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Jǐŕı Halák

A thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

PhD programme: Informatics

Prague, February 2013



ii

Thesis Supervisor:
Hana Kubátová
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Abstract

Many high-speed (10 Gb/s and above) network monitoring and traffic processing appli-
cations require hardware acceleration. Different applications require different functions
placed in hardware. Software solutions are mostly less reliable and require multiple PCs
and additional hardware to work without packet loss. Current packet capture cards in-
clude fixed firmware, which is difficult to extend. The extendable and scalable solutions
are desirable mainly for research purposes but also for real applications, which require
extendability or scalability.

The beyond high-definition video transfers and processing applications over the high-
speed Internet are still more demanded application. Remote cooperation all over the world
improves the completion time and reduces the resources required. The rapid development
of new applications and high network data throughput is the key element for uncompressed
transfers in the ultimate quality. The use of platforms and architectures already available
can greatly improve the future development of the new applications.

This dissertation thesis consists of selected publications by the author which address the
new architectures for network packet processing, especially reconfigurable module based
architecture for network packet processing and passive network monitoring, and describes
the extension of this architecture for video transfers and processing. I have presented
several practical experiments which evaluate the architecture and proposed techniques.

Keywords:
FPGA, Reconfiguration, Network packet processing, High-speed networks, HD-SDI,

Beyond-high-definition video, Video processing.
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Chapter 1

Introduction

This chapter gives an overview of the problems and presents contributions and structure
of the dissertation thesis.

1.1 Motivation

The main goal was to design an architecture for network monitoring purposes for speeds
starting at 10Gb/s, scalable to higher speeds and fully extendable by new features and
processing capabilities [D.1, D.2]. The available network processing architectures ended at
10Gb/s and even at this speed there were some throughput and processing problems. On
the other hand, there were several commercially available products that were fully opera-
tional at 10Gb/s, but were very expensive or without any possibility of user configurations.

Pure software solutions depend on the computer configuration and even now are still
mostly unable to process data at full 10Gb/s speed. Even with the best computer hardware
currently available, a single computer can hardly manage to process all data packets in the
10Gb/s Ethernet. In order to work without packet loss, software solutions require multiple
PCs and the additional hardware. Complex processing operations realized in software only
are not possible. Pure software solutions are still less reliable and mostly add unnecessary
processing latency.

In the later phases, the work started to focus on ultra-high-definition video transfers and
processing. Video transfers are an expected driver application area of the future Internet.
Picture resolution has been increasing over time. Ultra-high-definition video (such as 4K)
is already used in some areas, such as scientific visualizations, the movie industry, medical
applications or even CAVE-to-CAVE visualizations. I have discovered that the architecture
for network packet processing is also suitable for this area of expertise. This knowledge
resulted in additional work allowing us to extend the network packet processing architecture
for video data processing [D.3, D.4].

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem Statement

The high speed processing of network packets is generally a complex problem. It is hard
to process all data without any loses on data speeds of 10-100Gb/s, especially on com-
puter based systems. Hardware accelerated solutions are necessary for this task. They
are designed to fit perfectly the target application and to achieve the best performance
possible for current technology, mostly using highly parallel processing. On the other
hand, development of a hardware platform takes a long time even using FPGA chips and
any customization requires repeating a complex designing process. An easily customizable
hardware solution is highly demanded especially in research areas, which can greatly speed
up all designing processes [41].

1.2.1 Passive network monitoring and packet processing

In passive network monitoring, real user traffic is processed directly as opposed to active
monitoring, when injected test traffic is used. Passive monitoring allows us to detect
properties of real traffic, such as security attacks, traffic dynamics or real packet loss rate.
Packet traces are also a useful resource for networking research. Increasing the speed of
current optical networks demands proper monitoring of multigigabit lines.

Proper monitoring requires the processing of all incoming data packets, which means
processing the worst possible case that is a continuous stream of the shortest data packets
possible. The Ethernet standard defines the shortest possible packet as 64B long, but
shorter data chunks have to be noted. Those data chunks can be a sign of some line
problems or attack attempt. The most complex part of the Ethernet packet for processing is
a packet header. A Packet header contains all necessary information about the transported
data; packet body is mostly discarded except for string search or data intrusion and analysis
applications.

A simple header analysis of one packet cannot take longer than the real space between
two headers. In the worst case dealing with a continuous stream of 64B packets on 10Gb/s
line, every header must be processed in less than 67.2 nanoseconds [24].

64Bpacket + 8Bpreamble + 12Bgap = 84B = 14, 880, 952packets/s = 67.2ns/packet

Packet processing is even more time demanding because we need to process packet
header and make necessary changes, examine or even change packet payload data. The
processing speed has to be adjusted according to the worst possible scenario, all necessary
analysis and processing must be done within 67.2ns to process all packets without a single
packet loss.

1.2.2 Video packetization and processing

Video transfers are a more demanded application in the modern Internet. Streaming
in ultra high quality (more than HD or multiple streams, 3D, etc...) or even remote
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cooperation (where video is transported in both directions) together with a basic video
processing capability is becoming a common request of audio/video professionals. PC
based video software using a frame buffer which is packetized then sent to another side
and then depacketized to another frame buffer is slow, and the delay in communication
between two endpoints is mostly more than noticeable. Higher resolution video streams like
4K or 8K require multiple PCs to be even properly displayed. Dedicated Video processing
equipment becomes expensive. Designing a new video processing platform from start takes
a long time and modularity and scalability of this solution is not guaranteed. A new
approach, where video can be processed like network traffic is an interesting and easily
adaptable solution which can greatly improve video communication over a future Internet.

1.3 Contributions of the Thesis

The following contributions are described in Chapter 3.

Scalable embedded architecture for 10-100 Gb/s packet processing for FPGA
devices. I have proposed a new scalable and embedded architecture for network packet
processing intended for 10-100 Gb/s links. The architecture is designed for processing the
network packets at full speed at the worst case without a packet drop, which is possible
using the balance between clock rate, data width and pipelining level together with a simple
interface between plug-in modules for data processing. The architecture is designed to be
distributable between several FPGAs or in a single FPGA, thus allowing scalability even
if current FPGA technology cannot support the required resources. The main goals of
the architecture are a flexibility of target applications, easy extendability based on plug-in
modules and good availability for a high-speed network research community. The 10 Gb
implementation of this architecture was implemented by CESNET in a MTPP (Modular
Traffic Processing Platform) device.

This contribution was published in papers [D.1] and [D.2] included in this dissertation
thesis. Several results of this work were converted into patent [P.2].

Hardware modules for network monitoring on the MTPP platform. The MTPP
platform is a dynamically reconfigurable hardware platform for 10 Gb/s network packet
processing developed by CESNET, which is based on the architecture described in the first
contribution. I have proposed and implemented plug-in modules for the MTPP platform
allowing the use of the MTPP for a passive network monitoring. The set of modules
consists of standard and burst based statistical modules and modules for bit error rate
tests. The resulting monitoring solution is still being used in the CESNET2 network.

This contribution was published in papers [D.1] and [D.2] included in this dissertation
thesis.

Packet processing architecture for beyond-high-definition video transfers. I
have proposed an extension to the architecture described in the first contribution allowing
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to transfer and process beyond-high-definition video or several independent channels of
high-definition video. This new approach where video can be processed like network traffic
is an interesting and easily adaptable solution, which can greatly improve video commu-
nication over a future Internet. This work was adopted by the Czech Technical Agency
project POVROS, whose goal is to move the results of this research to the market.

This contribution was published in papers [D.3] and [D.4] included in this dissertation
thesis. Several results of this work are included in the utility patent [P.5].

1.4 Structure of the Thesis

My dissertation thesis is organized into 5 chapters as follows:

1. Introduction: Sets out the context of this thesis together with the goals. There is
also a list of contributions of this dissertation thesis.

2. Background and State-of-the-Art : Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.

3. Contributions : Summarizes the contributions of this dissertation thesis.

4. Conclusions : Summarizes the results of the research, suggests possible topics for
further research, and concludes the thesis.

5. Publications Included in Thesis : This section contains publications included in Dis-
sertation thesis.



Chapter 2

State-of-the-Art

This Chapter describes the theoretical background and related work. The theoretical
background Section explains the necessary terminology to understand the text. A reader
familiar with network packet processing, FPGAs and beyond-high-definition video can skip
this section. The Related Work Section introduces comparable or related work.

2.1 Theoretical Background

This Section explains the necessary terminology of network packet processing, FPGAs and
beyond-definition video transfers and processing.

2.1.1 Ethernet Packet Processing

Ethernet [24] data is encapsulated in frames as shown in Figure 2.1. The fields in the frame
are transmitted from left to right. The bytes within the frame are transmitted from left
to right (from least significant bit to most significant bit unless specified otherwise). All
frames in the Ethernet networks [24] consist of preamble, SFD(Start of Frame Delimiter),
header, data and CRC sections shown in Figure 2.1. Preamble and SFD are the unique
set of bits beginning Ethernet packet. In the header, there is information about the packet
such as source and destination address, protocol type, packet length, etc. The data section
is the body of the packet, which is carrying the data that has to be transported. The CRC
section contains 32-bit CRC checksum of the packet to discover corrupted packets caused
by errors in communication medium and transceivers.

In packet processing, we are interested in the packet content and information about the
packet. The control parts of the packet such as preamble, SFD and CRC should be taken
care of automatically. According to the ISO/OSI standard [23], the control parts of the
packet are available only on the physical layer, which purpose is to make a general network
interface to all types of communication medium. To provide a higher level of abstraction
we can use the Media Access Layer(MAC) that removes the preamble, checks the CRC on
the receiver side, adds preamble and computes the CRC on the transmitter side. On the

5
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Packet Data

Start of frame delimiter

Preamble Packet Header CRC Field

7 bytes 14 bytes 46−1500 bytes 4 bytes1 byte

Figure 2.1: Ethernet Packet Structure.

Formats Standard

HD SMPTE 274M-2008 [20]
UHDTV1, UHDTV2 SMPTE 2036-1-2009 [22]
2K, 4K, 8K Multiple standards SMPTE 428-x-20xx [6]

Table 2.1: Video standards

MAC layer, we work only with the packet content. At this point, we do not require more
abstract approach, which is provided by upper layers defined in the ISO/OSI standard [23].
The packet content is only the packet header and packet body with the transported data.
Therefore, when analyzing contents of the packet stream, we can work on the MAC layer.
However to analyze line errors on the network, we should work on the physical layer. When
transmitting new packets there is the same choice. When we need to generate only the
packet content, we can use the MAC layer. However to generate packets in any condition
such as bad CRC, corrupted data or to simulate the network problems, we have to work
on the physical layer.

2.1.2 High-definition and beyond-high-definition video

When dealing with high-definition(HD) or ultra-high-definition(UHD) video, we work with
image resolution 1920x1080 pixels or better. The standardized image resolutions for HD
and UHD videos are described in Figure 2.2. The video standards are produced by the
Society of Motion Picture & Television Engineers (SMPTE). The standards are basically
divided to television standards and digital cinema standards. Television resolution starts
at a common HD resolution and rises with multiplication of HD screens to UHDTV1 and
UHDTV2. Digital cinema common HD resolution is 2048x1080 and is marked as 2K, which
is the number of video columns, and is further scaled by the multiplication of 2K screens
to 4K or 8K. Images can be progressive or interlaced with a variety of frames per second.
Video resolutions with corresponding standards are summarized in Table 2.1

There are several standard video interfaces for uncompressed video. The most common
are Digital Visual Interface (DVI) [8], High Definition Multimedia Interface (HDMI) [11]
and Serial Digital Interface (SDI) [19, 1]. DVI is a video display interface developed
by the Digital Display Working Group. The digital interface is used to connect a video
source to a display device, such as a computer monitor. HDMI is a compact audio/video



2.1. THEORETICAL BACKGROUND 7

HD (1920x1080)
2K (2048x1080)

UHDTV1 (3840x2160)
         4K (4096x2160)

UHDTV2 (7680x4320)
         8K (8192x4320)

Figure 2.2: High-definition and Ultra-high-definition image formats.

Interface data rate best format Standard

HD-SDI 1.485 Gbit/s 2K YCrCb SMPTE
292M [1]

Dual link HD-
SDI

2.970 Gbit/s 2K RGB SMPTE
372M [7]

3G-SDI 2.970 Gbit/s 2K RGB SMPTE
424M [21]

Table 2.2: SDI interface standards

interface for transferring encrypted uncompressed digital audio/video data between the
HDMI-compliant devices. SDI is a family of video interfaces standardized by SMPTE.

Although the data is transported in the comparable way on all interfaces, we have cho-
sen the SDI interface. The use of SDI for the transmission of high definition video streams
is now a common industry practice. The interface is designed for video and audio trans-
missions and supports all variety of encryption methods. SDI standards are summarized
in the Table 2.2

The emerging interface, commonly known in the industry as Dual Link HD-SDI essen-
tially consists of a pair of HD-SDI links. A more recent interface 3G-SDI consists of a single
2.970 Gbit/s serial link will replace the Dual Link HD-SDI in the future. A single HD-SDI
link can transfer HD video only in 10-bit YCrCb format in 4:2:2 color subsampling. Dual
Link HD-SDI and 3G-SDI can transfer up to 12-bit RGB in 4:4:4 or two single HD-SDI
channels which can be independent or synchronized for 3D video. Higher resolutions are
transferred using the multiple HD-SDI links which match the required throughput. For
example, 4K video in YCrCb 4:2:2 can be transferred by 4 HD-SDI channels (one for each
image quadrant) and 4K in full RGB color precision can be transferred by 8 HD-SDI chan-
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nels or 4 Dual Link HD-SDI, 3G-SDI channels. More information about color subsampling
and precision can be found in [1].

2.1.3 Programmable Hardware and FPGAs

FPGAs(Field Programmable Gate Arrays) [35] are considered to be the most advanced
programmable hardware. Programmable hardware as opposed to dedicated hardware is
defined as a hardware part or a chip with some method of user configuration. The dedicated
hardware is designed for a specific operation or a set of operations that cannot be changed.
On the other hand, the primary target of programmable hardware is general usage and
user configuration, which enables the user to define his own behavior. The most obvious
programmable is a processor, which is a single hardware device allowing countless user
defined functionalities.

