
Stream-wise Parallel Anomaly Detection in Computer Networks

by

Tomáš Čejka

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics
Department of Digital Design

Prague, May 2018

Supervisor:
doc. Ing. Hana Kubátová, CSc.
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright c© 2018 Tomáš Čejka

ii

Abstract

This dissertation thesis is a collection of author’s works from the areas of the flow-based
network monitoring and network security that were elaborated in the last five years. The
main feature of all included papers is a so-called stream-wise approach of processing flow
data, which is described in this thesis. The stream-wise processing is a suitable principle of
security analysis for large-scale computer networks since flow records are being processed
on-the-fly when they reach a flow collector. As a proof-of-concept, we have developed an
open source NEMEA framework and a set of NEMEA modules for a stream-wise analysis
of flow data.

There are several included papers in this thesis that show benefits of extended flow
records containing information from headers of application protocol (L7). Such extended
flow records can increase the reliability of detection algorithms and allow for detection
of suspicious traffic that is invisible for traditional flow-based detection methods. The
detection modules capable of processing the L7 information are called application-aware.

Since the data volume from monitoring systems grows, and it is expected to increase
further in the future as well, the next focus of this dissertation thesis is a scalable infras-
tructure for parallel flow-based analysis. Our experiments show the importance of a correct
algorithm for data distribution among multiple computing nodes. Usage of an algorithm
that does not respect semantic relations in the flow data has a strong negative influence on
the detection results. Therefore, the dissertation thesis shows a method of constructing a
proper Flow Scatter that distributes flow data without breaking these semantic relations.

Besides the described contributions, there was an extensive experimental evaluation of
all works included in the papers. The experiments were performed with data sets from real
backbone traffic of Czech national academic network. Additionally, the created flow-based
NEMEA modules were deployed in the monitoring infrastructure of CESNET2 network.

Keywords:
network security, flow data, witness, anomaly detection, parallel processing, data split-

ting, NEMEA.

iii

Acknowledgements

I would like to thank my colleagues from CESNET, especially Ing. JanKořenek, Ph.D. and
Ing.Martin Žádník, Ph.D., for their support and inspiration. I am also very grateful for the
support of my supervisor doc. Ing.Hana Kubátová,CSc., who was fighting for me when the
academical/political environment required that. Doc. Kubátová motivated me to finish
my thesis “sooner than later.” Doc. Ing. Petr Fišer, Ph.D. helped me to improve this
dissertation thesis by his valuable feedback and proofreading.

Many thanks belong to my students, former or current, who helped me with my inten-
tion to build a strong research&development team that can achieve excellent results and
can successfully represent our work, e.g., at conferences or in contests. I believe I couldn’t
get so far (and so quickly) without these co-workers (most of them became my friends).
The list would be very long, but I would like to mention Ing.Marek Švepeš, Ing. Zdeněk
Rosa, and Bc.Tomáš Jánský for their long-term merit for the team.

Speciální poděkování patří mé rodině a přátelům; když maminka říkala, že tuto práci
dokončím, měla pravdu!

This work was partially supported by internal grant No. SGS17/212/OHK3/3T/18
funded by CTU in Prague, and by the “CESNET E-Infrastructure” (LM2015042) project
funded by Ministry of Education, Youth and Sports of the Czech Republic.

v

Contents

Abbreviations xi

1 Introduction 1
1.1 Motivation . 4
1.2 Problem Statement . 6
1.3 Goals and Contributions of the Dissertation Thesis 8
1.4 Structure of the Dissertation Thesis . 9

2 State-of-the-Art 11
2.1 Monitoring Approaches . 11
2.2 Detection Methods . 13
2.3 Big Data Processing . 16
2.4 Semantic Relations in Data . 17

3 Topics and Contributions in Details 19
3.1 Network Measurements Analysis Framework (NEMEA) 19
3.2 Stream-Wise Approach to Flow-Based Analysis (SW) 22
3.3 Application-Aware Detection Methods (AA) 23
3.4 Semantic Relations in Flow Data (WITNESS) 25

