts together with the goals.
There is also a list of contributions of this dissertation thesis.

2. Background and State-of-the-Art: Provides the theoretical background, surveys re-
lated dependability models and introduces the fault classification system.

3. Dependability Model Reduction Method: Describes the reduction method of absorbing
Markov chains, the hierarchical models and their reduction.

4. Case Studies and Their Results’ Comparisons: Contains an experimental verification
of the presented method. Three hierarchical models based on real models of the
railway interlocking equipment are used.

5. Conclusions: Summarizes the results of the research, suggests possible topics for
further research, and concludes the thesis.

4



Chapter 2

Background and State-of-the-Art

2.1 The Threats to Dependability: Failures, Errors, Faults

This section is abstracted from Basic Concepts and Taxonomy of Dependable and Secure
Computing [7].

2.1.1 Failures, Errors, Faults

Correct service is delivered when the service implements the system function. A service
failure, often abbreviated to failure, is an event that occurs when the delivered service
deviates from correct service. A service failure is a transition from correct service to
incorrect service, i.e., to not implementing the system function.

The period of delivery of incorrect service is a service outage. The transition from
incorrect service to correct service is a service restoration. The deviation from correct
service may assume different forms that are called service failure modes and are ranked
according to failure severities.

Since a service is a sequence of the system’s external states, a service failure means that
at least one (or more) external state of the system deviates from the correct service state.
The deviation is called an error. The adjudged or hypothesized cause of an error is called
a fault.

It is important to note that many errors do not reach the system’s external state and
cause a failure. A fault is active when it causes an error, otherwise it is dormant.

When the functional specification of a system includes a set of several functions, the
failure of one or more of the services implementing the functions may leave the system in
a degraded mode that still offers a subset of needed services to the user. The specification
may identify several such modes, e.g., slow service, limited service, emergency service,
etc. Here, we say that the system has suffered a partial failure of its functionality or
performance.

Alternative definitions of failure, malfunction, faults, etc., used by International Elec-
trotechnical Commission can be found in [8].

5



2. Background and State-of-the-Art

Figure 2.1: The elementary fault classes (taken from [7]).

2.1.2 Fault Classification

All faults that may affect a system during its life are classified according to eight basic
viewpoints, leading to the elementary fault classes, as shown in Fig. 2.1.

If all combinations of the eight elementary fault classes were possible, there would be
256 different combined fault classes. However, not all criteria are applicable to all fault
classes; for example, natural faults cannot be classified by objective, intent, and capability.
31 likely combinations are identified in [7].

The combined fault classes belong to three major partially overlapping groupings:

6



2.2. Dependability Basics

◦ Development faults that include all fault classes occurring during development.

◦ Physical faults that include all fault classes that affect hardware.

◦ Interaction faults that include all external faults.

Knowledge of all possible fault classes allows the user to decide which classes should be
included in a dependability and security specification.

The models used in this thesis are focused on natural operational-time faults (both
permanent and transient), but they are able to handle any type of fault.

Natural faults are physical (hardware) faults that are caused by natural phenomena
without human participation. Production defects are natural faults that originate during
development. During operation the natural faults are either internal, due to natural pro-
cesses that cause physical deterioration, or external, due to natural processes that originate
outside the system boundaries and cause physical interference by penetrating the hardware
boundary of the system (radiation, etc.) or by entering via use interfaces (power transients,
noisy input lines, etc.).

More details about the other fault classes (malicious and non-malicious human-made
faults, development faults, etc.) can be found in [7].

2.2 Dependability Basics

Electronic reliability design handbook MIL-HDBK-338B [1] introduces the basic depend-
ability terms clearly and comprehensibly. Therefore, Sections 2.2.1 – 2.2.3, and 2.2.5 are
almost literally taken from this handbook.

Another well-written summary of reliability theory including illustrative examples and
case studies can be found in [9]. Practical-oriented summary of reliability engineering
including mechanical components systems, software systems, etc., can be found in [10].

2.2.1 Reliability

Reliability is defined in terms of probability, probabilistic parameters such as random
variables, density functions, and distribution functions are utilized in the development
of reliability theory. Reliability studies are concerned with both discrete and continuous
random variables. An example of a discrete variable is the number of failures in a given
interval of time. Examples of continuous random variables are the time from system
installation to failure and the time between successive system failures.

The cumulative (failure) distribution function F (t) is defined as the probability in a
random trial that the random variable is not greater than t, or

F (t) =

∫ t

−∞
f(t) dt

where f(t) is the probability density function of the random variable, time to failure.
F (t) is termed the “unreliability function” when speaking of failure. It can be thought

7



2. Background and State-of-the-Art

of as representing the probability of failure prior to some time t. If the random variable
is discrete, the integral is replaced by a summation. Since F (t) is zero until t = 0, the
integration can be from zero to t.

The reliability function, R(t), or the probability of a device not failing prior to some
time t, is given by

R(t) = 1− F (t) =

∫ ∞
t

f(t) dt

The rate at which failures occur in the interval t1 to t2, the failure rate, λ(t), is defined
as the ratio of probability that failure occurs in the interval, given that it has not occurred
prior to t1, the start of the interval, divided by the interval length. Thus,

λ(t) =
R(t)−R(t+ ∆t)

∆t R(t)

where t = t1 and t2 = t + ∆t. The hazard rate, h(t), or instantaneous failure rate, is
defined as the limit of the failure rate as the interval length approaches zero, or

h(t) =
f(t)

R(t)

Only constant hazard rates are used in models presented in this thesis, thus a hazard
rate will be denoted as λ.

Mean time to failure is nothing more than the expected value of time to failure and is
derived from basic statistical theory as follows:

MTTF =

∫ ∞
0

t f(t) dt =

∫ ∞
0

R(t) dt

2.2.2 Maintainability

In reliability, one is concerned with designing a system to last as long as possible without
failure; in maintainability, the emphasis is on designing a system so that a failure can be
repaired as quickly as possible. The combination of high reliability and high maintainability
results in high system availability (see Section 2.2.3).

Maintainability is a measure, how easily and rapidly a system or equipment can be
restored to operational status following a failure. It depends on parameters given by the
function of the equipment design and installation, personnel availability in the required
skill levels, adequacy of maintenance procedures and test equipment, and the physical
environment under which maintenance is performed.

As with reliability, maintainability parameters are also probabilistic and are analyzed
by the use of continuous and discrete random variables, probabilistic parameters, and
statistical distributions. An example of a discrete maintainability parameter is the number
of maintenance actions completed in some time t, whereas an example of a continuous
maintainability parameter is the time to complete a maintenance action.
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2.2. Dependability Basics

2.2.3 Availability

The concept of availability was originally developed for repairable systems that are required
to operate continuously, and are at any random point in time either operating or “down”
because of failure and are being worked upon so as to restore their operation in minimum
time. In this original concept a system is considered to be in only two possible states
– operating or in repair – and availability is defined as the probability that a system is
operating at any random point in time t, when subject to a sequence of “up” and “down”
cycles which constitute an alternating renewal process. In other words, availability is a
combination of reliability and maintainability parameters.

System availability can be defined in the following ways:

◦ Instantaneous Availability A(t) – Probability that a system will be available for use
at any random time t after the start of operation.

◦ Mission Availability Am(t2 − t1) – The proportion of time in an interval (t2 − t1),
during a mission, when a system is available for use, or

Am(t2 − t1) =
1

t2 − t1

∫ t2

t1

A(t) dt

This is also called average availability AAV .

◦ Steady State of Availability AS(t) – Probability a system will be available for use at
a point in time t after the start of system operation as t becomes very large, or as
t→∞, or

AS = lim
t→∞

A(t)

2.2.4 Safety

Safety is the state of being “safe”, the condition of being protected against physical, social,
spiritual, financial, political, emotional, occupational, psychological, educational or other
types or consequences of failure, damage, error, accidents, harm or any other event which
could be considered non-desirable [11]. Safety can also be defined to be the control of
recognized hazards to achieve an acceptable level of risk. This can take the form of being
protected from the event or from exposure to something that causes health or economical
losses. It can include protection of people or of possessions.

A target level of risk reduction in safety-critical systems (e.g. railway station signaling
and interlocking equipment, automotive systems, etc.) is specified by SIL [6].

The value of SIL is calculated using the hazard rate of the system [6] and Table 2.1.
E.g. the system classified as SIL4 is the only one safe enough to be used in the most critical
applications, where hundreds or thousands of lives may be endangered by its failure.

9



2. Background and State-of-the-Art

Table 2.1: SIL value calculation table.

Hazard rate SIL

λ [h−1] [−]

10−5 − 10−6 1

10−6 − 10−7 2

10−7 − 10−8 3

10−8 − 10−9 4

2.2.5 Dependability Oriented Continuous Probability Distributions

Electronic reliability design handbook MIL-HDBK-338B [1] introduces several commonly
used continuous distributions:

◦ Exponential – This is probably the most important distribution in reliability work
and is used almost exclusively for reliability prediction of electronic equipment [3].
It describes the situation wherein the hazard rate is constant. The main advantages:

– A single, easily estimated parameter (λ).

– Has fairly wide applicability.

– Is additive – that is, the sum of a number of independent exponentially distrib-
uted variables is exponentially distributed.

◦ Gamma – The gamma distribution is used in reliability analysis for cases where
partial failures can exist, i.e. when a given number of partial failures must occur
before an item fails (e.g. redundant systems) or the time to second failure when the
time to failure is exponentially distributed.

◦ Weibull – The Weibull distribution is particularly useful in reliability work since it
is a general distribution which, by adjustment of the distribution parameters, can be
made to model a wide range of life distribution characteristics of different classes of
engineered items.

◦ Normal (Gaussian) – There are two principal applications of the normal distribution
to reliability. One application deals with the analysis of items which exhibit failure
due to wear, such as mechanical devices. Another application is in the analysis of
manufactured items and their ability to meet specifications. No two parts made to
the same specification are exactly alike. The variability of parts leads to a variability
in systems composed of those parts. The design must take this part variability into
account, otherwise the system may not meet the specification requirement due to the
combined effect of part variability. Another aspect of this application is in quality
control procedures.

◦ Lognormal – The lognormal distribution is the distribution of a random variable
whose natural logarithm is distributed normally; in other words, it is the normal
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distribution with ln(t) as the variate. This is the most commonly used distribution
in maintainability analysis. It applies to most maintenance tasks and repair actions
comprised of several subsidiary tasks of unequal frequency and time duration.

Table shown in Fig. 2.2 taken from [1] shows the shapes of failure density, reliability
and failure (hazard) rate functions for these distributions.

More details about probability distributions (both continuous and discrete), related
probability functions, and probability theory can be found in [12].

2.3 Common Dependability Models

2.3.1 Markov Chains

Electronic reliability design handbook MIL-HDBK-338B [1] introduces Markov chain (MC)
as follows:

Markov modeling processes are stochastic processes using random variables to describe
the states of the process, transition probabilities for changes of state and time or event
parameters for measuring the process. A stochastic process is said to be a Markov property
if the conditional probability of any future event, given any past events and the present
state, is independent of the past events and depends only on the present state of the process.
The advantages for using Markov modeling methods include the flexibility in expressing
dynamic system behavior. These types of behavior include:

◦ Complex repair – Situations consisting of repairs of either individual components or
groups of components or partial repair of components.

◦ Standby spares – Standby conditions include hot, warm and cold spares. Hot spares
are power-on units with identical stresses as apply to the active units, where warm
spares have power-on but have lower stresses. Cold spares are power-off units.

◦ Sequence dependency – This behavior includes: functional dependency in which the
failure of one component can cause the unavailability of other components; priority
dependency in which behavior will differ depending on whether an event occurs before
or after another; and sequence enforcement in which it is impossible for certain events
to occur before others have occurred.

◦ Imperfect fault coverage – Imperfect fault coverage conditions arise when a dynamic
reconfiguration process that is invoked in response to a fault or component failure
has a chance of not being successful leading to system failure.

The disadvantages of using Markov modeling techniques include state-explosion leading
to difficulties in construction, and consequently leading to the inability to compute realistic
values of dependability characteristics. The state-explosion problem emerges especially
when multiple models of the subsystems are composed to one model of the whole system.
The composition is made by the Cartesian product of the states of all MCs composed,
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Figure 2.2: Shapes of failure density, reliability and failure (hazard) rate functions for
commonly used continuous distributions (taken from [1]).
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Figure 2.3: Illustrative example of absorbing Markov chain.

thus the number of the states of the MC of the system grows exponentially with increasing
the number of models of the subsystems [9]. Solving models with thousands of states can
challenge the computer resources available.