The basic concept of programmable hardware reaches far beyond processor cores. Pro-
grammable gate arrays are the chips containing a universal set of basic hardware compo-
nents (gates) that can be arranged by the user to form the dedicated hardware circuit.
They consist of set of universal components and general routing matrix. The device con-
figuration is being held in a memory, which is directly connected to the routing matrix
and basic components. Using this kind of programmable hardware, the user can form any
hardware functionality, even a full featured processor core. Most of the modern hardware
devices directly contain one or more processor cores.

FPGAs are the most advanced programmable gate arrays. FPGAs contain pro-
grammable logic components called logic blocks and a configurable routing matrix which
allows the blocks to be connected together in many different configurations. Logic blocks
can be configured to perform complex combinational functions, or merely simple logic
gates like AND and XOR. In most FPGAs, the logic blocks also include memory elements,
which may be simple flip-flops or more complete blocks of memory. In addition to digital
functions, some FPGAs have analog features. The most common analog feature is pro-
grammable slew rate and drive strength on each output pin, or differential comparators on
input pins designed to be connected to differential signaling channels. Some FPGAs have
integrated peripheral Analog-to-Digital Converters (ADCs) and Digital-to-Analog Con-
verters (DACs) with analog signal conditioning blocks, and the most advanced FPGAs can
contain the dedicated hardware blocks like digital signal processing blocks, processor cores
or physical layers for numerous communication interfaces.

2.1.3.1 Dynamic Partial Reconfiguration

Dynamic partial reconfiguration (DPR) is a process when only part of an FPGA config-
uration is modified [32, 38]. It is possible to modify part of an FPGA configuration in
runtime without shutting down an FPGA operation, provided that the part we are modi-
fying is not used during the upload of the modified part. Otherwise, the design can behave
unpredictably during reconfiguration. We have chosen Xilinx FPGAs for their good DPR
support and many available development board types.
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for slot 1
Plugable modules

for slot 3
Plugable modules

for slot 2
Plugable modules

FP
G

A

Module slot 2

Module slot 3

Module slot 1

Figure 2.3: Reconfigurable Modules.

The partial reconfiguration can be realized in three different ways: the differential
partial reconfiguration, the modular partial reconfiguration [26, 25] and the par-
tition based reconfiguration [27].

In the differential approach, the reconfiguration is done using the differential bitstream.
This bitstream contains only the changes between the old and the new configuration.
When this bitstream is loaded into the FPGA with the old configuration it changes to
the new configuration. The main purpose of this technique is the small change in the
FPGA configuration. It cannot be used definitely to change the routing on the chip, and
extreme caution has to be used to prevent unpredictable behavior during the application
of a bitstream.

In the modular approach, rectangular areas are reserved on the chip. The part of the
design that remains unchanged all the time is called fixed design and it has to be able
to handle the reconfiguration process without collapsing. The part of the design reserved
for reconfiguration is called the reconfigurable area and it has to be strictly divided
from the fixed design. Design flow tools cannot use the reserved place, so it remains empty
(except for some global clock resources or dedicated routing, which can mostly cross this
area). The only way of fixed and reconfigurable design interconnections are the CLBs. The
reserved reconfigurable area is called a module. The restrictions for the modules creation
differ for every FPGA vendor and family so special care must be taken to implement the
modular design correctly for the desired FPGA architecture. The use of reconfigurable
modules is illustrated in Figure 2.3.

For every module the same number of bitstreams are generated as the number of module
slots. This way every module can be inserted to every slot.

Partition based reconfiguration is a modern approach but also a special case. Imple-
menting a partially reconfigurable FPGA design is similar to implementing multiple non
partially reconfigurable designs that share common logic. Partitions are used to ensure
that the common logic between the multiple designs is identical. A partition is a logical
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section of the design, defined by the user at a hierarchical boundary, to be considered for
design reuse. A partition is either implemented as new or preserved from a previous im-
plementation. A partition that is preserved maintains not only the identical functionality
but also the identical implementation. Partition based can be considered a special case of
the modular approach. Partitions allow more flexibility in available resources for recon-
figurable regions but the need of full bitstream for every configuration is very limiting for
large reconfigurable architectures with many reconfigurable modules.

2.2 Related Work

This Section introduces comparable or related work, and the advantages of the presented
architecture.

2.2.1 Network packet processing

This Subsection introduces the related work in network packet processing. The main
difference of the presented architecture between all the related work is that data processing
in the presented architecture is only hardware based, and the main processing core is
designed for a maximum data throughput and a processing strength. As such, it was
not designed to send the data for further analysis to the PC (even if this modification is
possible), but was designed for the main network nodes or high speed backbones networks.

2.2.1.1 NetCOPE platform

The NetCOPE platform [4], which is a part of the Liberouter [3] project is a realization of
a general platform for the rapid development of network applications [44] on the family of
COMBO cards. The proposed platform includes network interface blocks (1G/10G Ether-
net), high-speed programmable bus-master connection to the software layer via PCI-X or
PCI Express bus and a generic interface to a potential hardware accelerator for network
processing. The generic data transfer protocol between the network and co-processor inter-
faces allows for an easy integration into the target application. The platform further offers
a set of IP cores usable as basic building blocks for a wide range of network applications,
including cores for packet analysis, classification, packet modification, precise timestamps,
pattern matching, statistics etc.

NetCOPE is not a physical platform but a set of IP cores for easy assembling of new
applications based on a COMBO card. This solution offers high universality and flexibility
but requires a PC and dedicated software. The COMBO cards were tested under the
CESNET Performance Monitoring Project [5].

The main differences of the presented architecture are:

1. The presented architecture is primary designed to be extremely simple and allow
the high data throughput which is only limited by the actual network bandwidth.
The NetCOPE platform may be more universal allowing better hardware/software
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co-design but has some limitations in strictly performance demanding applications,
which was tested under CESNET Performance monitoring project [5].

2. The presented architecture is modular based with a highly customizable modular
processing unit, which allows easy functional extendability and future development.
The DPR also allows much faster development because the fixed part of the design
can be supplied as a binary bitstream.

3. The presented architecture is a standalone solution which does not require a PC, this
also includes a focus on the different applications than a PC based card.

2.2.1.2 FPX platform

The platform is described in [36]. It is an open platform for development of network
processing modules in reprogrammable hardware. The platform is based on the FPGA
chip with dynamic partial reconfiguration. The platform includes an interface for 1Gb
Ethernet and is intended for easy development of new network processing applications at
a speed of 1Gb/s.

The FPX platform was used for the implementation of many applications such as packet
analysis, cryptography, packet modification, etc [34, 40, 36, 30]. This architecture was de-
signed for lower speeds so is not optimized for multigigabit data flows. My approach,
described in 3.1, is directly focused on the high data throughput and pipelined data pro-
cessing in multiple independent modules.

2.2.1.3 NetFPGA platform

The platform is described in [37]. It is a network platform for the academic community,
which allows faster development of applications for multigigabit networks. The basic se-
lection is similar to NetCOPE platform. The NetFPGA platform is also a set of cores
which can be used for the development of network applications. The platform also has a
hardware part, which is a PCI-E board dedicated for this purpose. The differences between
this approach and my approach are the same as of the NetCOPE platform, although it
is well designed for the computer aided data analysis, my approach is dedicated for high
performance applications. The NetFPGA platform focuses more at multiple 1Gb/s links.
The example application running at the NetFPGA platform is a SwitchBlade [28].

2.2.1.4 Scalable Multi-FPGA platform

Scalable Multi-FPGA platform [39] is similar to the presented architecture. It is focused
on high compute power to perform complex real-time processing of network packets. The
architecture is designed as a scalable multi-device system which support any number of
FPGAs connected to the ring. The current prototype is distributed in four FPGAs con-
nected to a ring. This platform focuses on processing of the higher network level protocols.
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There are defined several plug-in modules per FPGA which can implement a processing
function.

This solution is very similar to the presented architecture except that it is focused more
on higher network protocol levels. However this architecture is younger than the presented
architecture and the presented architecture is oriented for more applications, which is
proved by the third contribution, which adapted this architecture for ultra-high-definition
video processing.

2.2.1.5 Endace Products

Endace [9] produces network traffic monitoring technology. It provides network monitoring,
latency measurement and application solutions to capture, inspect and report on data
packets on speeds of up to 10Gb/s. Endace uses combined software and hardware solutions.

In most solutions, PCI Express cards with FPGA chips are used to capture packets, or
optionally make a simple filtering or classification, and store them to the computer memory.
All other processing is done in software. This solution depends on the performance of the
host computer. An accelerator is used to transport data to the computer memory with the
lowest possible CPU usage. Therefore the host computer has to process incoming packets
at full speed.

This solution can be used as accelerated network card with filtering and classification
options. With the combination of software tools wide range of applications can be created.
The applications performance depends on the performance of selected software tools. The
hardware cards and software tools were tested under the CESNET Performance Monitoring
Project [5]. The hardware accelerated cards can store packets from 10Gb Ethernet at full
speed to the computer memory but currently there is no way to process all packets in
software without any losses.

2.2.1.6 Network analyzers

Network analyzers are commercial equipment capable of the massive processing power
required to process the data at the full speed on the optical networks at the speeds of up
to 100Gb/s [13, 10]. Their major disadvantage however is almost zero extendability and
no means of user own configuration. The implementation of any additional functionality is
also not possible. The analyzers are mostly larger than a common computer and multiple
time more expensive than the presented solution.

2.2.2 Beyond-high-definition video transfer and processing

This Subsection introduces related work in beyond-high-definition video transfer and pro-
cessing. The presented architecture is a new approach and as such there are only a few
comparable solutions. The main advantage over all existing solutions is that the presented
architecture is based on the network packet processing architecture and was not developed
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as video processing architecture from the start. This proves the universality and extend-
ability of the network packet processing architecture described in the first contribution and
shows a new and simpler way designing a video transport and processing equipment which
operates over the standard Ethernet Network. The target application of this approach is
not a single HD or UHD transfer or a compressed video transfer (even if it is also capable to
do so) but a massive multichannel UHD or HD transfer in ultimate uncompressed quality,
and processing at the maximum possible network speed which may be 10Gb/s or above.

2.2.2.1 UltraGrid

UltraGrid [33] from the Laboratory of Advanced Networking Technologies (ANTLab) is a
software implementation of high-quality low-latency video and audio transmissions using
commodity PC and Mac hardware. This software is beeing developed with the cooperation
of CESNET and Masaryk University in Brno. UltraGrid uses uncompressed or very low
compression-ratio streams to achieve up to 4K resolution with as low as 100ms end-to-end
latency. UltraGrid is used, amongst others in areas like collaborative environments, medical
cinematography, broadcasting applications and various educational activities. Ultragrid
software currently supports many advanced functionalities, such as 3D support or SAGE
support. This solution is fully software based and requires a dedicated PC with specialized
hardware.

The main differences between Ultragrid and the presented solution is:

1. UltraGrid is a software solution and as such is greatly dependent on the computers
performance. UltraGrid is capable of uncompressed 4K transfers and is currently
being tested for 8K or SHV. The software however is greatly dependent on dedicated
PC hardware and the complex setup requires several PCs with dedicated hardware
on each side.

2. The presented architecture is a pure hardware solution which allows multigigabit
speeds of 10Gb/s and above in one small size device.

3. The presented hardware based architecture can process video with the lowest latency,
which will be always several times lower than for PC based applications.

2.2.2.2 Professional industrial equipment

Net Insight’s [17] Nimbra 600 series switch can transport 8x HD-SDI or 3G SDI channels
over an SONET/SDH network. There are several commercially available solutions for
transport of compressed 4K video over the Internet, for example NTT Electronics [18]
ES8000/DS8000 4K MPEG-2 encoder/decoder complemented with NA5000 IP interface
unit and intoPIX’s [12] system of PRISTINE PCI-E FPGA boards and JPEG 2000 IP
cores.

NTT Electronics have also presented several articles [42, 43] about their technology and
several new products which are capable of transmitting the 4K video over the IP network
even from multiple locations.
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The main advantages of the presented architecture over the available equipment:

1. The presented architecture is designed for high data rates which allows the uncom-
pressed transfer of multiple channels. The bandwidth is only limited by actual net-
work bandwidth up to a multigigabit speed of 10Gb/s and above.

2. The presented architecture is modular based which allows easy functional extend-
ability and future development.

3. The hardware based uncompressed transfer adds only a minimum processing latency.

4. The original concept of modular network processing architecture extends the possible
functionality base.

5. The presented architecture is an easy adaptable solution for the research community.

2.3 Summary

The listed network packet processing architectures are currently very similar and offer
rapid development of networking applications, high versatility and performance. When the
project started, there was no available architecture with a guaranteed wire-speed through-
put for 10Gb and above although they were more versatile. The current situation is much
more balanced, and all architectures are almost equal in performance, extendability and
rapid development of user applications. The proposed architecture was designed primarily
for the wire-speed throughput of beyond 10Gb/s and plug-in based hardware modules for
rapid development of user applications which was not possible with the available network
processing solutions. Even now the proposed architecture offers comparable quality to
other solutions and excels in throughput, which was the original goal.

The situation in video transfers and processing technology where the presence of similar
architectures is missing, allowed the extension of the network processing architecture for
video transfer and processing. The video processing applications do not offer the same
portfolio of platforms and architectures which would allow the easy development of user
applications and provide a stable base for further research. The resulting architecture
inherits all the advantages of the network processing architecture without the need of
developing a dedicated video processing solution. Moreover, the current solutions are
mostly limited by the network capabilities and data throughput for the uncompressed
video, which can be easy covered by the proposed architecture.



Chapter 3

Contributions of the Thesis

This Chapter gives the overview of contributions presented in this dissertation thesis. Every
Section in this Chapter gives an overview of one contribution of this Dissertation thesis.
The published results are attached in Chapter 5.

3.1 Scalable embedded architecture for 10-100 Gb/s

packet processing for FPGA devices.

I have proposed a new scalable and embedded architecture for network packet processing
intended for 10-100 Gb/s links. The architecture is designed for processing the network
packets at full speed at the worst case without a packet drop, which is possible using
the balance between clock rate, data width and pipelining level together with a simple
interface between plug-in modules for data processing. The architecture is designed to be
distributable between several FPGAs or in a single FPGA, thus allowing scalability even
if current FPGA technology cannot support the required resources. The main goals of
the architecture are a flexibility of target applications, easy extendability based on plug-in
modules and good availability for the high-speed network research community. The 10 Gb
implementation of this architecture was implemented by CESNET in a MTPP (Modular
Traffic Processing Platform) device.

This contribution was published in papers [D.1] and [D.2] included in this dissertation
thesis. Several results of this work were converted into patent [P.2].