3.4.1 General Terms . 25
3.4.2 Witness types and witnesses . 25

3.5 Selected Detection Algorithms in Details 27
3.5.1 Detection of Known Features (KF) 28
3.5.2 Detection of DNS Misusage — Covert Channel (DNS) 29
3.5.3 Detection of Attacks Against VoIP Infrastructure (SIP) 30
3.5.4 Vertical and Horizontal Port Scan (VS) 33
3.5.5 Brute-Force Password Guessing (BF) 33
3.5.6 Distributed Denial of Service (DDoS) 34

3.6 Construction of Flow Data Scatter (PARINFRA) 35

vi

Contents

3.6.1 Scalable Infrastructure for Processing with Flow Scatters 37
3.7 Recapitulation of the Main Contributions 37

4 Conclusions 41
4.1 Future Work . 42

Bibliography 43

Publications of the Author 49

A Included Papers 55
A.1 NEMEA: A Framework for Network Traffic Analysis 55
A.2 Nemea: Searching for Botnet Footprints 63
A.3 Stream-wise Detection of Surreptitious Traffic over DNS 71
A.4 Hunting SIP Authentication Attacks Efficiently 77
A.5 Using Application-Aware Flow Monitoring for SIP Fraud Detection 83
A.6 Analysis of Vertical Scans Discovered by Naive Detection 97
A.7 Making flow-based security detection parallel 103
A.8 Preserving relations in parallel flow data processing 117

vii

List of Algorithms

3.1 Detection of Communication with Known Feature 29
3.2 Detection of Communication Tunnels over DNS 30
3.3 Detection of SIP Brute Force . 31
3.4 Detection of SIP Scanning . 31
3.5 Detection of SIP Distributed Bruteforce 32
3.6 Detection of SIP Dial Scheme Guessing . 32
3.7 Detection of vertical scanning . 33
3.8 Detection of Brute Force Guessing . 34
3.9 Detection of DDoS . 35
3.10 Construction of scatter . 36

ix

Abbreviations

Networking Abbreviations

API Application Programming Interface
C&C Command and Control
DNS Domain Name System
DoS Denial of Service
DDoS Distributed Denial of Service
DRDoS Distributed Reflection Denial of Service
HTTP Hyper-Text Transfer Protocol
IP Internet Protocol
ISP Internet Service Providers
L3 Network layer (3th layer) of the ISO/OSI model
L4 Transport layer (4th layer) of the ISO/OSI model
L7 Application layer (7th layer) of the ISO/OSI model
NEMEA Network Measurements Analysis
SIP Session Initiation Protocol
URL Uniform Resource Locator

Flow Records

bytes number of bytes
dstip destination IP address
dstport destination port of transport protocol
packets number of packets
proto transport protocol
srcip source IP address
srcport source port of transport protocol
timefirst timestamp of the first packet in the flow
timelast timestamp of the last packet of the flow

xi

Abbreviations

basic flow record: a record identified by srcip, dstip, srcport, dstport, proto, timefirst,
timelast and containing bytes and packets
extended flow record: a basic flow record extended by application layer information

xii

Chapter 1
Introduction

Network security plays an essential role in the modern world of digital communication. It is
a research field of many researchers and security companies around the world. Many topics
in the network security area have been elaborated by various researchers. However, there
are still many open research issues. This dissertation thesis focuses on several challenges
related to network security and parallel processing of high amounts of data of network
traffic. The dissertation thesis is a collection of peer-reviewed research papers on the topic
of anomaly detection in large computer networks.

Network technology continuously evolves, network stack is implemented in many hard-
ware chips, and software implementation of communication protocols can be easily inte-
grated into any system or device. Therefore, lots of devices, even small sensors, are being
equipped with a network interface, and according to the current trend, the number of
network-enabled devices will grow. Devices can communicate via network interfaces not
only with humans, as it used to be at the beginning of the computer networking, but also
with other “things” or machines connected to the network. Due to automation, machines
are becoming both the primary consumers and producers of data. This trend aims to help
people to make their life/work easier and more efficient. We are living in the era of the
Internet of Things.

Since small devices have low capacity of memory and storage, they are usually designed
to access servers via the Internet — so-called Cloud— where the processing power, memory,
and storage capacity are much more available. In practice, the idea of collecting data
to some central place is valuable because it allows easier data access from anywhere and
various types of advanced data processing. The more devices are connected to the Internet,
the more significant data volume is transferred via network links, and thus it makes the
data processing and storage harder in the central place.