The composition using the Cartesian product can be avoided using a hierarchical com-
position of MCs. A hierarchical composition has been presented in [13]. This composition
allows calculation of hazard rates of large systems using several MCs. The method uses
equivalent models with an identical steady-state availability, but it is not concerned with
the behavior during the operational time. This method cannot be applied on absorb-
ing MCs (MCs containing states that, once entered, cannot be left), because steady-state
availability of any absorbing MC is zero.

The illustrative example of an absorbing MC is shown in Fig. 2.3.

A system of differential equations is used to calculate the failure distribution function
of the system modeled by the MC. The system contains one differential equation per state.
The equation is constructed using the following template:

p′State(t) =
∑
i

(pSource State i λHazard i)−
∑
j

(pState λHazard j)

where i are indexes of the arcs leading to the State, pSource State i are the states, where
the arcs origin, and j are indexes of the arcs leading from the State.

The template applied on the state S2 of the illustrative example shown in Fig. 2.3
contain two arcs leading to the state S2 and two arcs leading from the state S2 :

p′S2(t) = (pS1 λb + pS0 λe)− (pS2 λi + pS2 λc)
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2. Background and State-of-the-Art

The equations of all states of the illustrative example follow:

p′S0(t) = (pS3 λd + pS1 λg)− (pS0 λa + pS0 λe) (2.1)

p′S1(t) = pS0 λa − (pS1 λg + pS1 λb + pS1 λf + pS1 λh) (2.2)

p′S2(t) = (pS1 λb + pS0 λe)− (pS2 λi + pS2 λc) (2.3)

p′S3(t) = (pS2 λc + pS1 λf )− pS3 λd (2.4)

p′HazardE(t) = (pS1 λh + pS2 λi) (2.5)

The second part of the system of the differential equations are the initial conditions.
There is one initial condition per state. The initial probability of an initial state is 1, the
initial probabilities of the other states are 0.

The initial conditions of the illustrative example follow:

pS0(t) = 1 (2.6)

pS1(t) = 0 (2.7)

pS2(t) = 0 (2.8)

pS3(t) = 0 (2.9)

pHazardE(t) = 0 (2.10)

The complete system of the differential equations of the illustrative example contains
the equations (2.1)-(2.5) and the initial conditions (2.6)-(2.10).

The failure distribution function of the MC is the sum of probabilities of the hazard
states.

The illustrative example contains only one hazard state, thus the failure distribution
function F (t) is

F (t) = pHazardE(t)

2.3.2 Petri nets

Petri nets (PNs) are graphical and mathematical modeling tool applicable to many systems
[14], [15], [16].

As a graphical tool, Petri nets can be used as a visual-communication aid similar to
flow charts, block diagrams, and networks. In addition, tokens are used in these nets to
simulate the dynamic and concurrent activities of the systems. An illustrative example of
a Petri net is shown in Fig. 2.4.

As a mathematical tool, it is possible to set up state equations, algebraic equations, and
other mathematical models governing the behavior of the system. The formal definition of
a Petri net is a 5-tuple, PN = (P, T, F,W,M0) where:

P = {p1, p2, . . . , pm} is a finite set of places,
T = {t1, t2, . . . , tn} is a finite set of transitions,
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation),
W : F → {1, 2, 3, . . . } is a weight function,
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Figure 2.4: Illustrative example of Petri net (taken from [16]).

M0 : P → {0, 1, 2, 3, . . . } is the initial marking,

P ∩ T = ∅ and P ∪ T 6= ∅.
A Petri net structure N = (P, T, F,W ) without any specific initial marking is denoted

by N .

A Petri net with the given initial marking is denoted by (N,M0).

The concept of time is not explicitly given in the original concept of the Petri net.
However, for the performance evaluation of systems, it is necessary and useful to introduce
time delay associated with transitions and/or places in their net models [16]. Such Petri
net model is known as a (deterministic) timed net if the delays are deterministically given,
or as a stochastic net (SPN) if the delays are probabilistically specified.

Generalized stochastic net (GSPN) [17] have two different classes of transitions: imme-
diate transitions and (stochastic) timed transitions. Once enabled, immediate transitions
fire in zero time. Timed transitions fire after a random, exponentially distributed enabling
time as in the case of SPNs.

(G)SPNs have similar properties as MCs. A complex system may be modeled by a
simple SPN, but the state explosion will occur in reliability function calculation, too.

(Finite size) MCs and (bounded) GSPNs can be mutually transformed. The following
brief description is taken from [A.5]. The more detailed description can be found in [17].

The MC-to-SPN transformation is direct:
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2. Background and State-of-the-Art

◦ Convert every Markov chain state into SPN place

◦ Convert every Markov chain edge into SPN transition (keep intensity rates)

◦ Add one token to the Petri net place created from the default state of the MC

The SPN-to-MC transformation is not as simple as the previous one. SPNs may have
more than one token and they may contain transitions with multiple arcs. These two facts
cannot be included in Markov chains. The transformation is based on the reachability
graph of SPN. The reachability graph condenses each marking of SPN to one state and
eliminates transitions with multiple arcs.

This transformation is made as follows:

◦ Create reachability graph of SPN

◦ Convert every reachability graph state into Markov chain state

◦ Convert every reachability graph edge into Markov chain edge (keep rates)

The GSPN-to-MC transformation is the most complicated one. It is based on the
reachability graph of GSPN, too. The reachability graph of GSPN contains vanishing
states (states with at least one immediate transition enabled), that cannot be included in
Markov chains. The vanishing states of reachability graph must be removed. All edges
leading to a removed vanishing state have to be connected to all edges starting from a
removed vanishing state. The rates of edges have to be fixed as it is illustrated in Fig. 2.5.

The main issue of the (G)SPN-to-MC transformations is creating the reachability
graph. The algorithm used to generate a reachability graph of a general (G)SPN is
EXPSPACE-hard [18]. However, the algorithm generating specific cases of reachability
graphs of (G)SPNs is NP-complete (live and safe free-choice PNs [19]) or even P (live
t-systems [20]). This issue must be taken into account, if (G)SPN would be used in de-
pendability modeling, the calculations of the dependability parameters using large and/or
improper models can become computationally impossible in practice otherwise.

Despite this issue, (G)SPNs are still used as dependability models. A methodology to
construct dependability models using GSPNs is described in [21], including an algorithm
able to convert an FT into equivalent GSPN. (G)SPNs are used to model and analyze
concurrent programs and architectures in [22].

2.3.3 Reliability Block Diagrams

Reliability block diagram (RBD) ([1], [23]) is a graphical analysis technique, which ex-
presses the concerned system as connections of a number of components in accordance
with their logical relation of reliability. Series connections represent logic AND of compon-
ents, and parallel connections represent logic OR, while combinations of series and parallel
connections represent voting logic. From the leftmost node to the rightmost node, there
are several paths that are the conditions for successful operation of a system. If a compon-
ent fails, the corresponding connection will be cut off. As failures of components occur,
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Figure 2.5: Illustrative examples showing the removal of the vanishing states of reachability
graph of GPSN.
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Figure 2.6: Illustrative example of reliability block diagram.

a system keeps operating successfully until no valid path from leftmost node to rightmost
node can be made up of available connections. Then, the probability of failure of a system
can be calculated according to probabilistic principles. The illustrative example of RBD
is shown in Fig. 2.6.

The failure distribution function of a system modeled by the RBD is a combination of
series and parallel functions, where

FSeries(t) = 1−
∏
i

(1− Fi(t))

FParallel(t) =
∏
i

(Fi(t))

The failure distribution of the illustrative example shown in Fig. 2.6 follows:

F12(t) = F1(t)F2(t)

F34(t) = F3(t)F4(t)

F (t) = 1− ((1− F12(t)) (1− F34(t)))

2.3.4 Fault Trees

This section is taken from Fault Tree Handbook with Aerospace Applications [2].
The Fault Tree (FT) is a graphic model of various parallel and sequential combinations

of faults that will result in the occurrence of the predefined undesired event. The faults can
be events that are associated with component hardware failures, human errors, software
errors, or any other pertinent events which can lead to the undesired event. A fault tree
thus depicts the logical interrelationships of basic events that lead to the undesired event,
the top event of the fault tree.

It is important to understand that a fault tree is not a model of all possible system
failures or all possible causes for system failure. A fault tree is tailored to its top event that
corresponds to some particular system failure mode, and the fault tree thus includes only
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Figure 2.7: Illustrative example of fault tree.

those faults that contribute to this top event. Moreover, these faults are not exhaustive –
they cover only the faults that are assessed to be realistic by the analyst.

It is also important to point out that a fault tree is not in itself a quantitative model. It
is a qualitative model that can be evaluated quantitatively and it often is. This qualitative
aspect, of course, is true for virtually all varieties of system models. The fact that a fault
tree is a particularly convenient model to quantify does not change the qualitative nature
of the model itself.

Intrinsic to a fault tree is the concept that an outcome is a binary event i.e., to either
success or failure. A fault tree is composed of a complex of entities known as “gates”
that serve to permit or inhibit the passage of fault logic up the tree. The gates show the
relationships of events needed for the occurrence of a “higher” event. The “higher” event
is the output of the gate, the “lower” events are the “inputs” to the gate. The gate symbol
denotes the type of relationship of the input events required for the output event. Fig. 2.7
shows a simple fault tree containing four basic events and two gates. More types of events,
gates, and other symbols can be found in [2].

2.3.4.1 Fault Tree Analysis

Fault Tree Analysis (FTA) is an application of deductive logic to produce an FT. Various
failure modes that can contribute to a specified undesirable event are organized deductively
and represented graphically. First the top undesired event is defined and drawn. Below
this, secondary undesired events are drawn. These secondary undesired events include the
potential hazards and failures that are immediate causes of the top event. Below each
of these subevents are drawn second-level events, which are the immediate causes of the
subevents. The process is continued until basic events are reached (often called elementary
faults). Since the diagram branches out and there are more events at each lower level, it
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resembles an inverted tree. The treelike structure of the diagram illustrates the various
critical paths of subevents leading to the occurrence of the top undesired event.

Paper presented in [24] describes fault tree construction using FTA primary and sec-
ondary failure techniques as follows: A fault tree constructed using the primary failure
technique is developed only to the point, where identifiable primary events will directly
produce the required fault events. Construction using the secondary failure technique
does not stop, when it reaches the component level. It continues until the effect on each
component, of the possible failure of all related components, is identified.

2.3.4.2 Dynamic Fault Trees

Dynamic Fault Trees (DFTs) [2], [25], [26] contain several special types of gates that
make them easier to model systems where the order in which events occur affects the
outcome. These special gates are part of the DFT methodology that has been developed
specifically for the analysis of computer-based systems. The concept of fault coverage
is also introduced, which is used in the fault tolerant computing community to model a
phenomenon similar to common-cause failures.

◦ Priority AND gate – The event is propagated to the output, if the input events come
in the specified order.

◦ Functional dependency (FDEP) gate – Contains a single trigger event and several
dependent basic events. The dependent basic events are functionally dependent on
the trigger event. When the trigger event occurs, the dependent basic events are
forced to occur (fail). The separate occurrence of any of the dependent basic events
has no effect on the trigger event.

◦ Spare gate – The inputs to the spare gate are all basic events and are ordered. The
first (usually drawn as leftmost) input is the primary event, while the second and
subsequent inputs represent spares. The spare gate models the sequential activation
of the spares: the first spare is activated when the primary fails; the second when the
first fails, etc. The spare gate has one output that becomes true after all the input
events occur.

◦ Coverage model “gate” [27] – This “gate” contains another model(s) – e.g. FT or
RBD – that is used to calculate several possible outcomes using the occurrence of
the fault as the entry point to the model. There are three possible outcomes –
exits R, C, and S. The R or C exit is reached when a fault is covered, the S exit
is reached when a fault is uncovered. Exit R from the coverage model represents
transient restoration, the correct recognition of and recovery from a transient fault.
Exit C from the coverage model represents permanent coverage, the determination of
the permanent nature of the fault, and the successful isolation and (logical) removal
of the faulty component. Exit S from the coverage model represents single point
failure, in that a single fault causes the system to fail, generally when an undetected
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error propagates through the system, or if the faulty unit cannot be isolated and the
system cannot be reconfigured.

These advanced gates can overcome the main disadvantages of the regular FTs, but
one issue still remains – (in)ability to model a system with complex repairs (e.g. reconfig-
urable FPGAs, hot-swap modular systems etc.) performed during its operational period.
Coverage model “gate” can contain another model able to express a repair capabilities of
the system, but this model must be able to provide a constant hazard rate for all possible
outcomes.