3.1.1 Background

We required an architecture mainly focused on the throughput, which was not the common
cause when this architecture was proposed. The resulting architecture must be simple, well
scalable and extendable. I have chosen the series-parallel partial order for the composition
of basic processing modules. In order-theoretic mathematics, a series-parallel partial order
is a partially ordered set built up from smaller series-parallel partial orders by two simple

15
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Figure 3.1: Modular processing core.

composition operations [29]. This technique has been already used in other areas for
throughput maximization such as dataflow programming [31].

This component composition is perfectly scalable and extendable, also when using
identical components, they can be changed freely for each other, which can greatly improve
the configurability of the whole composition. I have adapted this model for the main
processing core of the proposed architecture fulfilling the primary requirements for the
resulting architecture.

3.1.2 The Architecture Overview

The architecture is divided to the two main sections. The static section and the modular
processing core.

The modular processing core is the scalable processing core of the architecture. It is
composed of the basic modules, each with the same unified and well defined interface and
specific function.

The static part of the architecture consists of the static elements such as the processor
unit, data interfaces or communication interfaces. The static elements are marked as
static because they are not scalable or reconfigurable in any way and are static for all
configurations of the architecture. The embedded processor system handles the device
configuration and the user communication interfaces.

The main modular processing core is designed for maximum throughput and processing
strength. The overview of this architecture is described in Figure 3.1. The modules are
assembled to a number of parallel processing lanes, each lane containing several processing
modules. The scalability and processing strength depends on the organization and the
number of hardware modules. The number of modules (m) is the number of modules in
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Figure 3.2: Buses for module interconnection.

every processing lane. The larger m increases the number of modules processing one data
stream. One module can be implemented as a standalone function; thus more processing
functions can be applied to the data stream. The number of parallel processing lanes (l)
increase the data width which can be processed, increasing the throughput of the processing
core. The scalability of the processing core is in two ways: Throughput (by increasing the
parallelism) and the number of functions which can be applied to the data stream (by
increasing the number of modules in a single lane).

The modules in every lane are connected with three buses; every bus has its specific
function. The overview of the module interconnection is described in Figure 3.2. The
most important is the fact that all connections can be made one-way, which simplifies the
processing core scalability and allows mode pipeline depths.

Data Stream (DS) is a main processing bus which transports the data that needs to be
processed which are the network packets in our case. The hardware modules are inserted
directly into the data stream. Data can be processed, analyzed or remain unchanged. The
only limitation of this approach is that precautions must be taken during the development
of new modules to ensure that the data is properly passed to the next module.

Command Bus (CB) is the communication one way interface, which allows the sending
of some additional information to the next module. At the fastest possible processing speed,
there is no place in the data stream to insert any additional control data or commands for
the next modules. This bus allows every module to attach any message or command which
should be passed to the next modules. The following modules can read those messages
and behave accordingly or ignore them. The example of the usability of command bus is
the header analyzer which analyzes and qualifies the data packets. The packets cannot be
altered; thus the gathered informations, which will be used by the next modules in a row,
will be sent on the command bus.
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Figure 3.3: Plug-in Modules in Packet Stream.

Local Bus (LB) is the processor communication interface. It is accessed through the
PLB to the local bus bridge, which translates the PLB transactions to the one-way commu-
nication through the modules. The advantage of this interconnection is that the number of
modules connected to the local bus is not limited. The only limitation is that the latency
of every PLB transaction is equal to the number of modules (m), which has almost no
impact on the PLB performance considering the processor type and speed which is used
in this application.

Custom hardware acceleration modules are based on Dynamic Partial Reconfiguration
of FPGAs described in Section 2.1.3.1. It allows us to use many different hardware modules
with a wide area of functionalities that can be freely combined and assembled building a
final desired functionality. The whole situation is described in Figure 3.3. The modules
have to forward the packet stream to the next module. The registers have to be inserted
between the plug-in modules to make a pipeline in the stream. Those registers have an
important function. They create slots for the plug-in modules which is synchronized by
the packet stream clock frequency. Therefore, max combinational path cannot be longer
then the longest path in the module and the packet stream timing do not depend on the
module timing. It is an advantage of the new plug-in module developement that care must
be taken only for the plug-in module timing.
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Figure 3.4: Packet stream processing in parallel lanes

3.1.3 Processing in parallel lanes

The tested speed for the data processing for one lane is about 10Gb/s, which can be
achieved by clock frequency 156,25Mhz and 64 bit data width. The data processing for
speeds above 10Gb/s is possible in the following ways:

• Increase the clock frequency. Can be doubled in modern FPGAs.

• Use wider data width. This depends on available FPGA resources. Although FPGA
resources are practically unlimited, reasonably implementable data width in modern
FPGAs can be up to 256 bits.

• The last possibility for speed increase is the processing in parallel lanes.

Data processing at speed of 40Gb/s can be achieved by higher clock frequency (max 2x
10Gb clock frequency) or wider data width (up to 4x 10Gb data width). This information
was obtain experimentally using the best FPGA chips from Xilinx Virtex-5 series [A.7].

The higher speed of up to 100Gb/s requires additional processing parallelism. Another
way of improving the data throughput is processing the data in parallel lanes. The high-
speed base packet stream is first demultiplexed into several parallel lanes and at the end
multiplexed back together into main high-speed packet stream as shown in Figure 3.4.
With an increasing number of parallel lanes the area in the FPGA for every lane decreases.
Therefore larger FPGA have to be used to keep the same area available for every lane,
optionally using more FPGAs for additional resources.

3.1.4 Resource distribution across the FPGAs

All high-speed paths in the architecture are generally data packet streams which can be
redirected to another FPGA through the High-speed serial interface. The number of those
redirections depend on available high-speed serial interfaces of current FPGAs. This means
that we can use additional FPGAs for several enhancements which cannot be fit to a single
chip because of e.g. technology limitations.
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The static parts of the architecture must always occupy the single master FPGA.
The static part is everything except the processing modules. The main multiplexers and
demultiplexers of the processing core which allow the use of more parallel lanes must be
also located in the master FPGA. The static part is however very small compared with
the processing core and even the smallest available FPGAs can be used for them.

The module(s) relocation can be done in a following ways:

• Reroute the high-speed path between modules. This feature allows us to relocate
one or more reconfigurable modules to another FPGA. Complex, resource demanding
modules may require this feature to overcome actual technology limitations.

• Reroute one or more parallel processing lanes. When the implementation of addi-
tional processing lanes is required and there are no available resources, one or more
processing lanes can be implemented in another FPGA.

3.1.5 Summary

The presented architecture has several advantages over other commercial and research
solutions described in Chapter 2.2.

The architecture is designed with the main goal of maximum throughput. Multiple ap-
plications can be built with the use of a few reconfigerable modules or by simply developing
new modules without the need of complex knowledge about FPGAs and multigigabit-speed
networks. This architecture can virtually exist over more FPGAs or it can be moved to a
single FPGA when technology moves forward. The source code base, including modules,
can be relatively huge but still able to adapt to a currently required solution. There can
be a subset of functionality loaded to an FPGA and other unused modules and config-
uration can be stored in external memory and loaded on demand using FPGA Partial
Reconfiguration.

All modules have the same, simple and well-defined interface, it is much easier to
develop a new module with the unified interface than to extend a monolithic design or a
design where modules have different interfaces or depends on other parts of the system.

3.2 Hardware modules for network monitoring on the

MTPP platform.

The MTPP [14] platform is a dynamically reconfigurable hardware platform for 10 Gb/s
network packet processing developed by CESNET, which is based on the architecture
described in the first contribution. I have proposed and implemented plug-in modules for
the MTPP platform allowing the use of the MTPP for a passive network monitoring. The
set of modules consists of standard and burst based statistical modules and modules for
bit error rate tests. The resulting monitoring solution is still being used in CESNET2
network.
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This contribution was published in papers [D.1] and [D.2] included in this dissertation
thesis.

3.2.1 The MTPP platform and passive monitoring

MTPP platform is a dynamically reconfigurable hardware platform for 10 Gb/s network
packet processing developed by CESNET. The device uses FPGAs dynamic reconfiguration
and is designed for rapid development of high-speed network packet processing applications.
Received packets can be preprocessed in MAC, can have a timestamp attached, or left
intact, then they follow to a set of reconfigurable plug-in modules for packet processing.
At the end packets can be also post-processed by MAC layer or left intact. I have designed
several hardware plug-in modules for MTPP which allow several passive monitoring tasks
at full 10Gb/s speed.

3.2.2 Monitoring modules

The hardware modules for passive network monitoring consists of three standalone mod-
ules:

Network statistics. This module stores the statistical information about incoming
packets. It provides a number of packets in several predefined groups and a number of
bytes in the corresponding group. Groups are divided into: short frames (shorter than
64B), standard frames (64B-1518B), jumbo frames (1518B-9018B) and super jumbo frames
(longer than 9018B). Standard frames are further divided into more groups. Statistics for
every group is stored into two independent memory banks, which allows the data to be ex-
tracted atomically. The module can also track bad CRC checksums or network line errors
reported by the physical layer.

Traffic Burst Quantization. This module gathers the statistics about packet bursts.
Several groups of burst lengths can be configured along with the maximum inter-burst gap.
The inter-frame gap longer than the inter-burst gap divides the required bursts. For every
defined burst-length category, the number of bursts, the number of packets in all bursts
and the number of bytes in all bursts is stored. Statistics for every group is stored into
two independent memory banks, which allows the data to be extracted atomically. This
module enables a better statistical overview of the monitored traffic because data bursts
mostly contains related data.

Bit Error Rate Tester This module is used for bit error rate (BER) testing of selected
lines. The advantage over the standard BER testers is that this module can packetize
the test patterns. Test pattern is divided into pre-configured frames which can have their
own headers and CRC checksums allowing them to pass through switches and routers.
The Ethernet header is mostly sufficient, but the module allows fully customized header
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Figure 3.5: Monitoring of traffic dynamics, packet sizes and errors with MTPP support

including higher level layers such as TCP/IP or UDP. This feature enables BER checking
of the dedicated lines even with active elements. All active elements in the line must be
configured to pass bad CRC frames or recalculate the CRCs or the measurement will be
in-accurate caused by the loss of dropped packets.

3.2.3 Summary

I have proposed and implemented hardware plug-in modules for MTPP which enables
passive network monitoring on this device. Monitoring modules works at full throughput
of MTPP which allows them to process all data at full 10Gb/s at the worst case. The
resulting monitoring solution is still being used in the CESNET2 network [16]. The example
of monitoring output is shown on Figure 3.5.

3.3 Packet processing architecture for beyond-high-

definition video transfers.

I have proposed an extension for the architecture described in the first contribution allowing
the transfer and process beyond-high-definition video or several independent channels of
high-definition video. This new approach, where video can be processed like network
traffic, is an interesting and easily adaptable solution which can greatly improve video
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communication over a future Internet. This work was adopted by the Czech Technical
Agency project POVROS, whose goal is to move the results of this research to the market.

This contribution was published in papers [D.3] and [D.4] included in this dissertation
thesis. Several results of this work are included in the utility patent [P.5].

3.3.1 Background

The architecture for the network packet processing described in the first contribution is
based on the series-parallel processing model. The common series-parallel model is also
used in video processing applications where maximum throughput and processing strength
is desirable. Our goal was to design an architecture for video transfers and processing
over the standard Ethernet network. The main goal of the architecture should be good
scalability and extendability to higher resolutions and frame-rates along with the maximum
throughput and minimum added processing latency in the video channel. Video is preferred
in the uncompressed state which offers the ultimate quality and is also commonly used in
movie post-production, where the work with compressed video would decrease the quality
of the final product.

The series-parallel processing model is already used in video and computer graphics
processing. On the other hand, our solution is primarily designed for the Ethernet networks.
This presumptions indicate the possibility of using previously proposed architecture, which
was intended for network packet processing, for video transfers and processing. If the
architecture can be easily adapted for this task, the future development of video processing
applications can be greatly reduced using the already designed approach. Plus the use of
the network packet processing architecture for video data transfer and processing will open
a new way of video applications development focused on the high data volumes with the
lowest possible added latency.

3.3.2 The Architecture Overview

The embedded architecture for real-time video transport and processing is based on the
scalable architecture for network packet processing described in Section 3.1. This whole
architecture operates at network clock domain of attached network interface and can be
used for various modular data packet processing. Since a video signal consists of special
packets, we can make a simple conversion transporting the video packets to a network
clock domain and back. This way we can use a network packet processing architecture for
video packet processing.

3.3.3 Video packetization architecture

The HD-SDI interface has a defined structure [1], but not all data needs to be transferred.
Video rows include blanking areas (horizontal blanking interval) and a video frame includes
blanking video rows (vertical blanking interval). The whole situation is illustrated in Fig-
ure 3.6. Blanking areas can contain some secondary information such as audio, encryption
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Figure 3.7: Input video packetization and connection to packet processing for 4 channels.

or video format specification, which we can choose to transport or not. The video rows,
including all additional data, start with a specified header and end with a CRC checksum;
thus we can process them as if they are separated data packets. Those packets can be
properly extracted and converted to the Ethernet packets. We can only focus on HD-SDI
interface because Dual Link HD-SDI and 3G-SDI links consists of two separate HD-SDI
links. We can process only HD-SDI data and optionally bind them together to Dual Link
HD-SDI or 3G-SDI interface. One HD-SDI channel can transport only one 2K or HD
channel, but for higher resolutions, several identical channels are used.

Video packetization is a conversion between video and network packets, allowing video
data to be processed in the network packet processing modules. There is input packetiza-
tion and output video de-packetization, shown in Figures 3.7 and 3.8.

The input packetization consists of the video input interface and the frame decoder. The
video input interface implements low-layer communication with the HD-SDI. The frame
decoder extracts video packets, converts them to network packets and attaches headers with
video format parameters. The output de-packetization consists of the video frame generator
and the video output interface. The frame generator receives network packets and generates
valid image to the video output interface based on information contained in network packet
headers. Clock domain boundaries are crossed using a dual-port memory configured as a



3.3. PACKET PROCESSING ARCHITECTURE FOR BEYOND-HIGH-DEFINITION VIDEO TRANSFERS.25

packet FIFO. The video (de)packetization is located in the HD-SDI clock domain and
the network packet processing modules are located in the network clock domain. The
example configuration in Figures 3.7 and 3.8 includes four HD-SDI channels. The channels
are independent and can be added freely just with a simple modification of the channel
multiplexer. This operation can be completely parameterized.