From the topological view of computer networks, the data travel from end-point net-
works to the target servers via high throughput backbone links and transit networks of
Internet Service Providers (ISP). Such network links are usually designed with much higher
capacity, so most of the attacks do not affect the infrastructure of ISPs. However, signif-
icant attacks can have a crucial impact on end-users’ networks. Such attacks are easily

1

1. Introduction

detectable in a victim’s network, where they are difficult to mitigate. The attacks are
worse detectable in a backbone network; however, their mitigation is more efficient there.
The described relation is illustrated in Fig. 1.1.

Mitigation

Detection
D

iffi
cu

lt
y

Distance from Victim

Figure 1.1: Observation of a distributed volumetric attack. The further from victim an
observation is, the more difficult detection. On the other hand, mitigation processes are
more efficient further from a victim, i.e., closer to a source.

Despite the efforts of many network security initiatives nowadays, lots of manufacturers
do not take care of the security of smart devices. Security updates are published with delay
or never, and if a security patch is not installed automatically, users usually leave the
devices without updates at all. As a result, the number of vulnerable devices connected to
the Internet increases, and this is an opportunity for attackers and developers of malicious
software to create a piece of code that can be executed on the vulnerable devices. Such
devices become a source of malicious traffic that participates in massive volumetric attacks
where it is enough to generate just a few packets by each infected device. Therefore, it is
difficult to recognize malicious traffic in the source network.

The infected devices (bots) can be used by attackers to create powerful botnets — the
devices under control of an attacker. Attackers can use botnets to produce various types
of malicious traffic, and since the bots can be synchronized in time, lots of data can be
sent against any victim from multiple places at the same time. In 2016, vast attacks of
over 600Gb/s were observed from surveillance systems infected with malware that cre-
ated the Mirai botnet. These attacks paralyzed even large infrastructures of international
commercial organizations (example was analyzed in [1] by B.Krebs).

It is necessary to perform comprehensive analysis of network traffic to discover the in-
fected devices and other sources of attacks. The aim is to monitor the activity and status
of the whole infrastructure to preserve its operability and keep so-called situational aware-
ness. Monitoring systems observe network traffic and gather data about communication
between connected devices. Monitoring systems produce such a high data volume that it
is challenging to do the analysis and detection manually. Additionally, it is a challenging
task to store all the data due to slow storage or to keep a long history of data from large

2

networks. A logical used approach is to aggregate or sample data to decrease the volume
of data.

There are many sources of information utilized in network monitoring. According to the
source of information, we can recognize two main types of monitoring: host-based, which
uses information from each device (e.g., system log files), and network-based, which uses
information exported from network devices such as routers, switches or specific monitoring
probes. This work focuses on the network-based monitoring which is a useful and feasible
approach in large network infrastructures where operators usually do not have full control
over connected devices.

Current state-of-the-art systems use IP Flows, which are defined in [2] as follows:

An IP Flow, also called a Flow, is defined as a set of IP packets passing an Ob-
servation Point in the network during a certain time interval. All packets that
belong to a particular Flow have a set of common properties derived from the
data contained in the packet and from the packet treatment at the Observation
Point.

For the sake of simplicity and our purposes, information of IP Flows is represented by
data structures flow records, whereas each one is usually a unidirectional communication
between two network addresses. Such flow records are identified by an n-tuple consisting
of: source IP address (srcip), destination IP address (dstip), source port of transport pro-
tocol (srcport), destination port of transport protocol (dstport), transport protocol (proto),
timestamp of the first packet in the flow (timefirst), timestamp of the last packet of the
flow (timelast). Besides these fields for identification, flow records contain some additional
fields — counters that represent volume of the transferred traffic: number of transferred
bytes (bytes), number of transferred packets (packets). The described list of fields of a flow
record is referred as a basic flow record in the later text of this thesis. Flow data (sequence
of flow records) is sent from monitoring probes, where the flow records are exported, to a
flow collector, where they are processed and stored.

The published papers, which are included in Appendix A of this dissertation thesis,
deal with detection of malicious traffic based on a stream-wise analysis of the flow records.
The stream-wise approach itself is described in Section 3.2. It is based on an on-the-fly
analysis of flow data because the input data come from monitoring probes continuously.
The described concept allows processing flow records from even large networks. Monitoring
probes export the flow records that are collected by a flow collector where the stream-wise
processing can run.