2.3.5 Dependability Models – Summary

2.3.5.1 Component-based vs State-based Models

The component-based models (DFTs, RBDs, etc.) are greatly effective to model large
complex systems easily thanks to their modularity [2]. Their disadvantage is an (in)ability
to model a system with complex repairs performed during its operational period. Coverage
model “gates” of DFTs are able to express repair capabilities of the system, but they must
contain another (state-based) model able to provide constant hazard rates.

The state-based models (MCs, GSPNs, etc.) can be used to model complex repairs,
standby spares, sequence dependency, and imperfect fault coverage naturally. The disad-
vantages of using these models include state size and model construction. The number of
the states of these models grows exponentially with increasing number of models of the
subsystems. Solving models with thousands of states can challenge the computer resources
available.

2.3.5.2 Composition of Component-based and State-based Models

There are several possibilities to compose component-based and state-based models:

◦ Coverage model “gate” of DFTs can contain state-based model able to express repair
capabilities of the system, but this model must be able to provide constant hazard
rate for all possible outcomes [2].

◦ A decomposition of DFT to several submodels has been presented in [28]. The
method also allows state-based models to be used as the elementary events/blocks of
the DFT, but it does not provide a procedure how to calculate a constant hazard rate
from the state-based model, even though the constant hazard rate of the elementary
event/block is necessary.

◦ The resulting hazard rate of the component-based model can be used as the fault
rate of the state-based model easily. Constant hazard rate is required for analytical
solution of the model, the simulation-based solution has to be used otherwise. The
simulation-based solution may be faster than the analytical one, but its result is
always an approximation of the actual solution. Moreover, there is no guarantee that
the simulation-based solution is pessimistic.
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Chapter 3

Dependability Model Reduction Method

A method allowing dependability models to be simplified for easier dependability para-
meters computations is proposed in this thesis. The method has been introduced in [A.1],
[A.7], and [A.8], the improvements of calculation time and accuracy has been introduced
in [A.2] and the draft of the final version is accepted (major revision is required) in [A.4].

The simplified models are created using the approximation of a general absorbing MC
by a simple one – the reduction – made by merging all non-hazard states of a general MC
into a single state that is called Operational in this thesis (see Fig. 3.1). The merge is
feasible, because there is no need to distinguish among the non-hazard states in the hazard
rate calculation. The reduced model contains a new hazard rate λHazard – the hazard rate
substituting all hazard rates in the exact model.

3.1 Reduction Algorithm

The hazard rate of the reduced model is calculated as a pessimistic value meeting the
condition called the main requirement in this thesis. The main requirement is met
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Figure 3.1: Illustrative example of dependability model reduction.
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when
∀t : FR(t) ≥ FE(t)

where FE(t) is the failure distribution function of the non-reduced (exact) model and FR(t)
is the failure distribution function of the reduced model – the solution of the following
system of differential equations:

p′Operational(t) = −pOperational(t)λHazard
p′Hazard(t) = pOperational(t)λHazard

pOperational(0) = 1

pHazard(0) = 0

FR(t) = pHazard(t) = 1− e(−λHazard . t)

The reduction always leads to the same reduced model, thus these equations and the
function FR(t) can be used for reduction of any model.

The drawback of the reduction is the loss of accuracy, because FE(t) can have any
shape in general, while FR(t) has always an exponential shape, thus they are not equal.

There are two possibilities to perform the reduction:

◦ Full reduction – The main requirement is met strictly. This type of reduction leads
to a strictly pessimistic solution, but it may be very inaccurate.

◦ Partial reduction – The main requirement is met only until the specified limit time
value (tlimit). This way leads to a more accurate solution, but it can be used only
when it is guaranteed that the preventive maintenance of the modeled system is
performed (the system is replaced/repaired) before tlimit is reached. Three different
ways to set the limit time value tlimit (the period of the preventive maintenance) have
been introduced in [A.3]:

– Time-limited reduction – uses tlimit itself

– Probability-limited reduction – uses a plimit probability

– Hazard-rate-limited reduction – uses a λlimit hazard rate

The full reduction is made by the algorithm shown below, the algorithm of the partial
reduction is similar, but it uses FE(t) limited to interval t ∈ [0; tlimit] (see the detailed
description in Section 3.2).

The reduction process is:

1. Calculate the failure distribution function FE(t) by solving the system of differential
equations corresponding to the exact model.

The calculation of FE(t) is stopped, when the value of this function is differs from 1
by ε, where ε is extremely low value (10−10 is used in this thesis). This will allow us
to limit FE(t) to interval [0, tε], where tε is calculated as FE(tε) = 1− ε.
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FE(t) is sampled before the next step is performed. The sampling decreases the
reduction time, but it may cause more inaccurate solutions. Samples are specified
as pairs of values [t, FE(t)]. The number of samples is specified by the Samples per
decade parameter. The number of samples affects both the speed of the reduction
and solution accuracy (see Section 4.4 for details).

2. Find the estimated value λHazard Est.

The main goal of this step is to make a fast estimation of the hazard rate that will
be used as the starting point for the next step. This value needs not meet the main
requirement, but the better is the estimation, the faster will be the next step.

A new estimated failure distribution function FEst(t) = 1− e(−λHazard Est . t) is derived
in this step. This function is designed to intersect the failure distribution function
FE(t) from the previous step at the time tε.

FEst(tε) = FE(tε) = 1− ε

Several estimated failure distribution functions can be used to obtain more precise
estimation. λHazard Est is calculated from the most pessimistic (the highest) function.

3. Make correction of λHazard Est to satisfy the main requirement.

The goal of the correction is to find a valid value of λHazard – the lowest hazard
rate whose FR(t) meets the main requirement with the required accuracy. The main
requirement is tested on the sampled functions FE(t) and FR(t).

The search is based on the bisection method (a method for iteratively converging to
a solution which is known to lie inside some interval) searching for a point, where
the λHazard is valid (its FR(t) meets the main requirement). The maximal differ-
ence between FR(t) and FE(t) (the key value to test the main requirement) depends
monotonically on the λHazard, thus the bisection method can be used.

The corrected hazard rate λHazard is calculated as the estimated value λHazard Est
multiplied by result value calculated using the algorithm shown in Fig 3.2.

There are three main parts (see the flowchart shown in Fig. 3.2):

a) find and verify the endpoints of the interval that will be bisected (start and
end) – two loops.

◦ start is an invalid hazard rate.

◦ end is a valid hazard rate.

b) Perform the bisection until the required accuracy given by minStep is met.

c) Verify the result.

The flowchart shown in Fig. 3.2 contains verify value subroutine checking whether
all samples of FR(t) using selected value as hazard rate are greater than all samples
of FE(t) or not. In other words, it checks whether the main requirement is met.
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3. Dependability Model Reduction Method

Begin

start=1
verify start

verification passed?

-

end=start
start=start/2
verify start

+

step=end-start
sign=-1

result=end

step=step/2
result=result+sign*step

verify result

verification passed? sign=-1sign=+1

step > minStep?

result=result+step

Return

verification passed?

+--

-

+

+

end=2*start
verify end

verification passed?

+

start=end
end=2*end
verify end

-

Figure 3.2: Correction algorithm flowchart.
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3.2. Partial Reduction Algorithm

There are two parameters that determine the trade-off between reduction accuracy and
reduction time (see Section 4.4 for details):

◦ minStep – this parameter determines the end of the bisection loop of the correction.
The error difference between minimal (ideal) hazard rate of the reduced model and
λHazard calculated by the reduction that is caused by non-zero minStep will be lower
than minStep. minStep is expressed as a percentage of the estimated value λHazard Est.

◦ Samples per decade – this parameter determines the number of samples that will
be tested for the main requirement fulfillment. It specifies the number of samples
per each time decade measured in hours (i.e. in interval 〈10n, 10n+1) [h]). The more
samples are used, the better accuracy is achieved.

3.2 Partial Reduction Algorithm

Three ways to perform the partial reduction have been introduced in the previous section:

1. Time-limited reduction – uses tlimit

This type of the partial reduction is very similar to the full one. The tlimit value is used
instead of tε. The estimated function is designed to intersect the failure distribution
function FE(t) at the time tlimit. The main requirement in the verification steps is
checked in interval [0, tlimit] only.

2. Probability-limited reduction – uses a plimit probability

Probability-limited reduction is time-limited reduction using tlimit p limit value.
tlimit p value is calculated as FE(tlimit p) = plimit.

The sampled version of FE(t) may not be defined in time tlevel p, because the samples
are discrete, thus the time tlevel p may lay between two samples. If this situation
happens, the closest sample beyond this value is used as the limit value to guarantee
the validity of the main requirement in time tlevel p.

3. Hazard-rate-limited reduction – uses a λlimit hazard rate

The last type of partial reduction simply uses a λlimit as a result. The limit value of
the main requirement tlimit h is calculated as FE(tlimit h) = 1− e−λlimit . tlimit h .

The time tlevel h may lay between two samples of FE(t). If this situation happens,
the closest sample before this value is used as the limit, because that sample is the
last one with the main requirement met.

3.3 Reduction Illustrative Example

The example is based on N-modular Redundancy (NMR) applied on 17 identical blocks
and a voter. This voter is able to compare all outputs of the blocks. It uses majority voting
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3. Dependability Model Reduction Method

Fault_Free Fail_1 Hazard
E

... Fail_8
16 λ17 λ 10 λ 9 λ

Figure 3.3: Dependability model of 17-modular redundant system.

to produce a single output. If less than half of the blocks fail, the voter is able to produce
correct output. If more than half of the blocks fail, the voter will produce an incorrect
output – this situation is considered as a hazard state. The erroneous blocks cannot be
identified, thus there is no restoration/repair possibility.

Exact Dependability Model

The model shown in Fig. 3.3 is used to calculate the exact model failure distribution
function of a generic NMR system. The NMR system containing 17 blocks will contain 8
transient states.

Dependability Model Reduction

The reduced model of the NMR block is the same as shown in the right part of the
illustrative example in Fig. 3.1.

The steps of reduction correspond to the algorithm described in Section 3.1. The
reduction parameters values are:

λ = 10−5 [h−1]

minStep = 0.1%

Samples per decade = 100

Calculate the failure distribution function FE(t) by solving the system of differential equa-
tions corresponding to the exact model.

The system of differential equations describing the dependability model of NMR con-
taining 17 blocks is used for the calculation:

p′Fault Free(t) = − pFault Free(t) 17λ

p′Fail 1(t) = pFault Free(t) 17λ− pFail 1(t) 16λ

p′Fail 2(t) = pFail 1(t) 16λ− pFail 2(t) 15λ

. . .

p′Fail 8(t) = pFail 7(t) 10λ− pFail 8(t) 9λ

p′HazardE(t) = pFail 8(t) 9λ

pFault Free(0) = 1

pFail 1(0) = pFail 2(0) = · · · = pFail 8(0) = pHazardE(0) = 0

Find an estimated value λHazard Est
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3.3. Reduction Illustrative Example

Table 3.1: The values of levels, times, when the exact function FE(t) crosses these levels,
and the hazard rates λHazard Est of the reduction illustrative example system.

i IDi tcross [hours] FE(tcross) [−] λHazard Est [×10−6 h−1]

1 212 128.8 0.379 1.884× 10−18

2 341 2,512 0.612 28.73× 10−9

3 423 16,596 0.759 0.0206

4 475 54,954 0.852 5.426

5 507 114,815 0.910 25.03

6 528 186,209 0.947 42.20

7 541 251,189 0.970 52.20

8 549 301,995 0.985 57.75

9 554 338,844 0.994 60.92

10 557 363,078 1− ε 62.72 1)

1) The most pessimistic hazard rate value that is used as the estimated value
in the correction step.

10 estimated failure distribution functions will be used in this example. Their intersec-
tions with the exact failure distribution function are given by

IDi =
⌈(

1.01− 100−(
i
10

)
)
. IDε

⌉
, where i = 1 . . . 10 (3.1)

ID is the number of the sample. The sample IDε contains a pair [tε, FE(tε)].

This non-linear distribution is based on the experimental observations of failure distri-
bution functions of exact dependability models. The observations indicate that the most
pessimistic estimated failure distribution function intersects FE(t) in time close to tε in
most cases. All values of the samples (ID, time, and the exact function FE(t) value), and
the hazard rates λHazard Est of the estimated functions are shown in Table 3.1.