3.3.4 Video Data Packetization

The HD-SDI channel has a bit rate of 1.485 Gb/s. Only six full single HD-SDI channels
can be processed with 10 Gb/s architecture. When we need to focus on 4K video, we need
to process up to 8 channels for RGB 4K or 3D YCrCb 4K video. When we strip video
packets of blanking intervals, we get a bit rate between 1 Gb/s and 1.3 Gb/s depending
on a picture resolution and frame rate. This means that the 10 Gbit Ethernet network can
transfer up to eight HD-SDI video channels and with some video formats even including
additional data, such as audio or encryption information.

The example bitrates of eight channels of selected video formats stripped of blanking

Networkclockdomain HD−SDIclockdomain

HD−SDI

HD−SDI

HD−SDI

HD−SDI

Videooutput
interface

Videooutput
interface

Videooutput
interface

Videooutput
interface

Frame
generator

Frame
generator

Frame
generator

Frame
generator

Output
FIFO

Output
FIFO

Output
FIFO

Output
FIFO

O
ut
pu
tm

ul
tip
le
xo
rFromnetwork

packet
processing

Figure 3.8: Output video packetization and connection to packet processing for 4 channels.

Table 3.1: Video formats bitrates
Format Bitrate eight channels

(Gb/s)
Bitrate one channel
(Gb/s)

2K/24 8,7 1,08

1080/24 8,2 1,025

1080/25 8,5 1,06

1080/30 10,4! 1,3

720/50 7,6 0,95

720/60 9,1 1,14
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Figure 3.9: Format of the 2K frame.

intervals are summarized in Table 3.1. The 30fps HD formats can be still transferred, but
image crop must be applied.

When we need to process additional data such as audio or encryption data, there are
several possible ways of mapping the data into network packets. Those techniques can be
used only for channels containing any additional data except visible video. Three options
are described below. The resulting bit rate for 4K (four quadrants send over 4 or 8 HD-SDI
channels) at the physical layer is summarized in 3.2. These rates also include embedded
audio and the packet header overhead. We assume 24 frames per second as per the D-
Cinema format.

Complete HD-SDI data. One solution is to transfer all HD-SDI data. One complete
line of the 2K frame (one quadrant) consists of 2750 samples. One complete frame consists
of 1125 lines as described in Figure 3.9. Along with the active video, blanking areas are
transported. Blanking areas can consist of additional data like audio channels, additional
data for various encoding and encryption methods, etc. [2].

The advantage of this solution is that embedded audio and embedded data (eg. for
encryption) are included with no additional effort. The disadvantage is a high resulting
bit rate if used on all channels.

Just image & audio bits. An alternative solution is to extract and transfer just the
image and audio data. One active line of 2K video consists of 2048 image samples. One
active 2K video frame includes 1080 active lines. The advantage of this solution is a lower
bit rate, which allows transmission of all subsampling and color depth options, including
RGB at 12-bits per color. The disadvantage is more complex data transformation at both
the sender and receiver. The embedded audio and embedded data also need to be extracted
and transmitted by an additional mechanism.

Active area samples. Another solution is to transfer SDI data in its original format,
but just for columns that include image samples, embedded audio or embedded data. Using
this solution, we can transfer eight HD-SDI channels over a 10 Gb/s network with simpler
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Figure 3.10: Schematic of interconnections in the processing core.

data transformations on the sender and receiver. Still, all subsampling and color depth
options are possible.

10-bit 4:2:2 10-bit RGB 12-bit 4:2:2 12-bit RGB

Complete HD-
SDI data

6.00 Gb/s 12.00 Gb/s 12.00 Gb/s 12.00 Gb/s

Just image &
audio bits

4.58 Gb/s 6.50 Gb/s 5.22 Gb/s 7.77 Gb/s

Active area
samples

4.59 Gb/s 9.18 Gb/s 9.18 Gb/s 9.18 Gb/s

Table 3.2: Bit rates at the physical layer

3.3.5 Network Packet Processing Core

The main processing core, which consists of the reconfigurable processing modules, was
divided into two sets of processing modules. A set of switches can be arranged to allow
a packet flow between the network and video domains in several ways. A schematic of
this interconnection is shown in Figure 3.10. Both module sets are organized according the
original proposal described on Figure 3.3. There are several ways of data flow configuration
through the processing modules:



28 CHAPTER 3. CONTRIBUTIONS OF THE THESIS

• From network input to network output through switch 1, processing modules 2,
switch 3 and processing modules 1. All processing modules are dedicated for network
to network packet processing.

• From network to video, full-duplex, one set of processing modules for each direction.
From network input through switch 1 and processing modules 2 to video output.
From video input through switch 3 and processing modules 1 to network output.

• From video input to video output through switch 3, processing modules 2, switch 3,
processing modules 1 and switch 2. All processing modules are dedicated for video
packet processing.

3.3.6 Summary

I have proposed the embedded architecture for real-time video transport and processing
based on the scalable architecture for network packet processing described in Section 3.1.
This approach applies the advantages of modular network packet processing to video trans-
port and processing. In the future Internet, more beyond-high-definition video transfers are
demanded. and this approach enables easy development and scalability of video transfer
and processing solutions.

The resulting architecture was adopted by the Czech Technical Agency project POVROS,
whose goal is to move the results of this research to the market. The architecture was im-
plemented and extended by additional techniques, such as low-latency video display, by
CESNET to a device MVTP-4K [15].



Chapter 4

Conclusions

This chapter summarizes the contributions of this dissertation thesis and briefly suggests
the possible future work.

4.1 Summary

I have proposed the universal scalable network packet processing architecture which fo-
cuses on maximum throughput and processing strength. The network packet processing
architecture was also enhanced for video transport and processing purposes which also
showed its universality.

In a first contribution, I proposed a new scalable and embedded architecture for net-
work packet processing intended for 10-100 Gb/s links. The architecture is designed for
processing the network packets at full speed at the worst case without a packet drop, which
is possible using the balance between clock rate, data width and pipelining level together
with a simple interface between plug-in modules for data processing. The architecture
is designed to be distributable between several FPGAs or in a single FPGA, thus allow-
ing the scalability even if current FPGA technology cannot support required resources.
The main goals of the architecture are flexibility of target applications, easy extendability
based on plug-in modules and good availability for high-speed network research commu-
nity. The 10 Gb implementation of this architecture was implemented by CESNET in a
MTPP (Modular Traffic Processing Platform) device.

The second contribution validates the use of this architecture in passive network moni-
toring. I have proposed and implemented plug-in modules for the MTPP platform allowing
the use of the MTPP for a passive network monitoring. The set of modules consists of
standard and burst based statistical modules and modules for bit error rate tests. The
resulting monitoring solution is still being used in CESNET2 network.

The third contribution presented the extension for the architecture described in the
first contribution allowing the transfer and process beyond-high-definition video or several
independent channels of high-definition video. This new approach, where video can be
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processed like network traffic, is an interesting and easily adaptable solution which can
greatly improve video communication over a future Internet.

The latest work was adopted by the Czech Technical Agency project POVROS, whose
goal is to move the results of this research to the market. The proposed architecture was
successfully implemented as a device MVTP-4K [15] by CESNET.

4.2 Future Work

The author of the dissertation thesis suggests exploring the following:

• The architecture can be further improved or optimized for more applications which
can be demanded in the future.

• The architecture and the implemented platforms MTPP and MVTP-4K are module
based, which enables the possibility of enhancing their functionalities. More appli-
cations can be designed and implemented to increase the potential of the presented
architecture.

• The presented solution can be used as a starting point for the other research projects
which require massive parallel data processing. The extendability and scalability of
the presented solution can also speedup any future research based on this architecture.



Chapter 5

Publications Included in Thesis

This section contains key publications included in this dissertation thesis. Every section
of this Chapter presents one publication and starts with related information about the
publication. Formata used in this dissertation thesismay result in visual differences from
the published originals

Those documents include grey text that signify that it belongs to other authors and is
not included in this dissertation thesis.

5.1 MTPP - Modular Traffic Processing Platform

This paper was published on 12th IEEE Symposium on Design and Diagnostics of Elec-
tronic Systems in 2009 [D.1]
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Abstract—High-speed (10 Gb/s and above) network monitoring
and traffic processing requires hardware acceleration. Different
applications require different functions to be placed in hardware.
Current packet capture cards include fixed firmware, which is
difficult to extend.

In this paper we propose an architecture for Modular Traffic
Processing Platform (MTPP), which enables end users to easily
modify hardware processing without any FPGA development. On
the other hand, developers can create new processing modules
with much reduced effort thanks to simple module interfaces and
isolation of module time constraints.

I. INTRODUCTION

In passive network monitoring we directly process real
network traffic, as opposed to active monitoring, which uses
injected test packets. Passive monitoring is attractive in that it
allows to detect properties inherent to real traffic, such as se-
curity attacks, traffic dynamics or real packet loss rate. Passive
monitoring of high-speed links (10 Gb/s and above) requires
hardware acceleration. Different applications can benefit from
hardware offloading of different functions.

We are proposing a new architecture for processing network
packets at speed of 10Gb/s and above running on FPGA with
partial dynamic reconfiguration. The primary benefit of the
proposed architecture is that it enables end users to easily
modify packet processing in hardware for their applications,
without any VHDL programming or FPGA development soft-
ware. Users can create lots of different firmware variants
simply by loading binary firmware modules into available
slots according to specification in a text file. Development of
new modules is also greatly simplified by separating timing
of modules from one another and from the rest of firmware.

A 10 Gb/s version has been implemented and is used in
production monitoring. A 40 Gb/s version is in development.

II. THE PROBLEM AND REQUIREMENTS

Current packet capture cards for passive monitoring [1],
[2] are supplied by manufacturers with simple firmware that
includes packet header filtering or classification. The firmware
is fixed and cannot be changed by users to add more functions.

Development kits for custom firmware development are
usually expensive and development of new modules is difficult.
The programmer needs to study lots of details of existing
design, where the new module should be integrated. And
development of firmware for high-speed packet processing is
particularly difficult, because timing constraints need to be
resolved for all components together — the whole design is
routed and placed as one piece.

Many passive monitoring applications are implemented
using DiMAPI [3] middleware, which enables programmers
to work on higher level of abstraction and allows to port
applications across multiple packet capture cards. Since little
monitoring functionality can be offloaded to current packet
capture cards, most packet processing is done in software at
limited speed.

We set forth the following requirements to be fullfiled by
our architecture:

• R1 - Easy modification of hardware processing by end
users without programming

• R2 - Easy development of new firmware modules
• R3 - Full line rate operation at 10 Gb/s with scalability

to higher speeds
• R4 - Standalone device for field operation without exter-

nal PC
In the following chapter we indicate how our architecture

maps to the requirements R1 - R4.

III. ARCHITECTURE

The proposed MTPP (Modular Traffic Processing Platform)
architecture addresses the problem and requirements identified
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above. Traffic in MTPP means network packets, but also a
stream of bits, such as in BER (Bit Error Rate) applications.
Packets (or stream of bits) can be captured and analyzed,
modified or inserted into the network by different modules.

A. Hardware

MTPP can be ported to various hardware. We have tested
it on the following hardware:

• Two alternative FPGA boards - Xilinx Virtex-II Pro
FF1152 Development Kit and Xilinx Virtex-5 LXT PCI
Express Development Kit

• Two alternative optical transceiver boards - AEL1002
board for XFP transceiver and our own board for Xenpak
transceiver

An FPGA board and an optical transceiver board are con-
nected by Rocket I/O channels carried over SMA or Infiniband
cables. The boards are commercially available except for the
Xenpak transceiver board, which was developed ourselves.
The Xenpak board is relatively simple, because Xenpak
transceiver includes its own 4-channel 10 Gb/s mux/demux
and can be connected directly to Rocket I/O channels. MTPP
is a standalone device and does not require a PC.

B. Firmware runtime modification (R1)

To allow end users to easily modify hardware functionality
without programming, we designed the firmware architecture
illustrated in Fig. 2. Packets pass through a sequence of slots
connected by registers. Each slot can be filled-in by one packet
processing module. A set of modules for basic monitoring
functions have been implemented and are available. A user
specifies, using a text file, which modules should be loaded
to which slots upon the platform startup. Each module can
be loaded to any slot, possibly multiple times. Modules can
be replaced at any time using partial dynamic reconfiguration.
Modules and the configuration file are placed on Compact-
Flash memory. In this way a user can configure many different
variants of monitoring functionality in firmware and change it
at runtime according to application requirements. This also
saves space in FPGA, since only functionality required by
running applications needs to be loaded into FPGA.

An input MAC block can be enabled before and an output
MAC block after the sequence of modules. The MAC block
implementes standard functions of the link layer, including
checking and generating frame CRC. Additionally, it also
computes various frame, byte and error statistics. Two register

Fig. 1. MTPP in version with Virtex-II Pro FPGA board and XFP transceiver
board

banks are available for all statistics. One bank is always
active and counting. The other bank can be used to read
results obtained previously. The two banks can be switched
atomically. If the MAC blocks are enables, the processing
modules work above the link layer, that is they are processing
complete Ethernet frames. If the MAC blocks are disabled, the
processing modules work at the XGMII level.

The input and output MAC blocks are part of the backplane,
which also includes a block to assign packet timestamps (TS)
and a block for communication via MDIO interface. This
interface can be used, for example, to initialize the Xenpak
transceiver before packet reception or transmission.

The following modules are currently available to users:
• INIT-MOD - empty module that passes data to the next

slot
• PKT CNT - packet counter, when placed in multiple

slots, it can show the number of packets between phases
of processing

• PKT LOS - emulates specified fixed or pseudorandom
packet loss for testing of communication protocols and
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Fig. 2. Firmware architecture

network behaviour
• BERT - Bit Error Rate tester, it can use various predefined

or user-defined test patterns
• BURST - quantifies traffic burstiness by classification of

traffic burst sizes and measuring the number of frames
and bytes in bursts, where inter-burst gap can be freely
specified

• PKT HAL (in development) - IPv4, IPv6, UDP and TCP
header analysis to check errors and count statistics

The above modules can be loaded by the user into slots
arbitrarily — in any number and in any order. From the user
perspective, the backplane with MAC, TS and MDIO blocks
appears as a module PLATFORM loaded into special slot 0.