The published papers also show the feasibility of the stream-wise approach and describe
detection of several different types of malicious or suspicious traffic even in a large network
infrastructure. Most of the presented detection methods analyze extracted application
information for detection of threats that cannot be reliably detected using just traditional
flow data (i.e., without additional application information). The practical experiments
evaluated the presented approach. The experiments were performed thanks to the designed
and developed NEMEA system (described in Section 3.1),

3

1. Introduction

The dissertation thesis also presents a methodology for splitting a continuous stream of
flow data for parallel processing. The main feature of the methodology is the preservation
of semantic relations among flow data, i.e., among flow records. Such semantic relations
have a significant impact on the performance of the detection algorithms. Sections 3.4–3.6
describe the usage of this methodology using the published detection algorithms as the
examples to show characteristics of the relations. The goal is to show relations that should
not be broken to preserve the detection results in parallel processing.

The aim is to present a designed system for processing large amount of flow data in
parallel. Such processing is intended for security analysis and anomaly detection in large
infrastructures.

1.1 Motivation
The complexity of network infrastructures, the throughput of network links and volume of
transferred data grow. There are many reasons to deploy and run a network monitoring
system that watches the activity of connected devices and status of the network links.
However, one of the most important reasons is network security. An analysis of the network
traffic may help to discover many security issues such as infected devices that are
attacking or scanning, devices under attack, data exfiltration, breaking or avoiding security
policies, breaching an owned device by an attacker or many others. Many scientific papers
show that analysis of flow data may discover lots of security threats. Monitoring systems
are usually the primary source of information for security analysis.

There are hundreds of gigabytes of flow records exported per day in large networks. On
average, about 285GB of flow data per day is measured by 11 monitoring probes at the
perimeter of CESNET2, the national academic network in the Czech Republic. Altogether,
network monitoring becomes a Big Data processing, and operators must consider
some distributed approach for scalability and sustainability in the future.

In practice, a network infrastructure is being monitored from several different places.
It is useful to deploy multiple monitoring probes because it allows tracking routes where
the traffic flows, i.e., from where the packets originate and which routers or other devices
forward the packets. Analysis of the data from all probes together helps to create a
global view of different parts of the network infrastructure. The centralized processing can
discover events that are not visible from a local perspective, especially when some malicious
traffic goes via multiple links like in case of distributed attacks. Transferring information
to one place increases the issue of data volume, and it goes against the distributed nature
of Big Data approaches, which work with distributed data storage. It is a challenging task
to process all data in one place because of resource limits of a single machine, and some
distributed computing must be considered for scaling solution.

The weakness of centralized collecting of information about network traffic was identi-
fied and solved in a Czech innovation project called Security Cloud1, funded by Technology

1SecurityCloud, TAČR ALFA project no. TA04010062,
https://github.com/CESNET/SecurityCloud/wiki

4

1.1. Motivation

Agency of the Czech Republic in 2014–2017. This project aimed to design and develop
a distributed flow storage that is efficient enough to receive high volumes of data from
multiple monitoring probes. The developed system allows users to query the stored data
from a longer time period with much shorter delay. However, this project did not cover
distributed on-the-fly anomaly detection, and so it remains a weak part of the mon-
itoring and analysis pipeline.

The detection delay plays an important role. For instance, detection of enormous Denial
of Service (DoS) or distributed DoS (DDoS) attacks should be fast enough to allow network
operators to perform some mitigation mechanisms. The total delay is a sum of many factors
such as a delay of flow data export at probes, time of the decision of an algorithm, a delay
of an alert creation and a communication delay caused by infrastructure. Other used
systems also cause some delay (flow collector, detection system and system for incident
handling). The delay of the decision of an algorithm is usually the biggest one since it
takes time until the algorithm gathers enough data to identify malicious or anomalous
traffic and, additionally, advanced algorithms need a significant time to process all the
gathered data. To minimize this delay, the aim of this research is a real-time or near
real-time analysis, i.e., to process data on-the-fly immediately.