All 10 time intersection levels and estimations are shown in Fig. 3.4. The horizontal
axis represents the time of operation measured in hours, the vertical axis represents the
failure distribution function values. The black long-dashed line represents the exact model
failure distribution function, the green line represents the most pessimistic estimated failure
distribution function that is used in the correction step, and the red short-dashed lines
represent the other estimated failure distribution functions. The horizontal and vertical
lines show the intersections of the estimated and exact model failure distribution functions.
The exact model failure distribution function is greater than the reduced model failure
distribution function (i.e. the main requirement is not met) beyond these intersections.

Make correction of λHazard Est to satisfy the main requirement.
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Figure 3.4: Failure distribution function of the exact model (FE(t)) and estimated functions
intersecting FE(t) at predefined time levels.

Table 3.2: The progress of the values of start and end variables during the first two iteration
loops of the correction algorithm.

Loop Iteration Start value End value Verification result

1 1 1 – Start passed

2 1 1 2 End failed

2 2 2 4 End passed

The actual algorithm would use the estimated value calculated in the previous step,
but we will use the sample ID5 taken from Table 3.1 to illustrate all parts (loops) of the
correction algorithm (see the flowchart shown in Fig. 3.2 in Section 3.1).

The progress of the values of start and end variables during the first two iteration loops
of the correction algorithm is shown in Table 3.2. As you can see, the values of start and
end have been calculated in three steps and the value of result will be between 2 and 4 in
this case.

The progress of the values of result and step variables during the main iteration loop
of the correction algorithm is shown in Table 3.3. As you can see, the iteration runs while
the value of step is not lower than minStep parameter (0.1%). If the verification passes,
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3.4. Partial Reduction Illustrative Example

Table 3.3: The progress of the internal variables during the first two iteration loops of the
correction algorithm.

Iteration Result Step Verification result

1 3 3.000 1 100 % True

2 5/2 2.500 1/2 50 % False

3 11/4 2.750 1/4 25 % True

4 21/8 2.625 1/8 12.5 % True

5 41/16 2.563 1/16 6.25 % True

6 81/32 2.531 1/32 3.13 % True

7 161/64 2.516 1/64 1.56 % True

8 321/128 2.508 1/128 0.78 % True

9 641/256 2.504 1/256 0.39 % False

10 1,283/512 2.506 1/512 0.20 % True

11 2,565/1,024 2.505 1/1,024 0.098 % 1) False 2)

– 2) 1,283/512 2.506 – – –

1) The current step is lower than the minStep – loop terminated.
2) The final verification of the loop failed, the last correction step is necessary.

the result value is decreased, if the verification fails, the result value is increased. The final
correction is necessary, because the verification of the last iteration fails.

The result of the correction is

λHazard = result× λHazard Est = 2.506× 25.03× 10−6 = 62.72× 10−6 [h−1]

The plot shown in Fig. 3.5 shows the exact model failure distribution function, the
estimated failure distribution function from the previous step, and the reduced model
failure distribution function. The axes are identical to the axes used in the previous plot.
The black long-dashed line represents the exact model failure distribution function, the
red short-dashed line represents the estimated failure distribution function, and the green
line represents the reduced model failure distribution function. The area, where the main
requirement is not met, is highlighted by a light-gray shading (see the zoom window).

3.4 Partial Reduction Illustrative Example

The partial reduction illustrative example is based on the same system as the full reduction
one (NMR17). The exact dependability model and the reduction parameters are identical.

◦ Time-limited reduction – using tlimit = 60,000hours = 6.85 years
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Figure 3.5: Estimated failure distribution functions and failure distribution functions of
exact and reduced model.

The ID of the first sample beyond this value is

IDlimit = 479

All other IDi values are calculated using Equation (3.1) shown in Section 3.3. IDε

is replaced with IDlimit

All intersection levels and estimations are shown in Fig. 3.6. The meaning of the
axes and lines is identical to the axes and lines of the plot shown in Fig. 3.4.

The plot shown in Fig. 3.7 shows the exact model failure distribution function, the
full and the partial reduced model failure distribution function. The meaning of the
axes is identical to the axes of the previous plot. The vertical line is the reduction
limit tlimit.

The result of the time-limited reduction is

λHazard = 7.041× 10−6 [h−1]

◦ Probability-limited reduction – using plimit = 0.6

tlimit p = F−1E (0.6) = 75,858 [hours] (= 8.66 years)
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Figure 3.6: Failure distribution function of the exact model (FE(t)) and estimated functions
intersecting FE(t) at predefined probability levels (time-limited reduction using reduction
limit tlimit = 60,000hours).

The rest of the probability-limited is similar to the time-limited reduction.

The plot shown in Fig. 3.8 shows the exact model failure distribution function, the
full and the partial reduced model failure distribution function. The meaning of the
axes is identical to the axes of the previous plot. The horizontal line is the reduction
limit plimit.

The hazard rate of the system reduced using probability-limited reduction is

λHazard = 12.24× 10−6 [h−1]

The period of the preventive maintenance of the system is

tlimit = 75,858hours = 8.66 years

◦ Hazard-rate-limited reduction – using λlimit = 10−6 [h−1]

The time of the first sample before the intersection of FE and FR is

FE(tlimit h) = FR(tlimit h) iff tlimit h = 33,884 [hours] (= 3.87 years)

The period of the preventive maintenance of the system must be lower than this time.
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Figure 3.7: Comparison of failure distribution functions of exact and reduced model using
full and partial reduction using reduction limit tlimit = 60,000hours.

3.5 Hierarchical Dependability Model and Reduction

The main principle of the reduction of the hierarchical model is to perform the reduction of
the low-level dependability model(s), take the calculated hazard rate(s) and use it(them)
in the upper level(s) of the hierarchy. An illustrative example of a two-level hierarchical
model is shown in Fig. 3.9.

The current implementation assumes that all reductions use the same parameters
(minStep and Samples per decade), but it is not mandatory.

The partial reduction of the hierarchical models requires the same tlimit value for all
models used in the hierarchy. If the values were different, the partial reduction would be
performed as if only the lowest limit was used. The partial reduction of the hierarchical
models is performed as follows

1. Time-limited reduction

The tlimit value is simply applied to all models – no further modifications are required.

2. Probability-limited reduction

The inverse function F−1E (plimit) cannot be used directly in this case, because FE(t)
of the top-level model depends on the hazard rates of lower-level models.
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Figure 3.8: Comparison of failure distribution functions of exact model, and reduced model
using full and partial reduction using reduction limit plimit = 0.6.
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Figure 3.9: Illustrative example of the hierarchical dependability model.
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3. Dependability Model Reduction Method

The simple algorithm presented in [A.2] applies the full reduction on all lower-level
models and the partial reduction on the top-level model.

The advanced algorithm allowing the partial reduction with the same tlimit value
to be applied on all models used in the hierarchy is proposed in this thesis. The
algorithm is based on bisection algorithm (see the flowchart shown in Fig 3.10).

The first cycle is used to set the boundaries of the bisection. The first value is
taken from the probability-limited reduction of the low-level model. The time-limited
reduction of the hierarchy is performed and the value FR(tlimit) is calculated. If this
value is lower than the plimit value, the tlimit value is taken as the tstart value of the
bisection and the value tlimit . 10 is used in the next step. If FR(tlimit) is greater than
the plimit value, the tlimit value is taken as the tend value of the bisection and the
value tlimit/10 is used in the next step. This step is performed until both tstart and
tend values are set.

The indexes of the samples at tstart and tend are used as the boundaries of the bisection
performed in the second cycle. The bisection is based on the time-limited reduction
limited by the time of the sample laying between tstart and tend. The higher is the used
time limit, the higher is the FR(tlimit) that is compared to the plimit. The bisection
ends, when the time step is lower than the difference between two closest samples.

The final correction is necessary, if the verification of the last iteration fails (FR(tlimit)
is lower than plimit).

3. Hazard-rate-limited reduction

The last type of partial reduction is similar to the probability-limited one. It is
based on bisection, too. It uses the same boundaries and the time-limited reduction
is performed in each iteration as well. The bisection is stopped when the the same
condition is met. The only differences are the main condition (λresult < λlimit is
used instead of FR(tlimit) < plimit), the initial value of the first probability-limited
reduction, and the last step preformed using the algorithm shown in Fig 3.11. The last
step is different from the probability-limited reduction, because hazard-rate-limited
reduction looks for a λresult lower (or equal) than the limit value λlimit.

The proposed reduction also allows a heterogeneous dependability model to be built.
Such model may be based on (G)SPN, RBD, or (D)FT and includes a part modeled by an
MC. An MC is reduced in such case and the constant hazard rate can be used in the base
model.
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3.5. Hierarchical Dependability Model and Reduction

Begin

sample_start=sampleID(t_start)
sample_end=sampleID(t_end)

step=sample_end-sample_start
sign=-1

sample_limit=sample_end

step=step/2
sample_limit=sample_limit+sign*step

t_limit=sampleTime(sample_limit)
do time-limited reduction

F_R(t_limit) > p_limit ?

sign=-1sign=+1

step > 1?

sample_limit++
t_limit=sampleTime(sample_limit)

do time-limited reduction

Return

F_R(t_limit) < p_limit ?

+--

+

+

do time-limited reduction

F_R(t_limit) < p_limit ?

do prob-limited reduction (low-level)
get t_limit from prob-limited reduction

t_start=t_limit
t_limit=t_limit*10

t_end=t_limit
t_limit=t_limit/10

+

-

t_start and t_end set ? -

+

-

Figure 3.10: Probability-limited reduction algorithm flowchart.
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sample_result--
t_result=sampleTime(sample_result)

do time-limited reduction

Return

λ_result > λ_limit ? +

-

...

Begin

p_limit=0.5
do prob-limited reduction (low-level)

get t_limit from prob-limited reduction

Figure 3.11: Hazard-rate-limited reduction algorithm flowchart (shortened).
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Chapter 4

Case Studies and Their Results’
Comparisons

The proposed reduction method is demonstrated on two types of case study systems.
The first type (see Section 4.1) contains multiple (up to 17) identical dependable blocks
configured as an N-modular redundant system (NMR). Models of the internal block re-
dundancy used in the study systems are used as dependability models of railway/subway
interlocking equipment used in Czech Republic. The total hazard rate of this system and
SIL value is calculated in this case.

NMR-based case study systems are also used to present the partial reduction in Sec-
tion 4.3 and the ability of the proposed reduction to trade off between accuracy and cal-
culation time in Section 4.4.

The second case study type introduced in Section 4.5 is a model of a modular system
with hot-swap repair capability. This case study is used to present the reduction of a
three-level heterogeneous dependability model based on Markov chains and reliability block
diagrams to calculate MTTF.

4.1 NMR-based Case Studies

Two systems are used as case studies in this section. Both systems use dependable blocks
connected in an N-modular Redundant (NMR) system, and both systems are reduced using
two-level full reduction.

The dependable blocks used in the first system use Two-out-of-two (2oo2) redundancy
[29], [30]. The second system is based on blocks using Modified duplex system (MDS)
redundancy [31]. Each dependable block contains two independent copies of functional
modules, thus the safety of the blocks using these redundancies cannot be violated by a
single fault. The structure of the systems is shown in Fig. 4.1. All blocks used in a system
are identical.
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Figure 4.1: Block diagram of case study systems.

4.1.1 Two-out-of-two Block

The Two-out-of-two block is based on two independent modules and a locker (see the basic
block diagram in Fig. 4.2). Both modules must be operational to keep the block fully
functional. The locker is able to keep the outputs in a safe state – a state, where the block
is not functional, but its safety is not violated – and it cannot be affected by a fault. The
assumptions and the exact dependability model are taken form [30], where the model is
used as a dependability model of the railway station signaling and interlocking equipment.

The dependability model of 2oo2 used in this thesis is constructed under these assump-
tions:

◦ Two faults will never occur at the same time.

◦ Assuming a fault occurs in one module, the locker may lock the block into a safe
state using on-line testing techniques (e.g. comparators and/or parity checking – the
detailed implementation is not necessary to be known for the calculation). If this
block-lock is successful, a possible future fault will not cause a hazard state. A safe

40



4.1. NMR-based Case Studies
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Figure 4.2: Block diagram of the Two-out-of-two block.
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Figure 4.3: Dependability model of Two-out-of-two block used to calculate the exact model
failure distribution function.

state is considered as the situation where the block is not operational, but the safety
is not violated (all lights are red and the traffic is operated by a human operator in
the railway interlocking equipment case).

◦ If another fault occurs in another (unaffected) module before the block is locked, the
safety of the block can be violated. This double-fault situation is considered as a
hazard state.

Exact Dependability Model

The model shown in Fig. 4.3 is used to calculate the exact model failure distribution
function FE(t) of the 2oo2 block.