C. Module development (R2)

To simplify development of new modules, the proposed
framework includes two features. First, all modules are con-
nected by unified interface, which includes Data Bus (DB) to
carry the packet stream, Control Bus (CB) to carry commands
between modules and Local Bus (LB) to read and write
module registers. Module developers only need to understand
this common interface.

Second, the timing constraints of each module are com-
pletely separated from other modules and from the backplane
that connects the modules. The backplane is already routed
and placed inside FPGA and never changes when new modules
are developed and inserted into slots. A new module can be
synthesized, routed and placed separately from other modules

and from the backplane. Slots are connected by registers,
which are synchronized with the passing packet stream. The
registers are part of the backplane and are placed in fixed
positions inside the FPGA. Therefore, the time-critical path is
limited to the one module, which is being added. This greatly
alleviates timing-related problems when developing firmware
for 10 Gb/s and faster processing.

Each module receives 8 bytes of data every clock cycle. The
module needs to accept this new data every clock cycle, but
the internal latency can be multiple clock cycles, as needed.
We currently use six slots available for modules. The number
or slots in the backplane can be changed and depends on the
size of FPGA and on the space that we wish to be available
for one module.

D. Line-rate operation and scalability (R3)

The firmware framework is designed to operate at sustained
full line rate of 10 Gb/s at all frame sizes. This data rate could
in principle be achieved by various products of data width
and clock frequency. A compromise needs to be find since
both large data width (many wires) and high clock frequency
make the design difficult to synthesize. We use the 64-bit data
width and 156,25 MHz clock frequency as the most suitable
combination for processing of 10 Gb/s packet streams.

On Virtex-5 family FPGAs, reconfigurable regions can
occupy any rectangular areas and miltiple regions can share
the same column. This feature can be used to create multiple
parallel lanes of module slots (Fig. 3). The number of possible
parallel lanes depends on FPGA size, slot size and slot number
in one lane. The parallel lanes can be used for several purposes
possibly at the same time:

• Input traffic can be split into multiple lanes running the
same modules for higher performance. 40 Gb/s process-
ing can be achieved by four 10 Gb/s lanes. We are
currently developing a prototype 40 Gb/s platform.

• Lanes can be divided into active, which process packets
and inactive, which can be modified by dynamic recon-
figuration. Switching between active and inactive lanes
allows runtime firmware modification without loss of any
packets.

• Traffic can be pre-classified and distributed into multiple
lanes running different modules for customized process-
ing dependent on packet class.
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E. Reconfiguration control and application integration (R4)

The partial dynamic reconfiguration needs to be controlled
by some unit external to the loaded modules. Also, the module
registers needs to be written for configuration and read to
obtain monitoring results. To minimize the cost, we eliminated
the need of an external PC or another FPGA normally required
for these tasks. We created a Linux distribution with 2.6 kernel
to run on an embedded processor for both purposes (control
of reconfiguration and module register access). It can run
on PowerPC processor in the FPGAs where this processor
is available or on MicroBlaze soft core processor in other
FPGAs. Both alternatives have been tested.

Base packet stream

  10−100 Gb/s
Base packet stream

  10−100 Gb/s

10Gb/s packet processing lanes
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Fig. 3. Packet stream processing in parallel lanes

A user can login to the embedded Linux over SSH con-
nection or from the RS-232 console. The embedded Linux
also enables easy implementation of communication by HTTP
and SNMP. We have developed a modular software utility
called mtpp to communicate with the packet processing
modules. mtpp can list modules currently loaded into slots,
list registers available in each module and read or write
specified registers, which are used for module configuration
and monitoring results storage. All register addresses can be
specified by numerical values or by names. Numerical values
can be used for unknown types of modules, such as when a
new module is being developed. For a known module type,
register names can be easily added to mtpp. An example of
using mttp is shown in Fig. 4. Here the occupancy of slots is
first listed, all reconfigurable slots include INIT-MOD module,
which is an empty module, which passes packets to the next
slot. The PLATFORM shown in slot 0 represents the address
space of the backplane and can be used to communicate
with registers of the input and output MAC. In the second
command, registers in slot 0 whose name includes CRC are
listed. In the final command, the counter of CRC errors in the
first bank of the input MAC is read.

Scripts can be developed to call the mtpp utility remotely

Fig. 4. Example of using the mtpp utility

on distributed monitoring boxes from a central server. We use
such a script to create graphs of network traffic dynamics,
its distribution into packet sizes and number of CRC errors,
see Fig. 5. Two prototypes are currently used for production
monitoring.

IV. PERFORMANCE

The prototype hardware with backplane firmware and
PKT CNT modules have been tested by the Ixia 1600 hard-
ware packet generator at sustained 10 Gb/s rate sent in 64-byte
Ethernet frames (the shortest legal frames including Ethernet
header and CRC). 1011 frames have been passed with zero loss
and zero CRC error. This is better than 10−13 bit error rate,
which is comparable to current high-quality optical circuits.
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Fig. 5. Monitoring of traffic dynamics, packet sizes and errors with MTPP
support

Performance of all developed modules have also been tested
at sustained 10 Gb/s rate sent in 64-byte Ethernet frames,
although with lower number of frames to limit the test time,
since various module configuration need to be tested. All cur-
rently available modules provide 100% line-rate performance
at 10 Gb/s.

Utilisation of main FPGA resources is shown in Table I.
Note that slices in Virtex 5 are approximately twice as large
as in Virtex II Pro. The BRAM modules are also different be-
tween the two FPGAs. Therefore the type of FPGA should be
considered with utilisation figures. Total is the size of FPGA,
Backplane is resources used by the platform backplane, Slot
max. is theoretical volume of resources for one module slot
in case of division into 6 slots and Slot real is what we really
allocated for each slot. In case of Virtex 5, approximately half

Virtex II Pro (XC2VP50)
Slices

Total Backplane Slot max. Slot real
23616 9961 2275 2000

RAMB16s
Total Backplane Slot max. Slot real
232 51 30

Virtex 5 (XC5VLXT110T)
Slices

Total Backplane Slot max. Slot real
17280 6819 1743 1000

BlockRAM / FIFO
Total Backplane Slot max. Slot real
148 32 19

TABLE I
UTILISATION OF FPGA RESOURCES

of slices used for backplane belong to MicroBlaze processor
implementation. BRAMs can be used by slots unequally —
different number of BRAMs by different slots.

V. RELATED WORK

Our work is based on FPGA hardware and partial reconfigu-
ration of FPGA devices. The FPGA circuits, design flows and
partial reconfiguration techniques have been decribed in [4].
The partial reconfiguration is well mastered by Xilinx design
tools.

FPX platform [5], [6] has been designed for develop-
ment and operation of packet processing modules in repro-
grammable network hardware, such as routers and switches.
FPX uses second FPGA to control dynamic reconfiguration of
the main FPGA. It has been implemented to support OC-48
(2.5 Gb/s) ports.

NetCOPE platform [7] is designed for rapid development of
packet processing firmware for COMBO [8] cards. NetCOPE
is a set of IP cores that provide building blocks for FPGA
designs such as I/O blocks, memory controllers or PCI Express
support.

Force10 P-series [9] are boxes for 1 Gb/s and 10 Gb/s
hardware-accelerated firewalls. The box includes embedded
FPGA device that processes a set of static or configurable
Snort-like rules.

VI. CONCLUSIONS

The proposed architecture for high-speed network traffic
processing in programmable hardware enables end users to
easily modify hardware processing without programming.
Development of new firmware modules has been greatly
simplified by simple module interface and by separating
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5.2 Multigigabit network traffic processing

This paper was published on The International Conference on Field Programmable Logic
and Applications in 2009 [D.2]

This paper includes a grey text part which is not included in this dissertation thesis.
The described technique was not proposed by the author but was only used. This technique
was proposed by Petr Žejdl, who is mentioned in Acknowledgments of this paper, and will
be part of his dissertation thesis.
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MULTIGIGABIT NETWORK TRAFFIC PROCESSING

Jiřı́ Halák

CESNET
email: halak@cesnet.cz

ABSTRACT

High-speed (10 Gb/s and above) network monitoring and
traffic processing requires hardware acceleration. Different
applications require different functions to be placed in hard-
ware.

This paper presents the architecture and platform for
processing network packets at speed of 10 Gb/s. The plat-
form can process the packets at full speed without a packet
drop and is easily extendable by plug-in modules that can be
changed without the need of shutting down the entire plat-
form.

1. INTRODUCTION

We have developed a new architecture for multigigabit net-
work traffic processing in programmable hardware. The ar-
chitecture is designed to process network packets at the full
speed of 10 Gigabit Ethernet at all packet sizes. The plat-
form is intended for network monitoring, packet generation
or packet processing purposes, for instance, real-time video
applications.

The platform has been implemented inside a single FPGA
chip and tested on commercially available hardware equip-
ment. The idea is to implement universal plug-in mod-
ules with basic functionality and the framework to place the
modules together and make the desired global functionality.
Implementing the whole platform in a single FPGA greatly
reduces requirements for a customized hardware.

2. ARCHITECTURE

The architecture is divided into the framework, which is a
static part of the design and contains all components that

do not change during the runtime, and the reconfigurable
plug-in modules that make the main processing and can be
changed in runtime. The framework architecture is shown
in Fig. 1. The framework with modules works similar as
dataflow processing except that it works directly with whole
network packets.

The plug-in modules are inserted directly into a packet
stream. Each module can make its own operations on a
packet stream, compute statistics from the stream, modify
packets or generate new packets. The plug-in modules are
implemented using the partial dynamic reconfiguration. It
allows us to change the functionality without the need of
shutting down the whole platform.

The framework includes blocks that are necessary to
support the reconfiguration, input and output MAC blocks,
a block to assign packet timestamps and a block for commu-
nication via MDIO interface. It also includes an embedded
processor system with a customized Linux distribution. A
software utility running in the embedded Linux can be used
to access and reconfigure the plug-in modules.

The current prototypes use six plug-in modules. This
number has been selected as compromise. Higher number
of plug-in modules is possible, but at the same time larger
part of the FPGA would be used by interconnecting logic,
leaving less space for modules themselves.

2.1. MAC

The MAC layer is the optional component. It has not the
full scale of functions as the standard Ethernet MAC, but it
implements most of standard functions and fits perfectly for
the modular framework.

The MAC is designed to fit to the Packet stream in the
reconfigurable framework. It connects to the original XG-
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Figure 1: The framework and plug-in modules architecture
overview

MII data so it uses the same set of signals as the XGMII
interface. The MAC structure is shown in Fig. 2 The main
functions of the MAC are:

• XGMII control signal management

• Adding/removing preamble

• Data alignment (first packet byte is always on the first
position of a 64-bit data chunk)

• Loopback feature

• CRC checking and generation

• Optional bad packet drop

• Statistical unit for gathering packet statistics

The customized MAC does not have any handshakes to
tell the design about processing packets as the regular MAC.
It is designed to process the worst case of all 64-byte packets
at full speed.

2.2. Timestamps

The timestamp unit assigns timestamps to incoming pack-
ets. A timestamp is assigned at the time when the first bit
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Figure 2: Customized MAC layer

of the Ethernet header is received. The timestamp is 64 bits
wide, where the upper 32 bits are used to store seconds and
the lower 32 bits to store a fraction of a second. Some ap-
plications need only precise time differences between in-
coming packets and do not need precise absolute values of
timestamps. For those applications that need precise abso-
lute packet timestamps or real time information, the times-
tamp unit can be synchronized to an external PPS (Pulse per
second) signal, such as from a GPS receiver. The real time
can be set from the embedded Linux, for instance, to the
current operating system time.

The simple schematic of the timestamp unit and its re-
altime evaluation is shown in Fig. 3. The numbers along
lines connecting all blocks indicate how many parallel wires
are used for each connection. The wires are divided into
two groups. The first group are wires counting seconds and
the second group are wires for the precision of one second.
The main time calculation is done in RealTime Register
(RT REG) that is increased by the value stored in the Incre-
mental Register (INC REG) every clock cycle. The value of
INC REG is precalculated according to the clock frequency.
When no GPS is connected, PPS signal never occurs and
timestamps are generated unsynchronized. When GPS is
connected, on active PPS signal every second the precision
bits are copied to the PPS Register (PPS REG). Software
utility running as a daemon in the embedded Linux is check-
ing the PPS REG and balancing the value in the INC REG.
The utility tries to reach 0 in PPS REG. The real time ob-
tained from the GPS can be set in the RT REG when we
need the absolute timestamp generation.
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3. PLUG-IN MODULES

To allow end users to easily modify hardware functionality
without programming, we designed the following plug-in
modules architecture (see Fig. 4. Packets pass through a
sequence of slots connected by registers. The modules for-
ward the packet stream to the next module. The registers are
inserted between the plug-in modules. The registers have
the important functions:

• The registers are synchronized by the packet stream
clock frequency, so every slot is synchronized with
the packet stream and every module receives packet
data every clock cycle.

• The number of the modules is limited only by the size
of the FPGA device. Adding a new module only in-
creases latency by additional module latency and one
clock cycle for additional module slot.

• The critical path of the module cannot be longer then
the longest combinational path in the module so the
module timing is independent on the global design
timing.

A set of modules for basic monitoring functions have
been implemented and are available. The modules can be
loaded by the user into slots arbitrarily — in any number
and in any order.

3.1. Module reconfiguration

FPGA is configured by downloading a bitstream through the
JTAG configuration port. The configuration process must be
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Figure 4: Plug-in modules architecture
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Figure 5: FPGA Configuration using System ACE con-
troller

repeated each time the device is powered up, because FPGA
is volatile. To simplify this step XILINX developed a Sys-
tem ACE controller [8] that can configure FPGA using ace
files stored in a removable CompactFlash card that connects
to the controller. The ace file is a package compiled from
original bistream(s) and additional information used to ini-
tialize embedded RAMs and CPU.

The controller is connected to FPGA through MPU in-
terface, which is accessible from the embedded Linux. The
configuration process is controlled by our modified Linux
kernel module xilinx sysace. The original module supports
only access to CompactFlash. The configuration process is
depicted in Figure 5.

To manage device reconfiguration without the need of
shutting down the whole platform, the partial dynamic re-
configuration process is used. The plug-in modules are down-
loaded into the FPGA on demand, the rest of the system
remains intact.
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The system ACE chip allows to specify several partial
configurations. Each configuration has an unique address.
Reconfigurable modules are stored in a form of ace files and
assigned to the particular addresses.