However, the sooner an alert is reported, the higher probability of a false positive result.
It is not feasible to run a detection system with high false alert rate, especially when
human incident response teams process the alerts. There are many reasons why detection
algorithms produce false alerts, which identify legitimate traffic as a malicious one. Since
detection algorithms usually use some approximate model of legitimate or malicious traffic
(such as “an IP address that establishes lots of connections behaves badly”), false alerts
are the cases where the ideal model does not fit to the real character of the legitimate
traffic. Machine learning (ML) detection algorithms work according to a learned model,
which is created in their training phase [3]. Therefore they are weak in the identification
of legitimate or malicious traffic that was not included in the training dataset. Statistical
detection algorithms [3] suffer from the similar issue because there is currently no perfect
statistical model of benign or malicious traffic for the computer networks. On the other
hand, increasing thresholds and tuning the algorithm to be more tolerant and not to
detect “small” anomalies lowers false alert rate with the price of longer delay and a higher
probability of missed (undetected) anomalies. Therefore, some trade-off between the
detection delay and false alert rate must be considered.

Offline analysis, which was traditionally used, requires high capacity storage for data
files that contain flow records from time windows with a fixed length. Contrary, the network
traffic is a continuous stream of data by nature and, consequently, monitoring probes export
information about the traffic also as a stream of data. Therefore, this research focuses on
processing a continuous stream of data without splitting into separate time windows.
This approach needs a particular design, where no big storage is required.

Stream-wise analysis approach, which is presented in this dissertation thesis, can
avoid the need of storing data. The goal of the development of stream-wise detection
methods is to save resources and, therefore, to allow for running multiple detection methods
at once on the same machine.

5

1. Introduction

Compared to packet-based approaches, it is usual to use only information up to the
transport layer (L4) of packet headers (i.e., a basic flow record) for flow-based monitoring
and analysis. The reason is lower required processing power in monitoring probes. The L4
information is generally sufficient for detection of many security threats. However, there
are lots of attacks that target against application layer (L7). Such traffic cannot be distin-
guished from legitimate traffic with high reliability, and so the malicious traffic is hardly
detectable. Therefore, it is important to find information that can improve the detection
results and use it for the detection. This work develops so-called application-aware de-
tection methods, which work not only with basic flow records but also with information
from the L7 — extended flow records. Our research shows that usage of the extended data
increases the reliability of detection and allows for detection of some anomalous traffic,
which would remain undetected.

An essential motivation of this research is to design a system that can run in a parallel
distributed environment to handle big data. It is crucial to bear in mind the stream-wise
concept, especially for large networks. It minimizes delays of detection and keeps the
storage requirements low. To detect even L7 security issues, some additional information,
which can increase reliability and precision of detection, is needed in the analyzed flow
records. Since the computing power increases, mainly using some hardware acceleration,
it is possible to export some L7 headers, which can help detection algorithms. Altogether,
it was needed to focus on research and development of a detection system that can
overcome the current issues regarding the big volume of data, limited resources of a
single machine and invisible malicious traffic on L7.

It was necessary to develop new methods to cover needs for continuous stream-wise
detection with the use of L7 information that increases the reliability of detection results.

1.2 Problem Statement
Let us have a set of monitoring probes and a central flow collector that receives data from
the probes. Let us have a computing node that can receive a continuous stream of data

Monitoring
Probe

Monitoring
Probe

Monitoring
Probe

Collector & IDS
Alert

Handling

Figure 1.2: Infrastructure for flow monitoring usually consists of multiple monitoring
probes and a central flow collector.

6

1.2. Problem Statement

via a flow collector. A simple example of the infrastructure is shown in Fig. 1.2, where the
Collector&IDS block represents the computing node. The computing node runs various
detection algorithms which process a stream of input data and detect malicious traffic. The
node can be easily cloned and started multiple times on separate machines to get more
processing power. The challenging part is a distribution of a single stream of data among
the multiple nodes, whereas each node should process just a subset of the original stream.

This approach does not require a complete redesign of the deployed detection or anal-
ysis algorithms. However, a suitable mechanism of data distribution must be designed
to preserve results of detection. This work proposes an approach to scalable flow data
processing using independent computing nodes.

Another challenge is related to the reliability of detection algorithms when they are used
to detect L7 threats. Traditional flow records with basic information are not sufficient for
detection of advanced threats that are similar to legitimate traffic.

Finally, there is a lack of existing (open source) tools to develop a prototype of a detec-
tion and analysis tools. Such tools are essential for academic experiments and evaluation.