Fault Free is the functional/fault-free state of the block. The fault rate of the first
fault is 2λ, because the first fault can affect any of the two functional modules of the block.

The Latent state is active when the block contains a fault that has not been detected
yet. The rate of the on-line test (the inverted average delay between fault origin and
detection) is labeled as δ. If the test is performed successfully (a fault is detected), the
block will be locked in the Safe state. The probability of a successful test is labeled as c.
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4. Case Studies and Their Results’ Comparisons

If the test fails (the fault is present, but not detected), the block will be in the
Not Detected state. The safety of the block is not violated in this state, but another
fault (with a fault rate λ) affecting the unaffected functional module will lead to safety
violation (HazardE state). The second fault hit inside already affected functional module
cannot cause a hazard, because the other functional module works correctly.

The arc leading from Latent to HazardE expresses the probability that a second fault
will affect the unaffected functional module before the test is finished.

The block locked in the Safe state waits until the repair is finished (repair rate µ).
The block is not functional in this state, but the safety is not violated.

The functionality of the block will be provided by a backup/emergency method (by
a human operator in this case), when the block is locked in the Safe state. The rate
γ expresses the hazard rate of the backup/emergency method (a mistake of a human
operator). This rate should be included into the safety analysis if a more complex analysis
needs to be done.

The probability of detection of a fault, the fault rate, and the block-lock rate of the
block form the following parameters values. The values have been taken from [30].

µ = 24−1 [h−1] – the repair rate

λ = 10−5 [h−1] – the fault rate

δ = 10−1 [h−1] – the block-lock rate

c = 0.6 – the probability of detecting a fault by the block-lock

γ = 10−3 [h−1] – the backup/emergency method hazard rate

Dependability Model Reduction

The reduced model of the 2oo2 block is the same as shown in the right part of the
illustrative example in Fig. 3.1.

The steps of reduction correspond to the algorithm described in Section 3.1. The
parameters values are as follows:

minStep = 0.1%

Samples per decade = 100

Calculate the exact model failure distribution function FE(t).

The following system of differential equations describing the dependability model of
2oo2 block is used for the calculation:
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Figure 4.4: Failure distribution function of the exact model (FE(t)) and estimated functions
intersecting FE(t) at predefined time levels (Two-out-of-two block).

p′Fault Free(t) = pSafe(t)µ− pFault Free(t) 2λ

p′Latent(t) = pFault Free(t) 2λ− pLatent(t) δ − pLatent(t)λ
p′Not Detected(t) = pLatent(t) (1− c) δ − pNot Detected(t)λ

p′Safe(t) = pLatent(t) c δ − pSafe(t) (µ+ γ)

p′HazardE(t) = pSafe(t) γ + pLatent(t)λ+ pNot Detected(t)λ

pFault Free(0) = 1

pLatent(0) = pNot Detected(0) = pSafe(0) = pHazardE(0) = 0

Find an estimated value λHazard Est.

All 10 time intersection levels and estimations are shown in Fig. 4.4. The horizontal
axis represents the time of operation measured in hours, the vertical axis represents the
failure distribution function values. The black long-dashed line represents the exact model
failure distribution function, the green line represents the most pessimistic estimated failure
distribution function that is used in the correction step, and the red short-dashed lines
represent the other estimated failure distribution functions. The horizontal and vertical
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Figure 4.5: Estimated failure distribution functions and failure distribution functions of
exact and reduced model of the Two-out-of-two block.

lines show the intersections of the estimated and exact model failure distribution functions.
The exact model failure distribution function is greater than the reduced model failure
distribution function (i.e. the main requirement is not met) beyond these intersections.

The estimated value λHazard Est taken from the most pessimistic estimated failure dis-
tribution function is

λHazard Est = 7.694× 10−6 [h−1]

Make correction of λHazard Est to satisfy the main requirement.

The estimated failure distribution function from the previous step does not meet the
main requirement defined in Section 3.1, because there is an area, where the exact model
failure distribution function is greater than the reduced model failure distribution function.
The correction made according to the flowchart (see Fig. 3.2 in Section 3.1) is necessary
in such case.

The plot shown in Fig. 4.5 shows the exact model failure distribution function, the
estimated failure distribution function from the previous step, and the reduced model
failure distribution function. The axes are identical to the axes used in the previous plot.
The black long-dashed line represents the exact model failure distribution function, the
red short-dashed line represents the estimated failure distribution function, and the green
line represents the reduced model failure distribution function. The area, where the main
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Figure 4.6: Block diagram of the Modified duplex system block.

requirement is not met, is highlighted by a light-gray shading (the area is very small, thus
it is hardly observable even in the zoom window).

The corrected value λHazard 2oo2 is

λHazard 2oo2 = 7.702× 10−6 [h−1]

thus the system can be classified as SIL1.
The CPU-time1 spent on reducing the 2oo2 dependability model is

tReduction 2oo2 = 0.0923 [s]

This CPU-time will be used in Section 4.2.2 to compare runtimes of reduction of hier-
archical and exact dependability models of the system using 2oo2 as a block.

4.1.2 Modified Duplex System Block

The Modified Duplex System is based on two independent modules with parity checkers
attached [31]. The parity checkers are able to detect some faults. The remaining faults are
detected by comparators attached to the outputs of both modules (see the block diagram
in Fig. 4.6).

1Running on Intel Core i5 @3.3 GHz, OS: Win7 64-bit
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Figure 4.7: Dependability model of the Modified duplex system block used to calculate the
exact model failure distribution function.

The MDS is designed to utilize the reconfiguration ability of an FPGA. FPGA is an
integrated circuit designed to be configured by a customer or a designer after manufactur-
ing. A part of the FPGA affected by a fault can be repaired by reconfiguration in tenths
or hundreds of milliseconds.

The dependability model of MDS used in this thesis is constructed under these assump-
tions:

◦ Two faults will never occur at the same time.

◦ When a fault occurs in one module, the parity checker attached to this module can
detect the fault. The parity checker needs not cover all possible faults. If the fault
is detected by the parity checker, the affected module is repaired. If the fault is not
detected by the parity checker, it can be detected by comparators. Both modules and
comparators have to be repaired in such case, because the faulty module cannot be
identified. When a fault occurs in the comparator, both modules and comparators
have to be repaired.

◦ If another fault occurs before the repair is completed, the safety of the block can be
violated. This double-fault situation is considered as a hazard state.

Exact Dependability Model

The model shown in Fig. 4.7 is used to calculate the exact model failure distribution
function FE(t) of the MDS block.

The states of the model are similar to the states of the model of 2oo2 block. Fault Free
is the functional/fault-free state of the block. The fault rate of the first fault is 2λ, because
the first fault can affect any of the two functional modules of the block. The block is in
the Latent state when it contains a fault that has not been detected yet.
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4.1. NMR-based Case Studies

The fault detection rate is labeled as δ. If a fault is detected by the parity checkers,
the block will be locked in the Detected Parity state. The probability of detecting a fault
by parity checkers is labeled as cP . If a fault is detected by comparators, the block will be
locked in the Detected Comp state. The probability of detecting a fault by comparators
only is labeled as cF .

If the fault is detected neither by parity checkers nor by comparators, the block will be in
Not Detected state. The safety of the block is not violated in this state, but another fault
(with fault rate λ) affecting the unaffected functional module will lead to safety violation
(HazardE state). The second fault hit inside an already affected functional module cannot
cause a hazard, because the other functional module works correctly.

The arc leading from Latent to HazardE expresses the probability that a second fault
affects the unaffected functional module before the first fault is detected.

The block locked in the Detected Parity state waits until the repair is finished (repair
rate µModule – only one module is repaired). The block locked in the Detected Comp state
also waits until the repair is finished (repair rate µ – both modules and both comparators
are repaired). The block is not functional in these states, but the safety is not violated.

The probability of detection of a fault, the fault rate, and the self-test rate of the block
form the following parameters values. The values are similar to the 2oo2 block model, but
the repair rates are much higher (because of fast reconfiguration).

µ = 103 [h−1] – the repair rate of the whole block (both modules and both compar-
ators)

µModule = 5× 103 [h−1] – the repair rate of the faulty module

λ = 10−5 [h−1] – the fault rate

δ = 10−1 [h−1] – the fault detection rate

cP = 0.6 – the probability of detecting a fault by the parity checkers

cF = 0.2 – the probability of detecting a fault by the comparators

Dependability Model Reduction

The reduced model of the MDS block is the same as shown in the right part of the
illustrative example in Fig. 3.1.

The steps of reduction correspond to the algorithm described in Section 3.1. The
parameters values are the same as in the case of the 2oo2 block model:

minStep = 0.1%

Samples per decade = 100

Calculate the exact model failure distribution function FE(t)

The system of differential equations describing the dependability model of MDS block
is used for the calculation:
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p′Fault Free(t) = pDetected Comp(t)µ+ pDetected Parity(t)µModule − pFault Free(t) 2λ

p′Latent(t) = pFault Free(t) 2λ− pLatent(t) δ − pLatent(t)λ
p′Not Detect(t) = pLatent(t) (1− cF − cP ) δ − pNot Detect(t)λ

p′Detected Comp(t) = pLatent(t) cF δ − pDetected Comp(t)µ
p′Detected Parity(t) = pLatent(t) cP δ − pDetected Parity(t)µModule

p′HazardE(t) = pLatent(t)λ+ pNot Detect(t)λ

pFault Free(0) = 1

pNot Detect(0) = pDetected Comp(0) = pHazardE(0) = pDetected Parity(0) = pLatent(0) = 0

Find an estimated value λHazard Est and make correction

We use the same method as presented in Section 4.1.1.

The estimated value λHazard Est taken from the most pessimistic estimated failure dis-
tribution function is

λHazard Est = 3.912× 10−6 [h−1]

The corrected value λHazard MDS is

λHazard MDS = 3.916× 10−6 [h−1]

thus the system can be classified as SIL1.

The CPU-time2 spent on reducing the MDS dependability model is

tReduction MDS = 0.0994 [s]

This CPU-time will be used in Section 4.2.2 to compare runtimes of reduction of hier-
archical and exact dependability models of the system using MDS as a block.

4.1.3 N-modular Redundancy

N-modular Redundancy (NMR) is based on N identical blocks and a voter. This voter
is able to compare all outputs of the blocks. It uses majority voting to produce a single
output. If less than half of the blocks fail, the voter is able to produce correct output. If
more than half of the blocks fail, the voter will produce an incorrect output – this situation
is considered as a hazard state. The erroneous blocks cannot be identified, thus there is
no restoration/repair possibility.

Exact Dependability Model

The model shown in Fig. 4.8 is used to calculate the exact model failure distribution
function of a generic NMR system. The NMR system containing N blocks will contain
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Figure 4.8: Dependability model of generic N-modular redundant system used to calculate
exact model failure distribution function.

⌊
N
2

⌋
transient states. These states correspond to the blocks that are in the hazard state.

NMR systems consisting of 3 to 17 blocks are reduced in this thesis.

Dependability Model Reduction

The reduced model of the NMR block is the same as shown in the right part of the
illustrative example in Fig. 3.1.

The steps of reduction correspond to the algorithm described in Section 3.1. The
reduction parameters values are the same as in the cases of 2oo2 and MDS blocks models:

minStep = 0.1%

Samples per decade = 100

Calculate the exact model failure distribution function FE(t)

The system of differential equations describing the dependability model of NMR con-
taining N blocks is used for the calculation:

p′Fault Free(t) = − pFault Free(t)N λ

p′Fail 1(t) = pFault Free(t)N λ− pFail 1(t) (N − 1)λ

p′Fail 2(t) = pFail 1(t) (N − 1)λ− pFail 2(t) (N − 2)λ

. . .

p′
Fail bN2 c(t) = pFail bN2 c−1(t)

(⌊
N

2

⌋
+ 2

)
λ− pFail bN2 c(t)

(⌊
N

2

⌋
+ 1

)
λ

p′HazardE(t) = pFail bN2 c(t)
(⌊

N

2

⌋
+ 1

)
λ

pFault Free(0) = 1

pFail 1(0) = pFail 2(0) = · · · = pFail bN2 c(0) = 0

pHazardE(0) = 0

Find an estimated value λHazard Est and make correction

The method presented in Section 4.1.1 is used.
The hazard rate of the NMR model depends on the hazard rate of the block. The

results of the NMR based on 2oo2 and MDS blocks are shown in the following section.

2Running on Intel Core i5 @3.3 GHz, OS: Win7 64-bit
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Figure 4.9: Hierarchical dependability model of case study system (NMR based on 2oo2
blocks).