3.2. Module development

To simplify development of new modules, the proposed frame-
work includes two features. First, all modules are connected
by a unified interface, which includes Data Bus (DB) to
carry the packet stream, Control Bus (CB) to carry com-
mands between modules and Local Bus (LB) to read and
write module registers. Module developers only need to un-
derstand this common interface.

Second, the timing constraints of each module are com-
pletely separated from other modules and from the frame-
work backplane that connects the modules. The framework
is already routed and placed inside FPGA and never changes
when new modules are developed and inserted into slots.
When slot registers are placed to the specific locations on
the border or inside the FPGA areas dedicated for the spe-
cific plug-in module, the framework design without the mod-
ules can be placed and routed into the FPGA without the
need of modules implementation. A new module can be
synthesized, routed and placed separately from other mod-
ules and from the framework. The plug-in modules can be
implemented independently and do not need to be placed,
routed and tested together with the rest of the design. The
module can be loaded to the device or changed inside the de-
vice without the need to reprogram all the design inside the
FPGA device. This greatly alleviates timing-related prob-
lems when developing firmware for 10 Gb/s and faster pro-
cessing.

4. REMOTE ACCESS

The platform was designed to work as a fully standalone
device. It does not a require a PC. It offers many ways of
remote access. The embedded Linux supports terminal ac-
cess, SSH, HTTP server and SNMP. HTTP server hosts web
base configuration and access environment. SNMP enables
all modules registers to be accessed via MIB (Management
Information Base) objects.

The platform has its own branch in the enterprises sub-
tree of MIB (Management Information Base):

iso.org.dod.internet.private.enterprises.cesnet.mtpp

Since multiple instances of the same module type can be
loaded to multiple slots, the modules are represented by an
array of objects in MIB. The object index counts instances
of a given module type, rather than slots. For example, the
object pktCntr.2 is the second module of type PKT CNTR.
This module can be loaded to any slot after the first module
of type PKT CNTR, for example, to slot 5.

5. PROTOTYPES

The platform can be ported to various hardware. We have
tested it on the following hardware:

• Two alternative FPGA boards - Xilinx Virtex-II Pro
FF1152 Development Kit and Xilinx Virtex-5 LXT
PCI Express Development Kit

• Two alternative optical transceiver boards - AEL1002
board for XFP transceiver and our own board for Xen-
pak transceiver

An FPGA board and an optical transceiver board are
connected by Rocket I/O channels carried over SMA or In-
finiband cables. The boards are commercially available ex-
cept for the Xenpak transceiver board, which was developed
ourselves. The Xenpak board is relatively simple, because
Xenpak transceiver includes its own 4-channel 10 Gb/s mux
/ demux and can be connected directly to Rocket I/O chan-
nels. The prototypes are standalone devices and do not re-
quire a PC.

Several reconfigurable modules have been developed in-
cluding PKT CNTR (packet counter, can be used in mul-
tiple slots to count packets between various processing),
PKT GEN (packet generator), PKT LOSS (loss emulator),
BURST (traffic burst quantification) and BERT (bit error
rate test). All modules have been tested by a 10 Gb/s hard-
ware packet generator and analyzer at full speed for at least
1011 of 64-byte packets.

6. RELATED WORK

The FPGA circuits, design flows and partial reconfiguration
techniques have been described in [3]. The partial reconfig-
uration is well mastered by Xilinx design tools.
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FPX platform [4] has been designed for development
and operation of packet processing modules in reprogrammable
network hardware, such as routers and switches. FPX uses
second FPGA to control dynamic reconfiguration of the main
FPGA. It has been implemented to support OC-48 (2.5 Gb/s)
ports.

NetCOPE platform [5] is designed for rapid develop-
ment of packet processing firmware for COMBO [6] cards.
NetCOPE is a set of IP cores that provide building blocks
for FPGA designs such as I/O blocks, memory controllers
or PCI Express support.

Force10 P-series [7] are boxes for 1 Gb/s and 10 Gb/s
hardware-accelerated firewalls. The box includes embedded
FPGA device that processes a set of static or configurable
Snort-like rules.

7. CONCLUSIONS

We have developed a new architecture for multigigabit net-
work traffic processing in programmable hardware. The
architecture is designed to process network packets at full
speed at the worst case without a packet drop. The archi-
tecture consists of hardware accelerator based on plug-in
modules and an embedded processor system. Development
of new hardware plug-in modules has been greatly simpli-
fied by simple module interface and by separating time con-
straints of modules from one another and from the back-
plane.

The implemented prototypes have been tested for 10 Gb/s
line-rate operation and are used in production monitoring.
Parallel module lanes enable scalability to higher speeds. A
40 Gb/s prototype is currently in development.
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Abstract

Better than high-definition resolution video content (such as 4K) is already
used in some areas, such as scientific visualization or film post-production.
Effective collaboration in these areas requires real-time transfers of such video
content. Two main technical issues are high-data volume and time synchro-
nization when transferring over an asynchronous network such as the current
Internet.

In this article we discuss design options for a real-time long-distance un-
compressed 4K video transfer system. We present our practical experience
with such transfers and show how they can be used to increase productivity
in film post-production, as an application example.

Keywords: 4K video, uncompressed video, network video transfers, remote
collaboration, color grading

1. Introduction

Video transfers are an expected driver application area of the future In-
ternet. The picture resolution has been increasing over the time. Better
than high-definition resolution video (such as 4K) is already used in some
areas, such as scientific visualization or film industry. For ultimate quality,
required for instance in a color grading process in film post-production, work
with a signal that has not been compressed is preferable. Productivity of a

Email addresses: halak@cesnet.cz (Jǐŕı Halák), michalk@cesnet.cz (Michal
Krsek), ubik@cesnet.cz (Sven Ubik), zejdlp@cesnet.cz (Petr Žejdl),
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distributed team can be significantly increased when the video signal can be
transferred over the network in real time, to discuss and perform processing
of video content. Two main technical issues are high-data volume and time
synchronization when transferring over an asynchronous network such as the
current Internet.

The data volume ranges from 4.2 Gb/s for 4:2:2 subsampling [1], 10-
bit color depth and 24 frames per second to over 9.6 Gb/s for RGB (no
subsampling), 12-bit color depth and 30 frames per second. Overhead in
packet headers needs to be added.

Real-time video streaming requires that the speed of rendering on the
receiver side matches the rate of video source on the sender side. When the
sender and receiver are connected over an asynchronous network, such as
Ethernet, the receiver cannot directly synchronize its clock with the sender.

Therefore, the receiver needs to implement a technique that adjusts the
speed of data arrival and maintains a continuous stream of video and au-
dio data to the rendering device, preferably with minimal added latency for
remote interactive applications.

We implemented the proposed architecture in a device called MVTP-4K
(Modular Video Transfer Platform).

The structure of this paper is as follows. In chapter 2 we summarize the
main requirements on the system for real-time high-definition video transfers.
The proposed system architecture is described in chapter 3. Our practical
experience is described in chapter 4. Related work is referred in chapter 5
and our conclusions and thought about future directions are provided in
chapter 6.

2. Requirements and design constraints

In order to satisfy the needs of targeted applications, we set the following
set of requirements to be fulfilled by the proposed solution:

• Real-time transfer of uncompressed 4K video content over a long-distance
asynchronous network with no observable visual impairments

• Support of at least 24 frames per second, 12-bit color depth and no
subsampling (RGB)

• Video input and output in multiple HD-SDI channels
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• 10 Gigabit Ethernet network interface

• Pixel correct synchronization between picture quadrants

• Audio synchronized with video

• Small added latency (see below)

The rationale behind these requirements, in addition to those already
mentioned in chapter 1, is as follows.

The use of HD-SDI channels for transmission of high definition video
signal is now a common industry practice. Three variants are currently
in use — HD-SDI [2], dual-link HD-SDI [3] and 3G-SDI [4]. Mapping of
digital video signals into these channels is specified for HD (1920x1080) [5, 3],
2K (2048x1080, D-Cinema operational level 2 and 3) [3] and for other lower
resolution formats. The 4K format (4096x2160, D-Cinema operational level
1 or 3840x2160, UHDTV1 [6]) is typically transferred in four quadrants, each
in 2K or HD format carried over a separate HD-SDI channel.

Asynchronous Ethernet technology is currently more frequently deployed
in 10 Gb/s networks than synchronous SONET/SDH, due to its simplicity
and therefore lower cost. Ethernet will likely play even more important role
in future 40 Gb/s and 100 Gb/s networks, although often enveloped in a
synchronous Optical Transport Network (OTN) [7].

The rule of thumb is that the maximum acceptable one-way latency for
remote interactive work is around 150 ms. This latency can easily be caused
just by network propagation delay. Therefore, the video transfer system
should add minimal further latency. Buffering of one frame at 24 frames per
second adds 41 milliseconds.

3. Architecture

3.1. Hardware

Real-time processing of multi-gigabit data rates is difficult on PC-based
platforms with standard operating systems not designed for real-time oper-
ation. We were looking for a real-time design that is scalable to higher data
rates (such as for 8K or UHDTV2 format), higher network speeds (such as
40 and 100 Gb/s) and that can be integrated with commonly requested video
processing functions, such as encryption, transcoding or compression. This
implies highly parallel and trully real-time data paths. DSP (Digital Signal

46



Processor) and FPGA (Field Programmable Gate Arrays) are the standard
technologies in this area. We selected FPGA, due to high data bandwidth
and no requirements on floating-point operations.

The selected FPGA circuit needs to have a sufficient number of fast chan-
nels for input and output of the HD-SDI data. The sustained speed needs to
be 1.485 Gb/s for HD-SDI and 2.97 Gb/s for 3G-SDI. For the 4K format we
need four or eight HD-SDI interfaces depending on the exact format and in-
terface speed. Xilinx, Altera and Lattice all have FPGA circuits that satisfy
these requirements. We selected Xilinx Virtex 5 LXT series that allowed us
to reuse some design blocks that we have developed for network monitoring
devices.

The hardware architecture is shown in Fig. 1. The HD-SDI board converts
electrical levels and timing between input and output HD-SDI channels on
one side and Virtex RocketIO channels on the other side. The FPGA board
processes the video signal and connects to an optical transceiver, which con-
verts electrical and optical signals for network transmission.

FPGA board
Optical transceiver

Transceiver board

 HD-SDI

I/O board

   4k/2k/HD

input & output
10 Gigabit

Ethernet

Figure 1: Hardware architecture

This architecture allows operation in several modes illustrated in Fig. 2.
Two devices can be used to transfer video content over a network or a single
device can be used as a video processor or a network processor.

3.2. Packetization

There are several possible ways of mapping the HD-SDI data into network
packets. Three options are described below. The resulting bit rate for 4K (all
four quadrants) at the physical layer is summarized in Table 2. These rates
include also embedded audio and the packet header overhead. We assume
24 frames per second as per the D-Cinema format.

Complete HD-SDI data. One solution is to transfer all HD-SDI data. One
complete line of the 2K frame (one quadrant) consists of 2750 samples. One
complete frame consists of 1125 lines (Fig. 3). The 1.485 Gb/s data stream is
divided into 10-bit words. At 24 frames per second, there are two 10-bit words
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IP network

IP networkIP network

Figure 2: Operation modes — network transfer (above), video processor (center), network
processor (bottom)

available for one sample. With 10-bit color depth and 4:2:2 subsampling, one
word can carry the luma substream (Y’) and the other word can carry the
color substream (C ′

RC ′
B) [2]. Other color depth and subsampling options

require the use of dual HD-SDI or 3G-SDI, both requiring twice the network
bandwidth.

The advantage of this solution is that embedded audio and embedded data
are included with no additional effort. The disadvantage is high resulting bit
rate. We can only transmit four HD-SDI channels over a 10 Gb/s network.
Therefore, only 4:2:2 subsampling and 10-bit color depth is possible.

Just image & audio bits. An alternative solution is to extract and transfer
just the image and audio bits. One active line consists of 2048 image samples.
One frame includes 1080 active lines. The number of bits per active sample
depends on subsampling and color depth. When dual-link HD-SDI is used,
one sample must by extracted from both channels, where it is distributed.

The advantage of this solution is a lower bit rate, which allows transmis-
sion of all subsampling and color depth options, including RGB at 12-bits
per color. The disadvantage is more complex data transformation on both
the sender and receiver. The embedded audio and embedded data also need
to be extracted and transmitted by an additional mechanism.
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Active area samples. Another solution is to transfer HD-SDI data in their
original format, but just for columns that include image samples, embedded
audio or embedded data. Using this solution, we can transfer eight HD-
SDI channels over a 10 Gb/s network with simpler data transformations on
the sender and receiver. Still, all subsampling and color depth options are
possible. This is the solution used in the current version of our platform.

Embedded audio can be located in up to 268 words of 10 bits per one line,
including ancillary (blank period) lines [8], increasing the number of bytes
to transfer per line by 335. In the ancillary lines, just the embedded audio
needs to be transferred.

In order to support different formats, such as HD and 2K (per quadrant),
each line also includes 8 bytes of Active Video Stream Parameters described
in table 1.

Parameter Bit size Description

hblank 12 Pixels of horizontal blank period
avideo 13 Pixels of horizontal active period
alines min 12 Number of first active period line
alines max 12 Number of first blank period line
total lines 12 Total number of lines
”00” 2 Alignment bits
first row 1 1 for the first line of the frame, 0 otherwise

Table 1: Active Video Stream Parameters

The required number of bytes per line approximately corresponds with
the maximum payload size of one Ethernet jumbo frame. Therefore we chose
to pack one line of one quadrant per one Ethernet frame.

Each frame adds an overhead of at least 46 bytes (8 bytes for UDP header,
20 bytes for IP header, 14 bytes for Ethernet header and 4 bytes for Ethernet
CRC). More bytes may be required for Ethernet VLANs, MPLS, IP options
or higher layer protocol headers. In order to calculate bit rate at the physical
layer, additional 20 byte intervals per packet need to be included for the
Ethernet preamble and the Inter Frame Gap (IFG).