IPFIXcol

(Distributed)
Flow Storage

NEMEA
(IDS)

Alert Storage

AMSIX

GÉANT

PIONEER

SANET

ACONET

NIX

TI Sparkle

IPFIX UniRec

GUI
(alerts,

flow data,
statistics)

Reports
for users

PassiveDNS

HoneyPots

Shadow
Servers

Other IDS

DNS

Shodan / Censys

Blacklists

Whois / RIRs

Scrubbing Center
for Czech NREN

TimeMachine
(Evidence Capture)

DDoS Traffic Cleaned traffic

Monitoring Probes

Evidence
Storage

IDEA

Botnet DB

Detection of
Suspicious

Entity Groups

FTAS

NetFlow

Backbone Routers

IDEA

IDEA

IDEA IDEA

IDEA

IDEA

IDEA

IDEA IDEA

DDoS

Figure 1.3: This work in the context of security tools in the CESNET2 academic network.

Our work was practically evaluated in the CESNET2 infrastructure, so it is a part
of the big set of tools and systems. Figure 1.3 shows several systems that are deployed
in CESNET2 to monitor the infrastructure and detect suspicious traffic. The systems
also address incident reporting and handling. This dissertation thesis is primarily about
the NEMEA (IDS) block that process flow data from the flow data collector (IPFIXcol).
Parallelism of NEMEA is represented by the duplicated blocks. Many other blocks in the
figure were designed and implemented as parts of bachelor and diploma theses supervised by

7

1. Introduction

the author of this dissertation thesis ([P.32, P.29, P.28, P.27, P.26]). However, description
of the all blocks is out of the scope of this document.

1.3 Goals and Contributions of the Dissertation Thesis
The main goals of this thesis are focused on processing the flow data in large backbone
networks. The aim is to design mechanisms to process huge volume of flow data as soon as
possible especially for network security purposes. It was necessary to design new detection
and processing algorithms that could work in a stream-wise way, i.e., to process data
immediately without long-term storage. This approach allows processing in real-time.
The research presented in this thesis also shows that some application layer information
might help to identify advanced security threats. Therefore, the next goal was to extend
the monitoring and analysis infrastructure to support additional information, i.e., to make
the monitoring “aware of application” (application aware). Because of the growing
volume of the flow data, the processing on just one machine would not be scalable enough.
Therefore, the next goal of the thesis was parallel processing based on splitting a stream
of flow data into independent subsets that can be processed on separate machines. There
was a related requirement about the balanced load of each machine, which is the reason
why the sizes of the split subsets should be as similar as possible. Splitting the stream of
flow data affects the amount of information that is processed by a single machine. The
goal was to design an algorithm for splitting that ensures the machine receives enough
data to identify security threats, i.e., to preserve detection results.

Contributions of this thesis can be generalized and divided into the five main topics
that are covered in the following chapters.

1. Description of a new stream-wise approach to network traffic analysis and anomaly
detection using flow data without long-term storage (discussed in Section 3.2).

2. Design and development of stream-wise and application-aware (discussed in Sec-
tion 3.3) detection methods that can discover threats on application layer. Ad-
ditionally, design and development of a framework that allows rapid prototyping of
the detection methods (discussed in Section 3.1 about NEMEA, the open source
detection system).

3. The methodology based on witnesses to split a stream of flow data without
breaking semantic relations that affect results of detection algorithms (discussed in
Section 3.4). and the design and development of the scalable architecture for par-
allel processing the flow data with respect to witnesses (discussed in Section 3.6.1).

4. Practical experiments with real backbone traffic using the developed detection
algorithms (published in the included papers in Appendix A).

5. Formal symbolic description of the algorithms implemented as the modules for
the NEMEA system are contained in Section 3.5. Some of the algorithms were

8

1.4. Structure of the Dissertation Thesis

published in [P.2, P.6, P.7, P.8] (the papers are included in Appendix A). However,
the formal descriptions were not in the original papers.

1.4 Structure of the Dissertation Thesis
The thesis is organized into five chapters as follows:

1. Introduction (Chapter 1): Describes our motivation, defines the targeted issues and
lists the goals of this dissertation thesis.