4.2 Hierarchical Models

The case study systems used in this thesis originate from railway interlocking systems, thus
the primary results of concern are the hazard rates (and SILs), but the calculation time
is also important, especially when a large system containing many blocks is calculated.
Improper method can lead to unacceptable calculation time or inadequate accuracy.

4.2.1 NMR based on Two-out-of-two or Modified Duplex System
Blocks

The hierarchical dependability model of the NMR system based on 2oo2 blocks is shown in
Fig. 4.9. The hierarchical dependability model of the NMR system based on MDS blocks
is similar – the model of a 2oo2 block is replaced by the model of a MDS block only.

The model of a 2oo2/MDS block is created, reduced, and the result of reduction
(λHazard 2oo2 calculated in Section 4.1.1 or λHazard MDS calculated in Section 4.1.2 respect-
ively) is taken as the hazard rate (λ) of the NMR model. The results of the reduction of
the hierarchical dependability model (λHazard) are calculated in Section 4.2.

The exact model of the NMR based on 2oo2 blocks (see Fig. 4.10) is the result of
Cartesian product of N models of the blocks and the model of the NMR. The exact model
of the NMR based on MDS blocks is similar – the model of a 2oo2 block is replaced by the
model of a MDS block once again.

4.2.2 Comparison of Runtimes

Table 4.1 shows the comparison of CPU-times of solutions of an N-modular redundant
system based on identical Two-out-of-two or Modified duplex system blocks. The first
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Figure 4.10: The models used to create exact dependability model of the case study system
(NMR based on 2oo2 blocks).

Table 4.1: Number of states and CPU-times of solutions of N-modular redundant system
based on identical blocks.

Two-out-of-two blocks Modified duplex system blocks

NMR Exact model NDSolve Reduction Exact model NDSolve Reduction

blocks states time [s] time [s] states time [s] time [s]

n01 1) 5 0.0127 0.0923 2) 6 0.0173 0.0994 2)

n03 34 0.0414 0.175 55 0.0549 0.185

n05 121 0.123 0.174 246 0.263 0.183

n07 315 0.315 0.175 771 0.770 0.185

n09 680 0.707 0.176 1,946 2.997 0.185

n11 1,295 1.721 0.176 4,242 10.58 0.184

n13 2,254 4.089 0.177 8,316 29.25 0.185

n15 3,666 7.139 0.176 15,042 117.9 0.185

n17 5,655 12.10 0.177 25,542 477.5 0.187

. . .

n99 4,150,550 109 yrs3) 0.198 89,092,835 1018 yrs3) 0.208

1) NMR containing one block is equivalent to a single 2oo2/MDS block.
2) Time to reduce a 2oo2/MDS block only.
3) Estimation based on the exponential extrapolation of systems n3–n17.
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column shows the number of the blocks, the second column shows the number of states of
the exact dependability model.

The next two columns show the CPU-times spent on solving3 the systems of differential
equations of the dependability models. The CPU-time spent on solving the system of
the exact dependability model – the model generated by the Cartesian product of the
dependability models of the 2oo2 blocks configured as NMR – is shown in the third column.
The fourth column shows the CPU-times spent on reducing the 2oo2 dependability model
(0.0923 s – tReduction 2oo2 taken from Section 4.1.1) and CPU-time spent on reducing the
dependability model of NMR. The reduction time includes the time required to solve the
exact model, to sample the exact failure distribution function, to estimate λHazard Est, and
to make the correction. Both models (2oo2 and NMR) are small, thus the most of the time
is spent on the corrections.

The second three columns show the same results for the case study system based on
Modified duplex system blocks.

The CPU-time spent on solving the Cartesian model grows rapidly with increasing
number of the blocks, but the reduction time is nearly constant4. Therefore the reduction
will be faster when a system containing more than 7 blocks is used in these particular
configurations.

The plot in Fig. 4.11 shows the exponential progress of the CPU-time spent on solving
the system of the exact dependability model (NDSolve time) with respect to the number of
the MDS blocks. The horizontal axis of the plot represents the number of the MDS blocks,
the vertical axis (plotted on a logarithmic scale) represents the NDSolve time. The points
in the plot are NDSolve times of the n3–n17 systems, the dashed line is an exponential
interpolation.

This interpolation is used to estimate NDSolve time of the system containing 99 blocks
(n99) in the last row of Table 4.1. The reduction time of the system n99 remains nearly
constant.

4.2.3 Hierarchy Reduction Error

Table 4.2 shows the difference between the hazard rates calculated using the hierarchical
model and the hazard rate calculated by reducing the Cartesian model directly. The first
column shows the number of the 2oo2/MDS blocks, the second column shows the hazard
rate of the NMR system based on 2oo2 blocks using the reduction of the Cartesian model.
The third column shows the hazard rate of the NMR system using a two-level reduction
of the hierarchy model. The fourth column contains the ratio of the hazard rates shown in
the previous columns.

3NDSolve command of Mathematica 9.01 [32] software running on Intel Core i5 @3.3 GHz, OS: Win7
64-bit

4The measured CPU-times varies by ca. ±10%, when the calculation is performed repeatedly, due to
inaccurate time values provided by Mathematica. This variance remains intact, when 100 repetitions of
the same instance are calculated.
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Figure 4.11: CPU-time spent on solving the system of the exact dependability model with
respect to the the number of the Modified duplex system blocks.

Table 4.2: Comparison of hazard rates of N-modular redundant system calculated using
hierarchy and Cartesian-product safety models

Two-out-of-two blocks Modified duplex system blocks

NMR λHazard Cart λHazard Hier λHazard Hier λHazard Cart λHazard Hier λHazard Hier

blocks [×10−6 h−1] [×10−6 h−1] λHazard Cart [×10−6 h−1] [×10−6 h−1] λHazard Cart

n03 13.88 14.71 1.060 7.322 7.476 1.021

n05 18.89 20.98 1.111 10.30 10.68 1.037

n07 23.10 26.66 1.154 12.86 13.54 1.053

n09 26.81 31.73 1.184 15.12 16.18 1.070

n11 29.94 36.36 1.214 17.06 18.56 1.088

n13 32.69 40.83 1.249 18.88 20.71 1.097

n15 35.31 44.79 1.268 20.35 22.71 1.116

n17 37.37 48.20 1.290 21.82 24.65 1.130
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Figure 4.12: Comparison of failure distribution functions of N-modular redundant system
based on 17 identical Modified duplex system blocks.

The second three columns show the same results for the case study system based on
Modified duplex system blocks.

The direct reduction of the Cartesian model leads to the most accurate results, but it
can become computationally impossible in practice (see Table 4.1 – NDSolve time column).

The plot in Fig. 4.12 shows the comparison of the failure distribution functions of the
N-modular redundant system based on 17 identical MDS blocks. The horizontal axis of the
plot represents the time of operation measured in hours, the vertical axis represents the
failure distribution function values. The black long-dashed line represents the exact model
failure distribution function, the red short-dashed line represents the reduced model failure
distribution function calculated using the Cartesian model, and the green line represents
the reduced model failure distribution function calculated using the hierarchy model.

The reduction of this system (NMR17) is the most inaccurate one of the systems
based on MDS blocks calculated in this thesis. The difference between hazard rates of the
Cartesian and hierarchical model is ca. 13% (the difference in 2oo2-NMR case is ca. 29%),
but both failure distribution functions of the reduced models differ significantly from the
exact model function (especially in the lower part of the plot, where the standard usage of
the modeled system is expected). The function of the Cartesian and hierarchical models
reaches 10% probability of failure in ca. 4,300 and 4,800 hours respectively, but the ex-
act model function reaches the same probability in ca. 209,000 hours. This difference is
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unacceptable – the full reduction is unsuitable for this kind of systems, thus the partial
reduction should be used to obtain appropriate results (see the partial reduction of the
system based on MDS blocks in Section 4.3).

4.3 Partial Reduction

This section contains the results of the partial reduction of the system MDS-NMR17, as the
most inaccurate representative of MDS-NMR systems in Section 4.2.3. The three different
possibilities of partial reduction described in Section 3.2 are used to reduce both levels of
hierarchy of the model:

◦ Time-limited reduction – uses tlimit itself

◦ Probability-limited reduction – uses a plimit probability

◦ Hazard-rate-limited reduction – uses a λlimit hazard rate

4.3.1 Time-limited Reduction

Table 4.3 shows the progression of the hazard rates (the second column) and SILs [6] (the
third column) of the hierarchical model depending on the tlimit time (the first column) value
used in the partial reduction. The table also shows the probability of failure according to
the failure distribution function of the reduced model (FR) at the time tlimit (the fourth
column labeled as FR(tlimit)). The last two columns show the times when the failure
distribution functions of different models (reduced model using full reduction in the fifth
column, and the exact model function in the last column) reaches the limit probability
value FR(tlimit) shown in the fourth column.

The results obtained using the limit value (200,000hours) will be compared to the other
methods of the partial reduction (probability-limited using plimit = 0.1 and hazard-rate-li-
mited using λlimit = 0.5× 10−6 h−1) in Section 4.3.4.

The hazard rate of the model using the partial reduction is significantly decreased.
Using tlimit = 200,000hours during the model reduction decreases hazard rate ca. 50 times.
That means that the system not meeting the requirements to be classified as SIL1 can be
classified as SIL2 when the partial reduction is used. The preventive maintenance period
of the system has to be lower than 200,000 hours (ca. 22 years), the main requirement and
the pessimism of the solution are not guaranteed otherwise.

The plot in Fig. 4.13 shows all the failure distribution functions used in Table 4.3 when
tlimit = 200,000hours. The horizontal axis of the plot represents the time of operation
measured in hours, the vertical axis represents the failure distribution function values.
The black long-dashed line represents the exact model failure distribution function, the
red short-dashed line represents the reduced model failure distribution function calculated
using the full reduction and the green line represents the reduced model failure distribution
function calculated using the partial reduction. The vertical line represents the reduction
limit tlimit.
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Table 4.3: Progress of hazard rates and SILs and comparison of runtimes when the failure
distribution functions of different models reaches the tlimit time value using the time-limited
partial reduction.

tlimit λHazard Part SIL FR(tlimit) tLimit Full tLimit Exact

[hours] [×10−6 h−1] [-] [-] [hours] [hours]

100,000 861.33× 10−6 >4 86.129× 10−6 3.4942 102,329

150,000 0.05768 3 0.008615 351.01 151,356

200,0001) 0.5173 2 0.09828 4,197 204,174

250,000 1.5376 1 0.3191 15,594 257,040

300,000 3.1677 1 0.6134 38,552 301,995

350,000 5.1325 1 0.8341 72,875 354,813

400,000 7.1703 1 0.9432 116,352 407,380

450,000 9.0180 1 0.9827 164,627 457,088

500,000 10.561 <1 0.9949 214,216 512,861

550,000 12.526 <1 0.9990 279,474 562,341

None (Full)2) 24.650 <1 → 1 –3) –3)

1) The plot comparing the failure distribution functions of the exact model, and the
reduced model using the full reduction and the partial reduction using tlimit =
200,000hours is shown in Fig. 4.13.

2) The partial reduction without reduction limit is equal to the full reduction.
3) The failure distribution functions cannot be equal to 1.

4.3.2 Probability-limited Reduction

Table 4.4 shows the progression of the hazard rates (the second column) and SILs (the
third column) of the hierarchical model depending on the plimit probability value (the first
column) used in the partial reduction. The last two columns show the times when the
failure distribution functions of the reduced models (using partial reduction in the fourth
column, and using the full reduction in the last column) reaches the plimit probability value.

The results obtained using the limit value (0.1) will be compared to the other methods
of the partial reduction (time-limited using tlimit = 200,000hours and hazard-rate-limited
using λlimit = 0.5× 10−6 h−1) in Section 4.3.4.

The plot in Fig. 4.14 shows all the failure distribution functions used in Table 4.4 when
plimit = 0.1. The meaning of the axes and the lines is similar to the plot shown in Fig. 4.13.
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Figure 4.13: Comparison of failure distribution functions of exact and reduced model using
full and partial reduction using reduction limit tlimit = 200,000hours.

4.3.3 Hazard-rate-limited Reduction

Table 4.5 shows the progression of the probability of failure (the third column labeled as
FR(tlimit)), when the failure distribution function of the reduced model meets the failure
distribution function of the exact model, depending on the λlimit/SIL value (the first and
the second column) used in the partial reduction. The last two columns show the difference
between the times when the failure distribution functions of the reduced models (using
partial reduction in the third column, and using the full reduction in the last column)
reaches the probability of failure shown in the third column.