If we send lines of four quadrants in a round-robin fashion, the quadrant
synchronization is guaranteed. However, we need to care for the sender -
receiver synchronization and resolve lost or out of time packets. We discuss
these issues in the following sections.
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10-bit 4:2:2 10-bit RGB 12-bit 4:2:2 12-bit RGB

Complete HD-
SDI data

6.00 Gb/s 12.00 Gb/s 12.00 Gb/s 12.00 Gb/s

Just image &
audio bits

4.58 Gb/s 6.50 Gb/s 5.22 Gb/s 7.77 Gb/s

Active area
samples

4.59 Gb/s 9.18 Gb/s 9.18 Gb/s 9.18 Gb/s

Table 2: Bit rates at the physical layer

3.3. Rendering rate adaptation

There are two sources of rate difference between the data arriving to
the receiver from the network and the data to be sent to the rendering de-
vice. First, the internal clock of the sender can be different from the internal
clock of the receiver, within a tolerance permitted by the transmission pro-
tocol. The HD-SDI clock rate is specified as 1.485 Gb/s, 1.485/1.001 Gb/s,
2.97 Gb/s or 2.97/1.001 Gb/s. Most devices indicate acceptable tolerance of
100 ppm. Second, network delay variation [9] (jitter) can be introduced due
to network traffic conditions. The jitter needs to be accommodated for by
the receiver FIFO memory.

Several alternative techniques can be used to adjust the sending and
rendering rate over an asynchronous network: receiver feedback, frame buffer,
blank period adjustments and rendering clock adjustments.

Receiver feedback. The receiver can send feedback to the sender requesting
sending rate adjustments (flow control). This technique is used in window-
based transport layer protocols, such as TCP or in some link layer protocols,
such as PAUSE frames in Ethernet.

The adjusted data rate appears at the receiver after round-trip time
(RTT), which is typically hundreds of milliseconds on the long-distance In-
ternet connections. In high-definition video transfers, this technique would
require a large receiver FIFO memory, which would not fit in FPGA resources
and which would introduce high added latency. Therefore we decided to use
another technique.

Frame buffer. This technique requires the receiver to have a FIFO memory
large enough to accommodate at least three complete frames. Then the
rendering device can be driven by a fixed clock source in the receiver. The
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top of the FIFO memory holds the frame that is being sent to the rendering
device. When sending of this frame completes, the next FIFO position should
include the next frame to be sent. The third (and possibly further) FIFO
positions can hold more data depending on network jitter.

After a long period when the skew between the sender and receiver clock
rates causes that the frame in the second FIFO position is not completely
available in time, the frame in the first FIFO position is rendered again.
Similarly, if the FIFO cannot accommodate more incoming data, one frame
is dropped. Of course, this solution is not suitable when audio signals are
transferred along with video signals.

In the worst case when both the sender and receiver clocks are shifted
by 100 ppm in the opposite directions, the error can expand to the whole
frame in 1/200 ∗ 10−6 = 5000 frames. At 24 frames per second, it equals to
approx. 3.5 minutes. A large FIFO memory can accommodate a shift by
several frames, at the expense of latency.

Unfortunately, we could not use this solution due to limited memory
resources in the FPGA circuit.

Blank period adjustments. Most digital video transfer formats include a blank
period in addition to an active period (visible lines) in each frame. The
blank period is used for embedded audio, ancillary data and synchronization.
The structure of the 2K frame [10] (or one quadrant of the 4K frame) as
transmitted using an HD-SDI channel is shown in Fig. 3. Each frame consists
of 1125 lines, which include 1080 active lines. Each line consists of 2750
samples, which include 2048 active samples. The active period is shown in
gray color. The SAV (start of active video) and EAV (end of active video)
are synchronizing sequences present in each line.

One simple technique to adjust the rendering speed to the rate of incoming
data is to add or remove some samples or lines in the blank period. While
this technique does not comply with SMPTE standards, we tested that it
works with some devices. Since we required compliance with standards, we
also decided not to use this technique in our final solution.

Rendering clock adjustments. Adjusting the clock of HD-SDI channels be-
tween the receiver and the rendering device within the permitted tolerance
gives the receiver some level of adaptation to the rate of incoming data.
This solution requires a tunable oscillator and a closed-loop controller in the
receiver. It is a solution that we implemented in our device.
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Figure 3: Format of the 2K frame

3.4. Receiver controller

In order to adjust the rendering clock to the data source rate, we used a
common PI controller [11]. The complete receiver control structure is shown
in Fig. 4. The FIFO input clock is driven by data arriving from the network.
The FIFO output clock is driven by a clock generator, which is tuned by the
PI controller.

The bare adjusting of the rendering clock would stabilize the rendered
picture, but it does not guarantee the frame alignment. The top of the
picture could appear anywhere on the screen.

Therefore, we used as the feedback variable to drive the controller the
delay between the time when the first active line enters the receiver FIFO
memory and the time when the receiver starts to send the first active line to
the rendering device measured in clock cycles.

This delay is written to a register for each frame and sampled by the reg-
ulator every 200 ms. The controller then uses a weighted moving average of
eight last samples. The purpose of this average is to smooth out fluctuations
in FIFO occupancy due to network jitter.

One may argue why we do not use the time when the first active line
leaves the FIFO instead. This would actually introduce instability, which we
confirmed in our tests. If the FIFO occupancy increases due to the receiver
clock being slower than the sender clock, packet loss at the FIFO input will
increase as a result of network jitter. This will increase probability that the
first active line (or any other line used by the regulator) is also lost. And
this will cause the regulator slower to react thereby allowing further increase
in the FIFO occupancy and higher packet loss.

The feedback variable is compared with the desired value, which is the
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number of cycles it takes for data to pass through the receiver FIFO at a de-
sired average occupation added to the latency of the output video processor.
This value should be optimized empirically for maximum picture stability,
see section 4. The PI controller then produces adjustments to the clock
generator frequency.

Output Video

Processor

Start of Output

Frame

 PID

Controller

Error
Desired
Value

−

+
+

Frequency

control

Output

Frequency

Video Output (HD−SDI)

Tunable

oscillator

Feedback (line delay)

FIFO

FIFO Output Clock

FIFO Input Clock

Video Input (Network)

Start of Received Frame

Timer

Start/Stop

Stop/Start

Figure 4: Receiver control structure

3.4.1. Out-of-range adjustments

The receiver FIFO can accommodate some fluctuations in data arrivals
on its input end. But when a line is not available at the output end when it
should be rendered, the receiver sends another line to the rendering device,
because the signal on the synchronous HD-SDI channels cannot be stopped.
This is either some line, which happens to be at the FIFO output end or a
copy of the previous line if FIFO is empty. When the newly arriving line
does not fit into the receiver FIFO, it is dropped. These events causes the
whole picture to roll up or down. The controller will see a large value of the
error variable and try to compensate quickly.

4. Practical experience

We first tested our device in a laboratory by transferring patterns from
the Gefen 2K generator over a short distance. The signal from the generator
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was passively distributed to all four quadrants. On the receiver side, an HD-
SDI to HDMI convertor and scaler with an HD monitor were used to check
the signal.

As the next step, we transferred the 4K signal over a long-distance loop
from Prague to Chicago and back to Prague.

Finally, we demonstrated a real use of the technology for real-time remote
color grading of uncompressed 4K video content between continents on the
Cinegrid 2009 workshop.

4.1. Laboratory tests

We implemented the proposed architecture on the Xilinx Virtex 5 FPGA
device. The software part runs on an embedded Linux, which runs inside the
FPGA using the softcore Microblaze [12] processor. The Linux environment
provides access to firmware variables and runs the PI controller process,
which communicates with a tunable oscillator. The prototype version used
an external laboratory clock generator with an RS-232 interface. The current
version uses a built-in SiLabs tunable oscillator with digital interface. It is
more convenient to generate commands for the tunable oscillator in software,
rather than hardware.

Without a controller, the picture started to roll down or up after about
3-4 seconds even when communicating over a single 10 Gigabit Ethernet
segment. This was due to the difference and wander of the sender and re-
ceiver clocks. When the controller was activated, the picture was perfectly
stable. The controller reads the feedback variable, computes the error vari-
able and generates commands for the clock generator once per 200 ms. This
frequency is well sufficient to compensate the drift between the sender and
receiver clocks if they are within 100 ppm tolerance. The highest picture
stability was provided when the desired value of the PI regulator was set to
approximately 900. Since one clock corresponds to one video sample on the
line, it is approximately 1/3 line. Most fluctuations in data arrivals were due
to network jitter, which was handled by the FIFO memory.

A few lines of the PI controller output are shown in Fig. 5. Each lines
indicates one 200 ms adjustment. The numbers show from left to right:
feedback variable in clocks, moving average of feedback variable in clocks,
change of this average between two samples, resulting frequency to be set on
the clock generator in Hz and change of this frequency in Hz.
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raster= 779 avgf= 1034 speed\_avgf= -45.20 freq=148496064 df= 21.26

raster= 1778 avgf= 1220 speed\_avgf= 12.63 freq=148496048 df= -9.51

raster= 750 avgf= 1102 speed\_avgf= -19.89 freq=148496048 df= 7.92

Figure 5: Example of PI controller output

4.2. GLIF loopback test

We tested our device over the GLIF (Global Lambda Interchange Facility)
network in an L3 loop Prague - Chicago - Prague. The air distance was
approx. 9072 miles or 14602 kilometers. The setup is illustrated in Fig. 6. In
this configuration, network jitter was much higher and frequently exceeded
the FIFO capacity. By duplicating or removing single rows complemented
with rendering clock adjustments by the controller, the impairments were
not subjectively observable.

PragueChicago

GLIF 10 Gb/s network

Colorist

Baselight
Four

MVTP-4K

Sony SRXCESNET

Cinepost
Barrandov

4x HD-SDI

4x HD-SDI

Air distance 9072 miles (14602 km)

Figure 6: Remote loopback test (Prague-Chicago-Prague loop, 14602 kilometers)

4.3. CineGrid demonstration - Remote color grading

On the CineGrid 2009 workshop we demonstrated the use of the described
technology for real-time remote color grading of uncompressed 4K video be-
tween continents over a distance of more than 6200 miles (10000 km). Cine-
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Grid is a not-for-profit membership organization whose aim is to build a mul-
tidisciplinary community that promotes research, development and adoption
of technologies for exchange of high-quality digital media over high-speed
networks.

The aim of the demonstration was presentation of remote collaboration
during the color grading process, where a grading system and its operator
(the colorist) were in Prague, while the Director of Photography (DoP), who
instructed the colorist what to do and checked the results, was in San Diego.
The current state of the art in the movie industry is to have all persons on
the same place. This leads to a non-effective allocation of resources during
the post-production phase, where the key people are often highly distributed
across continents and spend a lot of non-productive time while traveling.

The demonstration setup is illustrated in Fig. 7. The 4K content was
streamed from the Baselight Four in the Cinepost corporation at Barrandov
Studios in Prague. This content was transferred using two MVTP-4K de-
vices over the GLIF network from Prague over Chicago to the University of
California in San Diego (UCSD), where the Cinegrid workshop took place.

The connection over the GLIF network consisted of a series of 10 Gb/s
circuits inter-connected by an L3 router in Chicago and several L2 switches
along the route. The used VLAN was not completely dedicated for the
demonstration and there was a small volume of other background traffic.

Additionally, there was also a bidirectional LifeSize videoconference con-
nection between Cinepost and the Cinegrid venue. The director of photog-
raphy (DoP) at the Cinegrid workshop used this videoconference to discuss
color grading of the 4K content with the colorist person in Cinepost, who
performed these corrections in real-time on the 4K content streamed to the
Cinegrid venue. The overall appearance in the UCSD lecture hall is shown
in Fig. 8.

5. Related work

Net Insight’s [13] Nimbra 600 series switch can transport 8x HD-SDI or
3G-SDI channels over a synchronous SONET/SDH network. There are sev-
eral commercially available solutions for transport of compressed 4K video
over the Internet, for example NTT Electronics [14] ES8000/DS8000 4K
MPEG-2 encoder/decoder complemented with NA5000 IP interface unit or
intoPIX’s [15] system of PRISTINE PCI-E FPGA boards and JPEG 2000
IP cores.
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Figure 7: Schematic diagram of the CineGrid 2009 demonstration

The system described in this article differs in that it transports uncom-
pressed 4K video streams over an asynchronous network.

6. Conclusion and future directions

We have demonstrated that it is possible to transfer an uncompressed 4K
video content over a long-distance network in real time without observable
visual disturbances using FPGA technology for data framing, deframing and
rendering speed control.

The technology enables distributed teams to significantly increase their
productivity by sharing the uncompressed 4K video content in real time.
The application areas include film post-production, scientific visualisation,
art performances or high-quality videoconferences. The paradigm (division
of participants) can also be used for other parts of the film (post-)production,
including editing, special effects or dailies workflow.

In our further work we plan to move the receiver controller to hardware,
which should allow to react more quickly to oncoming FIFO overflow or un-
derflow. We will also include a separate controller for each dual-link HD-SDI
channel, which will allow transferring multiple lower resolution streams (2K
or HD) from different unsynchronized sources, such as individual cameras.
Transmision of multiple synchronized 2K or HD streams, such as for 3D ap-
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Figure 8: Cinegrid 2009 demonstration appearance

plications is possible now and transmission of 4K 3D streams will be possible
with the future firmware version.

The firmware can also be extended by procesing functions, such as encryp-
tion or transcoding. An 8K uncompressed version over a 40 Gb/s network is
technically possible if there is demand.
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Abstract—In this paper, we present a scalable and extendable
hardware architecture for processing and transfer of ultra-
high-definition video over high-speed 10/40/100 Gbit networks
with very low latency. We implemented this architecture in a
single FPGA device. Data processing is divided between FPGA
resources and an embedded operating system. The FPGA
resources can be moved between various processing functions
depending on the device mode. The resulting inexpensive and
compact device is intended for high quality video transfers and
processing with a low latency and to support deployment in
education and remote venues.

Keywords-HD-SDI, video, FPGA, network communication,
high-speed

I. INTRODUCTION

Video transfers are an expected driver application area
of the future Internet. Picture resolution has been increasing
over time. Better-than-high-definition-resolution video (such
as 4K) is already used in some areas, such as scientific
visualization, the film industry or even medical applications.

For the ultimate quality, required for instance in film post-
production or live remote surgery transmissions, working
with a signal that has not been compressed is preferable.
The productivity of a distributed team can be significantly
increased when the video signal can be transferred over the
network in a real time to enable cooperation that is more
effective. Two of the main technical issues are high-data
volume and time synchronization when transferring over an
asynchronous network such as the current Internet.

Currently available solutions mostly consist of multiple

devices (computers, conversion boxes, sync boxes, audio
boxes, etc.), which are expensive and harder to setup,
increasing the logistics costs. We designed an embedded
modular and scalable architecture which fits into a single
mid-size FPGA device including all the required func-
tionality and reducing the complexness and costs of this
solution. We implemented this architecture and developed a
device called MVTP-4K (Modular Video Transfer Platform).
We have already used several prototypes in field tests to
support applications in film post-production and live medical
applications.