2. State-of-the-Art (Chapter 2): Describes the current state-of-the-art and lists related
existing works in the area of network security, anomaly detection and parallel pro-
cessing using flow data.

3. Topics and Contributions in Details (Chapter 3): Presents the designed and devel-
oped NEMEA system for flow-based analysis, explains its essential features (application-
awareness and stream-wise processing), defines terminology that is important for this
work, such as witness — an abstract representation of semantic relations in the flow
data, which is significant for parallel processing. Section 3.5 shows the application of
the defined terms on the developed detection algorithms. Additionally, the section
contains details not included in the published papers due to the limited space.

4. Conclusions (Chapter 4): Summarizes this dissertation thesis and suggests possible
topics for further research.

5. Included Papers (Appendix A): Contains eight of the published reviewed papers of
the author of this thesis. The included papers present details about design and
implementation of the stream-wise and application-aware detection algorithms and
the NEMEA system. The papers also contain various observations from experiments
with real network traffic in CESNET2. Each paper is introduced by a short summary.
The described detection algorithms were the proof-of-concept of the parallel analysis.

Figure 1.4 shows the structure of this dissertation thesis visually. The thesis is built
upon published papers regarding detection of suspicious and anomalous traffic. Each block
in the figure represents a topic covered in this thesis. The blocks are listed and described
below:

1) Detection of known features (KF in the figure) in Appendix A.2.

2) Detection of covert channels using DNS (DNS in the figure) in Appendix A.3.

3) Detection of threats against signaling protocol Session Initiation Protocol (SIP) for
Voice over IP (SIP in the figure) in Appendix A.5 and Appendix A.4.

4) Detection of vertical scanning, also known as port scans, (VS in the figure) in Ap-
pendix A.6.

9

1. Introduction

Witness Methodology
(WITNESS)

Parallel Infrastructure
(PARINFRA)

Network Measuremets Analysis Framework
(NEMEA)

Application-Awareness
(AA)

Stream-Wise
(SW)

DDoSBFVSDNS SIPKF

Figure 1.4: The visual outline of this thesis that represents published and described parts.
Blue boxes represent topics that were published in the included papers. Green boxes
represent novel approaches described as a part of a published paper. White boxes represent
related topics that are described in this thesis for the sake of completeness although they
are not published elsewhere.

5–6) Simple examples of detection Distributed Denial of Service attacks (DDoS in the figure)
and Brute Force attacks (BF in the figure) are mentioned for completeness in Section 3.5
even though they are not published as an original work by the author of this thesis.

7) All described detection methods (KF, DNS, SIP, VS, BF, DDoS) were implemented as
modules of the Network Measurements Analysis (NEMEA) system built upon NEMEA
Framework that was published in the paper included in Appendix A.1.

8–9) NEMEA was designed with respect to approaches Application-Awareness (AA in the
figure) and Stream-Wise processing (SW) that were far from common in the time of
the start of the project. However, the deployment of NEMEA in practice proved that
they are feasible and useful.

10) Besides published paper on single instance of NEMEA for flow data processing, there
is another paper included in Appendix A.7 that shows an infrastructure for processing
a single stream of flow data that is being split into parallel substreams (PARINFRA in
the figure). Such substreams can be processed in parallel so that it allows higher overall
throughput of the detection system.

11) Splitting the stream of flow data from the theoretical point of view (WITNESS in the
figure) is covert in a separate paper included in Appendix A.8.

10

Chapter 2
State-of-the-Art

2.1 Monitoring Approaches
Various research papers (such as [4, 5]) divide approaches to network monitoring and
anomaly detection into two groups according to the source of information that is used:
host-based and network-based. The first group, host-based, uses information from a “host,”
i.e., a device. Such a monitoring and detection system analyzes system or application
logs, running processes and their behavior and network connections. Host-based detection
systems usually have access to the content of a communication, which allows for more
precise analysis (e.g., for Anti-SPAM systems). Nowadays, this functionality is usually
done by security systems, developed by many commercial companies, which contain the
functionality of firewall, auditing tools, and file system scanners. A disadvantage of the
host-based detection system is that it requires control over a monitored host or at least
access to its system logs.

The scope of interest of this dissertation thesis is a network-based approach that is
focused on an analysis of network traffic at the level of network infrastructure. This
approach can work without prior comprehensive information about running servers and
services. Additionally, the monitoring does not require any control over the devices of
users. Therefore, it is more suitable for ISP and backbone networks and their operators.