The results obtained using the limit value (0.5 × 10−6 h−1) will be compared to the
other methods of the partial reduction (time-limited using tlimit = 200,000hours and
probability-limited using plimit = 0.1) in Section 4.3.4.

4.3.4 Comparison of Partial Reduction Types

Table 4.6 shows that all three types of the partial reduction leads to the similar results,
when the limits leading to the similar values are used. Please note that the values are not
identical. If the limit values leading to the identical values would be used, the other values
would be identical as well (e.g. the time-limited reduction using tlimit = 213,796hours
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Table 4.4: Progress of hazard rates and SILs and comparison of runtimes when the failure
distribution functions of different models reaches the plimit probability value using the
probability-limited partial reduction.

plimit λHazard Part SIL tlimit tLimit Full

[−] [×10−6 h−1] [-] [hours] [hours]

0.0001 0.001115 4 104,713 4.6268

0.0010 0.008216 4 125,893 41.006

0.0100 0.06973 3 158,489 438.09

0.10001) 0.5173 2 208,930 4,284

0.3500 1.7024 1 263,027 17,752

0.6000 3.1677 1 309,030 38,808

0.9500 7.5302 1 426,580 127,347

0.9900 9.7844 1 489,779 189,981

0.9990 12.526 <1 575,440 285,745

1 (Full)2) 24.650 <1 –3) –3)

1) The plot comparing the failure distribution functions of the
exact model, and the reduced model using the full reduction
and the partial reduction using plimit = 0.1 is shown in
Fig. 4.14.

2) The partial reduction with reduction limit 1 is equal to the
full reduction.

3) The failure distribution functions cannot be equal to 1.

would lead to failure probability FR(213,796) = 0.1160 and the hazard rate λHazard =
0.5× 10−6 h−1).

4.4 Reduction Parameters Impact

Two parameters that determine the trade-off between reduction accuracy and reduction
time were introduced in Section 3.1:

1. minStep – this parameter determines the end of the bisection loop of the correction.

2. Samples per decade – this parameter determines the number of samples that will be
tested for the main requirement fulfillment.

The impacts of these parameters on the full reduction of the system MDS-NMR17 are
presented in this section. Both models (low- and top-level) are reduced using the full
reduction with varying parameters.
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Table 4.5: Progress of SILs and comparison of runtimes depending on the selected λlimit
value using the hazard-rate-limited partial reduction.

λlimit SIL FR(tlimit) tLimit tLimit Full

[×10−6 h−1] [-] [-] [hours] [hours]

0.01 3 0.00101 125,893 41.006

0.02 3 0.00214 134,896 86.698

0.05 3 0.00692 151,356 281.69

0.1 2 0.0133 162,181 543.30

0.2 2 0.0297 177,828 1,223

0.5 2 0.0857 204,174 3,633

1 1 0.2013 234,423 9,117

2 1 0.3899 269,153 20,042

5 1 0.8122 354,813 67,834

10 <1 0.9907 489,779 189,981

20 <1 → 1.1) 912,011 722,242

1) The probability is close, but not equal to 1, thus the failure
distribution functions can be equal to this value.

Table 4.6: Comparison of the selected values of all three types of partial reduction.

Limit type Time Probability Hazard rate SIL

[hours] [-] [×10−6 h−1] [-]

Time 200,000 0.0983 0.5173 2

Probability 208,930 0.1000 0.5173 2

Hazard rate 204,174 0.0857 0.5 2
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Figure 4.14: Comparison of failure distribution functions of exact model, and reduced
model using full and partial reduction using reduction limit plimit = 0.1.

4.4.1 minStep

Table 4.7 shows the impact of the minStep parameter. The size of minStep expressed as a
percentage of the estimated value λHazard Est is shown in the first column, the hazard rate
of the reduced model and the time of the reduction using selected minStep in the second
and the third column respectively. The number of Samples per decade is 100 during this
measurement.

The lower is the minStep value, the lower (more precise) is the calculated hazard rate.
This dependency is not monotonic, but the error of each level of the reduction is lower
than the minStep. The calculated value is more pessimistic than the optimal value. The
reduction time is slightly increasing5 when the minStep value decreases.

The plot shown in Fig. 3.5 shows the exact model failure distribution function, the
estimated failure distribution function from the previous step, and the reduced model
failure distribution function. The axes are identical to the axes used in the previous plot.
The black long-dashed line represents the exact model failure distribution function, the
red short-dashed line represents the estimated failure distribution function, and the green

5The measured CPU-times varies by ca. ±10%, when the calculation is performed repeatedly, due to
inaccurate time values provided by Mathematica.
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4.4. Reduction Parameters Impact

Table 4.7: Comparison of hazard rates and reduction times with respect to the accuracy
of the correction step.

minStep λHazard Reduction

size [%] [×10−6 h−1] time [s]

10 29.517 0.1863

5 26.889 0.1873

2 25.552 0.1868

1 24.953 0.1885

0.5 24.656 0.1860

0.2 24.709 0.1869

0.11) 24.650 0.1863

0.05 24.621 0.1868

0.02 24.603 0.1865

10−8 24.591 0.5994

1) Default value used in this thesis.

line represents the reduced model failure distribution function. The area, where the main
requirement is not met, is highlighted by a light-gray shading (see the zoom window).

The plot in Fig. 4.15 shows the boundary of the failure distribution function when the
worst, the default, and the best minStep values shown in Table 4.7 are used. The hori-
zontal axis of the plot represents the time of operation measured in hours, the vertical axis
represents the failure distribution function values. The black long-dashed line represents
the function using the best value, the green line represents the failure distribution func-
tion using default settings, the red short-dashed line represents the worst possible failure
distribution function. The hazard rate of the worst possible function is 29.517× 10−6 h−1

that is ca. 20% higher than the hazard rate calculated using the best value. The 20%
difference is caused by the hierarchical approach – the maximal 10% difference is applied
at each level of the hierarchy. The hazard rate of the function using the default value is
24.650× 10−6 h−1 – ca. 0.24% higher than the hazard rate using the best value – but it is
calculated 3 times faster.

4.4.2 Samples per decade

Table 4.8 shows the impact of the Samples per decade parameter. The number of Samples
per decade is shown in the first column, the hazard rate of the reduced model and the time
of the reduction in the second and the third column respectively. The minStep is 0.1%
during this measurement.

The plot in Fig. 4.16 shows the difference between the samples rate of failure distribution
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Figure 4.15: Comparison of failure distribution functions using the low and the default
accuracy.

Table 4.8: Comparison of hazard rates and reduction times with respect to number of
samples per each decade.

Samples per λHazard Reduction

decade [×10−6 h−1] time [s]

10 22.852 0.08314

30 24.585 0.1061

1001) 24.650 0.1887

300 24.661 0.4157

1,000 24.664 1.3099

3,000 24.672 4.3333

10,000 24.674 17.537

1) Default value used in this thesis.
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Figure 4.16: Comparison of failure distribution functions using the low and the default
number of Samples per decade.

functions using the worst (10) Samples per decade value shown in Table 4.8 and the default
value. The horizontal axis of the plot represents the time of operation measured in hours,
the vertical axis represents the failure distribution function values. The small green dots
represent the samples of the failure distribution function using the default Samples per
decade value, the larger red dots represent the samples using the worst value.

The more Samples per decade are used, the higher (more precise) is the calculated
hazard rate.

The reduction time is increasing linearly with respect to the number of Samples per
decade, but the calculated hazard rate seems to be constant above 100 Samples per decade
in this case.

The calculated hazard rate value is less pessimistic than the optimal value, but the
difference between the hazard rates calculated using 30 and 10,000 Samples per decade is
ca. 0.4%.

4.5 Application to Track Circuit System

The reduction has been used to calculate MTTF of a safety-critical Track Circuit System
(TCS) developed by AZD Praha [33]. The aim of the TCS is to detect the presence of the
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Figure 4.17: Top-level reliability block diagram of the Track Circuit System.

train and eliminate the possibility of a train collision. The TCS is a system consisting of
three independent hot-swap computation modules. The implementation details of these
modules are the intellectual property of AZD Praha, but they are not necessary for the
purpose of this thesis. The calculation of MTTF of this system has been a project per-
formed in our department. The creation and reduction of dependability models has been
the author’s participation in this project.

The model of the TCS uses three-level full reduction. The partial reduction cannot be
used, because the system’s developer is unable to guarantee the preventive maintenance of
the system necessary to partial reduction. The model is heterogeneous: the first (lowest)
and the third (top) level of the model are based on reliability block diagrams, the second
level is based on Markov chains.

The main blocks of the TCS are: Main power supply, secondary power supplies (SPSs),
main processing boards, and an internal checking unit (ICU). These main parts form the
top level RBD model shown in Fig. 4.17. The failure of the ICU can hide the failure of
the other parts of the system, but it cannot cause a critical failure of the system, thus it
is not included in the RBD. The analysis of the system has shown a critical part of the
board-to-board communication seriously affecting the total failure rate of the system, thus
this part has been added to the top level RBD. The failure of the system means that the
system is unable to provide its functionality and the traffic is stopped safely, thus the result
of the reduction will be called λFail is this section.

The SPSs are two independent hot-swap modules. Each SPS provides power to all
processing boards and it is checked by the ICU. The Markov chain of the SPSs is shown
in Fig. 4.18. The model assumes that all faults are detected instantly.

Fault Free is the functional/fault-free state of the block. The failure rate of the first
SPS is 2λSPS, because the first fault can affect any of the two SPSs.

The Fail1 state is active when one of the SPSs fails. This situation is detected by the
ICU unit and reported. The SPSs remain in this state until the repair is finished (repair
rate µ). The SPSs are fully functional in this state. The arc leading to Fail state (rate
λSPS) expresses the probability that a second SPS fails before the repair is finished.

If the ICU fails, the SPSs are locked in FailICU state. The SPSs are fully functional in
this state, but a failure of an SPS (rate 2λSPS) cannot be detected.

The FailICU 1 state is active when the ICU and one of the SPSs fails. This situation
is not reported, thus the repair is not started and the SPSs remain in this state until a
second SPS fails (rate λSPS).

The main processing boards are three independent boards. Each board performs the
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Figure 4.18: Markov chain of secondary power supplies of the Track Circuit System.
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Figure 4.19: Markov chain of processing boards of the Track Circuit System.

same calculations independently of the other boards, but the results are compared to each
other. Each board is checked by the ICU, too. Two fully functional boards are required to
keep the system fully operational. The Markov chain of the boards is shown in Fig. 4.19.
The model assumes that all faults are detected instantly.

Fault Free is the functional/fault-free state of the block. The failure rate of the first
board is 3λBoard, because the first fault can affect any of the three boards.

The Fail1 state is active when one of the boards fails. This situation is detected by the
ICU unit and reported. The boards remain in this state until the repair is finished (repair
rate µ). The boards are fully functional in this state. The arc leading to Fail state (rate
2λBoard) expresses the probability that a second board fails before the repair is finished.

If the ICU fails, the boards are locked in FailICU state. The boards are fully functional
in this state, but a failure of a board (rate 3λBoard) cannot be detected.

The FailICU 1 state is active when the ICU and one of the boards fail. This situation
is not reported, but the other boards starts an 80-hour countdown. A failure of the second
board (rate λBoard) or the finish of the countdown (rate λ80h) causes the system to fail.
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Figure 4.20: Low-level reliability block diagram of the Track Circuit System.

The countdown is also started in Fail1 state, but the developer assumes that the repair
of the system will be performed before the countdown is finished.

Each board is composed of the following blocks: Analog receivers collecting the in-
formations from the rails, voltage separators not allowing one voltage failure to disable
all boards simultaneously, the board communication (including a non-critical part of the
board-to-board communication), and the processor unit. These parts form the low level
RBD model shown in Fig. 4.20.