This paper is organized as follows: In Section II, we
summarize the hardware requirements of our design. In
Section III, we present our architecture for video transfers
and processing. In Section IV, we present our prototype. In
Section V, we summarize our experience with device field
tests, In Section VI, we compare our solution with other
available devices.

II. REQUIREMENTS

We have set the following set of requirements for our
architecture:

• Video inputs and outputs SDI, HD-SDI or 3G channels
• 10/40/100 Gbit network interface or multiple interfaces
• Very small added latency
• Extendable design for additional processing such as

compression or encryption
• Fit into available FPGA devices and fully imple-

mentable in one mid-size FPGA device with additional
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interfaces
The use of a single- and dual-link HD-SDI channel for the

transmission of high definition video streams is now a com-
mon industry practice and it is specified in SMPTE 274 [1]
and SMPTE 372 [2]. This includes HD (1920x1080) and
2K (2048x1080) formats. The 4K (4096x2160) signals are
typically transferred in four quadrants, each in 2K format
carried over a separate dual-link HD-SDI channel. 3D trans-
missions are typically transferred as two independent 2K or
4K channels, some require additional synchronization.

The FPGA circuit was chosen as the processing device
due to its versatility that allows us to build a complete
embedded solution and to host all required functionality to
combine video transmissions with other functions, such as
compression, encryption or transcoding.

The architecture must be scalable to allow multiple con-
figurations based on currently available FPGA devices and
interfaces, assuming the speed of communication interfaces
will increase, and eventually be usable with future 100
Gigabit Ethernet networks and similar high-speed media.

We require an unnoticeable latency added to the network
propagation delay for real-time applications. Unnoticeable
latency for audio/video applications is below 60 ms for un-
trained audience and below 30 ms for professional audience.

III. THE ARCHITECTURE

This section describes the proposed architecture.

A. Background

In our previous work we designed and implemented a
scalable hardware architecture for network packet process-
ing [3], [4]. This architecture consists of a set of recon-
figurable modules for packet processing and a communica-
tion interface. The architecture was designed for maximum
flexibility and multi-gigabit speeds starting at 10Gb/s. The
main processing core was designed to be fully scalable for
10/40/100Gb speeds.

We have designed an interface and developed a prototype
for 40Gb/s SONET/SDH networks [5] for basic data pro-
cessing and testing of 40Gb/s networks and currently we
are experimenting with 100Gb Ethernet interface in FPGA
devices.

B. Design Overview

Real-time processing of multi-gigabit data rates is difficult
on PC-based platforms with standard operating systems not
designed for real-time operation. We were looking for a real-
time design that is scalable to higher data rates (such as for
8K or UHDTV2 format), higher network speeds (such as
40 and 100 Gb/s) and can be integrated with commonly
requested video processing functions, such as encryption,
transcoding or compression. Real-time operation means to
add a very low latency to a network delay and enable
true live experience. This design is fully automated and all
embedded in a single FPGA device.

The embedded architecture for real-time video transport
and processing is based on our previous work. The core is
the scalable architecture for network packet processing [3],
[4] designed especially for Ethernet networks. This whole
architecture operates at network clock domain of attached
network interface and can be used for various modular data
packet processing. Since video signal consists of special
packets, we can make a simple conversion to transport the
video packets to a network clock domain and back. This
way we can use a network packet processing architecture
for video packet processing.

When we convert data packets from network clock domain
to video clock domain certain mechanisms need to be used.
Ethernet Network is an asynchronous network, on the other
hand, HD-SDI is a synchronous channel thus an advanced
techniques for synchronization of data packets crossing from
network domain to video domain are required [6].

Address range of all processing modules, routes and
hardware configuration registers is mapped to an embedded
processor logic bus (PLB) address range using a simple bus
bridge of our own design. An embedded processor can be a
dedicated Power PC processor or soft-core Microblaze [7]
processor. An embedded processor is running a customized
Linux distribution and all peripherals are managed by Linux
drivers or dedicated software tools. The embedded Linux
distribution also provides all means of communication with a
device, such as ssh server, web server, display and keyboard
controllers and eventually can also handle 10/100/1000 Mbit
and multi-gigabit interfaces. The Multi-gigabit Ethernet Net-
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Figure 1. Input video processing and connection to packet processing for
4 channels.

work Interface for an embedded processor is described in a
subsection III-F.

C. Video Processing Modules

Video processing modules do a conversion between video
and network packets, allowing video data to be processed in
the network packet processing core (section III-D). There are
two video processing modules, the input and output module,
shown in Figures 1 and 2.

The input module consists of the video input interface
and the frame decoder. The video input interface implements
low-layer communication with the HD-SDI equalizer chips
through Rocket IO channels and the frame decoder extracts
video packets, converts them to network packets and attaches
headers with video format parameters.

The output module consists of the video frame generator
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Figure 2. Output video processing and connection to packet processing
for 4 channels.
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and the video output interface. The frame generator receives
network packets and generates valid image to the video
output interface based on information contained in network
packet headers.

A video packet includes a video pixel row with specified
headers and control characters. We use a dual-port memory
as a packet FIFO to cross clock domain boundaries. The
video processing modules are located in the HD-SDI clock
domain and the network packet processing modules are
located in the network clock domain. The example config-
uration in Figures 1 and 2 includes four HD-SDI channels.
The channels are independent and can be added freely just
with a simple modification of the channel multiplexer. This
operation can be completely parameterized.

The HD-SDI interface has a bit rate of 1.485 Gbit/s [8]
but not all data needs to be transferred. Video rows in-
clude blanking areas (horizontal blanking interval) and a
video frame includes blanking video rows (vertical blanking
interval). The whole situation is illustrated in Figure 3.
Blanking areas can contain some secondary information such
as audio, encryption or video format specification, which
we can choose to transport or not. When we strip video
packets of those blanking intervals, we get a bit rate between
1 Gb/s and 1.3 Gb/s depending on a picture resolution and
frame rate. This means that the 10 Gbit Ethernet network
can transfer up to eight HD-SDI video channels and with
some video formats even including additional data, such as
audio or encryption information.

The example bitrates of eight channels of selected video
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Figure 4. Schematic of interconnections in the processing core.

formats stripped of blanking intervals are summarized in
Table I. The 30fps HD formats can be still transferred, but
image crop must be applied.

TABLE I
VIDEO FORMATS BITRATES

Format Bitrate eight
channels (Gb/s)

Bitrate one
channel (Gb/s)

2K/24 8,7 1,08
1080/24 8,2 1,025
1080/25 8,5 1,06
1080/30 10,4! 1,3
720/50 7,6 0,95
720/60 9,1 1,14

D. Network Packet Processing Core

The main processing core consists of two sets of process-
ing modules. We have extended our original architecture [3],
[4] with the video interface and video processing modules
described in section III-C. The network packet processing
core is divided into two parts. A set of switches can be
arranged to allow a packet flow between the network and
video domains in several ways. A schematic of this intercon-
nection is shown in Figure 4. The following configurations
are possible:

• From network input to network output through switch
1, processing modules 2, switch 3 and processing
modules 1. All processing modules are dedicated for
network to network packet processing.

• From network to video, full-duplex, one set of pro-
cessing modules for each direction. From network
input through switch 1 and processing modules 2 to
video output. From video input through switch 3 and
processing modules 1 to network output.

• From video input to video output through switch 3,
processing modules 2, switch 3, processing modules 1
and switch 2. All processing modules are dedicated for
video packet processing.

Data stream processing modules are inserted directly to
the packet stream. Every processing module works as an
individual processing unit. The advantage is that modules

A

B

Device crossing

Figure 5. Processing modules

65



can occupy different FPGA devices. When we need to im-
plement a complex module such as video encoder/decoder,
we may find more suitable to use more FPGA devices. For
this purpose, the architecture is designed to relocate a packet
stream through a high-speed FPGA ports to another de-
vice and make a cross-device interconnection of processing
modules. Both options are shown in Figure 5. Option A:
Modules are connected in a single device. Option B: Module
interconnection crosses multiple devices over a high-speed
interface.

E. Processing latency

The concept of intra-frame processing of video packets
as network packets enables extra low latency of video
processing and transmission. This opens a way to truly
real-time collaboration support. The processing design itself
has a low latency under 1 ms. Video packets are buffered
only when synchronizing from the network asynchronous
domain to the video synchronous domain. However, low
delay variation in the network is required to allow design
latency under 1 ms. In lower quality networks the buffering
level needs to be obviously increased. The extreme cause is
a single frame buffer adding a maximum latency of about
30 ms.

F. Network Interface

High-speed network interface consists of hardware and
software parts, which are controlled by an embedded op-
erating system. Incomming packets containing video data
are sent to output video processing module, on the other
hand network management packets such as ARP or ping are
sent to software network driver. Outgoing packets have two
different sources, packets containing video data are sent from
input video processing module and network management
packets are sent from software network driver.

The block diagram of the network interface is shown
in Figure 6. Incoming packets are classified in the packet
classifier and distributed between video processing modules
(VPM) and RX FIFO. Outgoing packets are sent from VPM
or from TX FIFO. Because there are two paths producing
packets, packet multiplexer is included in the design. It is
multiplexing packets in a round-robin fashion. RX and TX

FIFO are connected to the CPU through the processor local
bus. Therefore, both memories are accessible from software.
The packet classifier is also connected to the CPU, but
the connection is not shown. The CPU is embedded inside
FPGA either.

The packet classifier contains memory for four classifica-
tion rules. Each rule can be marked as going to the VPM
and/or going to RX FIFO. The memory is configured from
software. Currently we use three rules. The first rule is
marked as going to the VPM and the other two rules are
marked as going to RX FIFO. The fourth rule is not used
and is reserved for future use.

The rules are as follows:
• Rule for UDP packets containing video data.
• Rule for ARP packets for address resolution.
• Rule for ICMP packets (ping command).
The software part is based on embedded Linux. Net-

work interface is accessible through the Linux TUN/TAP
driver [9], which provides packet reception and transmission
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Figure 6. Ethernet Interface Block Diagram
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for user space programs. The program controlling network
hardware is running as a daemon in the user space, and
through TUN/TAP driver provides a new network interface.
This new interface behaves like an ordinary network in-
terface such as eth. Therefore, all networking services are
available through this interface.

IV. MVTP-4K PROTOTYPE

We have designed and build a MVTP-4K (Modular Video
Transfer Platform) device which implements proposed ar-
chitecture and validates it in field tests. The MVTP-4K is a
portable device of our own construction for transmission of
multiple high-definition video streams including 4k, 2k and
HD over a 10 Gigabit Ethernet Network. The device consists
of a main FPGA board with 8 HD-SDI video interfaces and
one 10Gbit Ethernet interface. Brief structure is shown in
Figure 7. The device supports all 4K, 2K and HD resolutions
and all corresponding frame rates. 3D transmissions are

Figure 8. Practical use of the technology at Cinegrid 2010 event

also supported. Because the data processing is based on
data packet processing we can even transport data not fully
supported without the need of unpacking them from video
signal. This allows us to transport audio data or encryption
data embedded in the video stream.

We have chosen a Xilinx Virtex FPGA series because it
provides all building blocks and tools required to implement
our architecture. The prototype is based on an extended
platform for network packet processing called MTPP [3].
Whole architecture fits to a mid-size FPGA device Virtex
5 series XCV5LX110T. We have experimentally confirmed
that the device adds a low latency of less than 1 ms.

Mid-size Xilinx FPGAs can be obtained under 3000$ a
piece in a small quantities. For advanced hardware functions
such as encryption or encoding, a larger FPGA or a second
mid-size FPGA is required.

V. PRACTICAL EXPERIENCE

We have demonstrated our system at the Cinegrid 2009
and Cinegrid 2010 workshops. The aim was to demonstrate
that such technology can enable real-time remote cooper-
ation of a distributed team and thus increase productivity.
In the first event, a stream of uncompressed 4K video was
transferred from the Barrandov studios in Prague to the
venue in San Diego over a distance of more than 10000
km to perform remote color grading in a real-time. In the
second event, a stream of 3D 2K video was transferred from
the UPP Company in Prague to the venue in San Diego to
perform remote real-time postproduction processing of 3D
images. The 3D grading performed at the venue with the
signal transferred by our device is illustrated in Fig.8.

In order to evaluate the system suitability for e-Health
applications, we transferred several surgical operations from
the daVinci Surgical System [10] which produces HD stereo-
scopic signal in 1080i format. The picture quality was
subjectively approved by invited medical experts as suitable
for highly illustrative student training or presentations of
surgical procedures on symposia.

VI. RELATED WORK

There are several commercial products, which allow trans-
port of SDI, HD-SDI or 3G channels over network.
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Net Insight’s [11] Nimbra 600 series switch can transport
8x HD-SDI or 3G SDI channels over an SONET/SDH
network. There are several commercially available solutions
for transport of compressed 4K video over the Internet, for
example NTT Electronics [12] ES8000/DS8000 4K MPEG-
2 encoder/decoder complemented with NA5000 IP interface
unit and intoPIX’s [13] system of PRISTINE PCI-E FPGA
boards and JPEG 2000 IP cores.

UltraGrid from Laboratory of Advanced Networking
Technologies is a software for real-time transmissions of
high-defintion video [14]. This solution is a fully software
based and requires dedicated PC with specialized hardware.

The architecture and design described in this article
differs in that it is a hardware solution fully scalable to
higher speeds. The number of video and network interfaces
is parameterized and can be easily extended. The FPGA
enabled parallelism allows our architecture to process several
video channels at once and to transfer every video format
contained in SDI, HD-SDI or 3G interface. The architecture
is designed to be embedded to a single FPGA device but
some larger processing modules can be relocated to other
FPGA devices. Our design has a very small added latency
around 1 ms that enables a true real-time distributed team
cooperation.

VII. CONCLUSION

We have extended a scalable architecture for network
packet processing [3], [4] by video interfaces options. The
resulting architecture is designed to process or transport
video data over an asynchronous network with very low
added latency. The design enables true real-time distributed
team cooperation. The real-time team cooperation was
demonstrated in several applications in the cinema industry
and e-Learning in medicine. The architecture also fulfills
the hardware requirements that we set and we successfully
implemented this architecture in a single FPGA device and
presented its capabilities.
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