The failure rate of the atomic blocks of the model (all blocks of the low-level model,
main power supply, and board-to-board communication blocks of the top-level model) are
calculated using Parts Stress method according to standard MIL-HDBK-217F Notice2 [3].
The parameters of the environment follow:

Temperature: 40 ◦C

Environment type: Ground fixed – GF

The failure rates of the low-level blocks:

Analog receivers : 29.99× 10−6 h−1

Voltage separator : 1.272× 10−6 h−1

Board communication: 10.31× 10−6 h−1

Processor unit : 10.14× 10−6 h−1

λBoard = 51.72× 10−6 [h−1]

The parameters of the Markov chain of the processing boards:

µ = 1/40 [h−1] – the repair rate

λICU = 1.810× 10−6 [h−1] – the failure rate of the ICU

λ80h = 1/80 [h−1] – the inverted countdown delay

λMain boards = 2.435× 10−6 [h−1]

The parameters of the Markov chain of the secondary power supplies:

µ = 1/40 [h−1] – the repair rate
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4.6. Summary

λSPS = 19.01× 10−6 [h−1] – the failure rate of one secondary power supply

λICU = 1.810× 10−6 [h−1] – the failure rate of the ICU

λSec. Power Supp. = 1.826× 10−6 [h−1]

The failure rates of the top-level blocks:

Main power supply : 0.287× 10−6 h−1

Board-to-board communication: 12.41× 10−6 h−1

λMain boards = 2.435× 10−6 [h−1]

λSec. Power Supp. = 1.826× 10−6 [h−1]

λFail = 16.96× 10−6 [h−1]

MTTF =
1

λFail
= 58,962 [h] (= 6.7 years)

The plot in Fig. 4.21 shows the comparison of the failure distribution functions of the
TCS. The horizontal axis of the plot represents the time of operation measured in hours,
the vertical axis represents the failure distribution function values. The black long-dashed
line represents the exact model failure distribution function and the green line represents
the reduced model failure distribution function calculated using the hierarchy model. The
red short-dashed line shows the relative error between the exact and the reduced failure
distribution functions.

The relative error between the exact and the reduced failure distribution functions is
low – it does not exceed 35%, even though the full reduction is used.

The board-to-board communication contains a critical part. The failure of this part
leads to the failure of the whole system (the processor units are unable to compare their
data, thus they will stop the traffic immediately). If this part is altered to be more safe
(to contain several independent communication lines), the processor units will be able to
communicate using the unaffected lines.

This alternation will allow Board-to-board communication block to be moved from the
top-level model to the low-level one. The failure rate is such altered system would be
λFail Altered = 4.885 × 10−6 h−1, thus MTTFAltered = 204,709 [h] (ca. 23 years). This
alternation would be a significant improvement to the MTTF of the system.

4.6 Summary

The reduction of hierarchical dependability models based on Markov chains has been
presented. It has been used to efficiently calculate the hazard rates of safety-critical sys-
tems. Two presented case studies (2oo2-NMR and MDS-NMR) use two-level dependability
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Figure 4.21: Comparison of failure distribution functions of actual dependable system.

models based on Markov chains, the third (TCS) uses three-level dependability models
based on Markov chains and reliability block diagrams.

X-NMR case studies are based on the Two-out-of-two model or the Modified duplex
system model as the low-level model and the N-modular redundancy as the high-level
model. Both low-level models are related to the railway interlocking equipment. The
current relay-based ones are modeled using the first one, the second one is about to be
used in an FPGA-based replacements of these equipments.

The results indicate that the hazard rates of the hierarchical models can be calculated
significantly faster using the presented reduction, compared to the calculation using the
exact model. This speedup is the main contribution of the reduction. The failure distri-
bution functions of the low-level and the high-level model are solved separately, thus the
reduction time does not depend on the the number of the low-level blocks. On the other
hand, the calculation time of the exact model grows exponentially with the number of
low-level blocks.

The main disadvantage of the presented reduction is its inaccuracy. The failure dis-
tribution functions of the exact model and the reduced models extremely differ when the
probability of the failure of the modeled system is low. This problem can be fixed using
the partial reduction method. This method offers a significantly more accurate solution,
but it is not pessimistic all the time, thus it can be used only if the preventive maintenance
of the system is performed before the non-pessimistic time is reached.
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4.6. Summary

The partial reduction allows a trade-off between the hazard rate (SIL) and the prevent-
ive maintenance period of the system to be found. Three types of the partial reduction are
proposed:

◦ Time-limited reduction – uses tlimit itself

The most direct approach. The hazard rate of the system calculated using this
method is lower than the hazard rate calculated using the full reduction. This value
is valid only until the end of the preventive maintenance period given by tlimit is met.

If the maintenance period is 200,000 hours of operation (ca. 22 years), the hazard rate
of the presented case study system is ca. 5×10−7 h−1 and it will be classified as SIL2
(the hazard rate of the same system without maintenance period specified would be
ca. 25 × 10−6 h−1 and the system would not meet the requirements to be classified
as SIL1). If the maintenance period is 150,000 hours of operation (ca. 17 years),
the hazard rate can be decreased to ca. 6 × 10−8 h−1 that is close to meet the SIL4
requirement suitable for the railway station signaling and interlocking equipment and
other safety-critical systems.

◦ Probability-limited reduction – uses a plimit probability

This approach is similar to the first one. It also leads to lower hazard rate of the
system valid only until the end of the maintenance period. This end is given by plimit.
If the total probability of failure of the system reaches plimit, the maintenance period
ends.

◦ Hazard-rate-limited reduction – uses a λlimit hazard rate

This approach slightly differs form the previous ones. The target hazard rate is given
by λlimit or by SIL and the end of the maintenance period is calculated as the point,
where the reduced failure distribution function stops being pessimistic.

The presented case study can meet SIL2 requirements, when the maintenance period
is ca. 234,000 hours (ca. 26 years), SIL3 can be met with period ca. 162,000 hours
(ca. 18 years), and SIL4 can be met with period ca. 126,000 hours (ca. 14 years).
Note, that neither the system nor the fault rate has been changed to meet significantly
better SIL requirements. If the system meets SIL4 requirements, it can be used as a
safety-critical system.

The reduction is not limited to hazard rate or SIL calculations. It can be used to
calculate mean time to failure of the system, too. MTTF of the TCS case study has been
calculated using three-level dependability models based on Markov chains (the second level)
and reliability block diagrams (the first and the top levels). The reduction allows a simple
cooperation of both types of models (the hazard rates calculated using one model can be
easily used as the parameter of the other model and vice versa). MTTF of the TCS is
ca. 60,000 hours (ca. 6.7 years), but the model has been used also to predict MTTF of
the altered system using more dependable board-to-board communication. MTTF of the
altered TCS will be ca. 200,000 hours (ca. 23 years). TCS case study also show, that the
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inaccuracy of the full reduction does not need to be unsuitable for actual systems. The
relative error between the exact and the reduced failure distribution functions is low – it
does not exceed 35%, even though the full reduction is used.
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Chapter 5

Conclusions

5.1 Summary

This dissertation thesis presents simplified dependability models and methods for easier
dependability parameters computations. These models based on absorbing Markov chains
are able to model (self-)repairing capabilities and they can be used to create a hierarchical
dependability model of a system, thus they allow dependability parameters of large and
complex systems to be calculated without the state-explosion issues.

The proposed method also allows an absorbing Markov chain to be used as a block/event
of any type of dependability model, that can be used to calculate a hazard rate (reliability
block diagrams, stochastic Petri nets, dynamic fault trees, etc.).

The key step to create hierarchical dependability models based on Markov chains is the
proposed reduction method. The reduction is inexact, but pessimistic method allowing
the hazard rate of the block/system to be calculated. The partial reduction presented
in Section 3.2 is able to provide significantly more accurate results, but it can be used
only when the preventive maintenance is guaranteed, i.e. the modeled system will be
replaced/repaired before the end of the maintenance period of the system is reached. The
required period of the preventive maintenance is the result of the partial reduction, too.

The reduction and the principle of the hierarchical dependability models are applied on
the case study systems in Chapter 4. The dependable blocks used in the first system use
Two-out-of-two redundancy. The second system is based on blocks using Modified duplex
system redundancy. Both types of redundancies are related to dependability models of the
railway station signaling and interlocking equipment. The results show that the hazard
rate of the system can be calculated significantly faster using the presented reduction.
The speedup is important when the system contains many dependable blocks, because the
calculation of hazard rate using the non-hierarchical model of such system can become
computationally impossible in practice. The results also show the main disadvantage of
the reduction – the inaccuracy of the solution may not allow the results to be used in
practical applications.

The partial reduction shown in Section 4.3 is used to resolve the inaccuracy of the
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results. The same system with the same fault rate can achieve significantly better hazard
rates when the partial reduction is used. The partial reduction also allows a calculation
leading to guaranteed levels of dependability parameters at the cost of the reduced maximal
allowed operational time of the system.

The reduction has been also applied on the actual dependable track circuit system in
Section 4.5 to calculate the mean time to failure of the system. A simple cooperation of
several types of models (the hazard rates calculated using one model can be easily used as
the parameter of the other model and vice versa) has been presented. The model has been
used also to predict MTTF of the altered system using more dependable board-to-board
communication. The track circuit system case study also shows, that the inaccuracy of
the full reduction does not need to be unsuitable for actual systems, because the relative
difference is low, even though the full reduction is used.

5.2 Contributions of the Thesis

◦ The heterogeneous hierarchical dependability models allowing multiple types of de-
pendability models to be used in a model of a complex system.

◦ The dependability models reduction allowing inexact, pessimistic dependability para-
meters calculations to be performed in a few seconds – even in the case of large com-
plex systems, where the results of classical detailed models are practically unreachable
due to state explosion.

◦ The partial reduction allowing calculation leading to guaranteed levels of dependab-
ility parameters at the cost of the reduced maximal allowed operational time of the
system (mandatory preventive maintenance with the period calculated during the
partial reduction).

◦ Experimental verification of the presented methods on the model of the complex sys-
tem based on the real models of the railway interlocking equipment. The experiments
have shown, that the calculation time of the hierarchical model does not depend ex-
ponentially on the number of its blocks. They also shown, that the partial reduction
can be used to calculate the preventive maintenance period of the system, when the
requirement of its hazard rate is strictly defined (e.g. by international standards in
the case of the railway equipment safety-critical systems).

5.3 Future Work

The author of the dissertation thesis suggests to explore the following:

◦ The analysis of conditions leading to the nearly-exponential shape of the exact failure
distribution function of the system should be performed. This analysis could provide
us information, what kind of systems can be reduced using the full method without
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inaccuracy issues, and what kind of systems should be reduced using the partial
method.

◦ The accuracy of the partial reduction could be improved by multiple limit values.
The improved method could provide us information, how the hazard rate depends
on the preventive maintenance period of the system.

◦ The further increase of the number of the limit values (a limit value for each failure
distribution function sample) could allow us to calculate with variable hazard rates
of the blocks. This improvement could help us to overcome one of the disadvantages
of Markov chains – the requirement of constant intensity rates of all events modeled
by a Markov chain.

◦ The hierarchical dependability models will be applied to the FPGA-based safety-cri-
tical systems with realistic fault models based on realistic radiation exposure exper-
iments performed on real FPGA chips currently performed by colleagues from our
department.
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[29] Dobiáš, R.; Kubátová, H. The Common 2oo2 Safety Model for Signalling and Inter-
locking Equipments. In Electronic Circuits and Systems Conference, Slovak University
of Technology, 2005, pp. 81–84.
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[A.14] Borecký, J.; Kohĺık, M.; Kubátová, H. Miscellaneous Types of Partial Duplication
Modifications for Availability Improvements. In Proceedings of the 15th Euromicro
Conference on Digital System Design, pp. 79–83, Izmir, Turkey, 2012.

[A.15] Vı́t, P.; Borecký, J.; Kohĺık, M.; Kubátová, H. Fault Tolerant Duplex System with
High Availability for Practical Applications. In Proceedings of the 17th Euromicro
Conference on Digital System Design, pp. 320–325, Verona, Italy, 2014.

83


	Abbreviations
	Introduction
	Problem Statement and Motivation
	Contributions of the Thesis
	Structure of the Thesis

	Background and State-of-the-Art
	The Threats to Dependability: Failures, Errors, Faults
	Failures, Errors, Faults
	Fault Classification

	Dependability Basics
	Reliability
	Maintainability
	Availability
	Safety
	Dependability Oriented Continuous Probability Distributions

	Common Dependability Models
	Markov Chains
	Petri nets
	Reliability Block Diagrams
	Fault Trees
	Dependability Models – Summary


	Dependability Model Reduction Method
	Reduction Algorithm
	Partial Reduction Algorithm
	Reduction Illustrative Example
	Partial Reduction Illustrative Example
	Hierarchical Dependability Model and Reduction

	Case Studies and Their Results' Comparisons
	NMR-based Case Studies
	Two-out-of-two Block
	Modified Duplex System Block
	N-modular Redundancy

	Hierarchical Models
	NMR based on Two-out-of-two or Modified Duplex System Blocks
	Comparison of Runtimes
	Hierarchy Reduction Error

	Partial Reduction
	Time-limited Reduction
	Probability-limited Reduction
	Hazard-rate-limited Reduction
	Comparison of Partial Reduction Types

	Reduction Parameters Impact
	minStep
	Samples per decade

	Application to Track Circuit System
	Summary

	Conclusions
	Summary
	Contributions of the Thesis
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author