Network-based monitoring can be divided into two subgroups from the perspective of
the processed data units: packet-based and flow-based. Generally, they differ in the level of
detail that is analyzed and the level of information aggregation. Packet-based approaches
work with raw packet data and with no or minimal aggregation; meanwhile, flow-based
methods operate with flow records, i.e., aggregated information about packets (already
introduced in Chapter 1).

Packet-based detection methods can operate with various information contained in net-
work packets. Methods can use knowledge of the whole content of messages from the data
link layer (L2) to the application layer (L7). This approach allows for a pattern or sig-
nature matching. A packet-based analysis up to the application layer is sometimes called
deep packet inspection (DPI).

11

2. State-of-the-Art

Generally, intensive DPI can be used in networks with lower speeds because of the
performance issues with transfer of a large volume of data presented in [6]. However, as
modern technologies evolve, the data transfer between hardware and software components
and bandwidth issues were significantly shifted up to the processing of 100Gbps per one
Ethernet line by [7, 8]. This allows analyzers to perform various algorithms such as pattern
matching at high speed.

Flow-based detection methods are commonly used because of a higher level of aggrega-
tion with a small loss of information about communicating network hosts as it is described
in [9, 10]. Many types of malicious traffic such as brute-force attacks, Denial of Service
(DoS), amplification attacks are observable using flows records. For instance, detection of
brute-force attacks against SSH using flow data was published in [11].

Flow records can be represented in various data formats. It is usually a sequence of
data messages with some fixed set of information fields. There are many data formats
that are used by researchers. For instance, JSON format provides enough flexibility and
is used mainly for easy integration with Big Data platforms (like the authors of [12] did).
However, JSON is very inefficient data format because of size and binary data formats
are preferred. The well-known and mostly used flow data representations are NetFlow [2]
and more recent IPFIX [13] format. This thesis describes a new efficient data format for
stream-wise flow data processing in Section 3.1.

Hardware acceleration can be used for analysis of high-speed network traffic for both
packet-based and flow-based monitoring. Hardware acceleration allows to partially or
entirely perform some processing tasks in a special hardware monitoring device (e.g., [14]).
Development of a hardware design is still more difficult than development of software
prototype, despite there are many efforts to create a high-level language to describe the
functionality of a hardware device [P.11]. Therefore, a trade-off between efficiency of
computation in hardware and speed of development must be chosen. A suitable approach
that is also used in [7] is a hardware-software co-design, where the hardware part can
efficiently pre-process data at wire speed or compute necessary statistics, and the rest is
implemented as a software part.

Network-based monitoring, no matter if packet-based or flow-based, can be further
classified as passive or active [10, 15]. Active monitoring is based on active checks that
inject traffic into a network to get the state of infrastructure. The examples of active
monitoring systems are [16, 17, 18] or just simple tools like ping(8) or traceroute(8).
Contrary, passive monitoring is usually done using duplicated (mirrored) traffic besides
the monitored infrastructure so it cannot affect it. Passive monitoring can efficiently use
dedicated monitoring devices (probes) (such as [19]) that receive the mirrored traffic of
the observed link. It is a common practice that such monitoring probes are placed at the
perimeter of the network (i.e., bordering links to other networks) or at the core links inside
the infrastructure.

12

2.2. Detection Methods

2.2 Detection Methods
There are many surveys and taxonomies of detection methods or tools [20, 21, 22]. Nat-
urally, each type of a network attack or a traffic anomaly is elaborated in many other
papers, e.g., a DDoS topic presented in papers such as [23, 24, 25]. Types of detection
methods are highly related to the specific types of attacks or the types of traffic anomaly
that ought to be detected. In addition, the detection mechanisms are usually presented in
combination with defense techniques to mitigate the traffic or at least to allow post-mortem
investigation.

An anomaly in network traffic usually appears at unpredictable points in time. The
start of an anomaly can be observed as a change of statistical distribution of the random
variable that represents some characteristic of network traffic [26]. The choice of a set of
the observed characteristics depends on a detection method and on an anomaly type that
should be detected. Characteristics are usually monitored and analyzed as a time series
that is defined as a sequence of measured values in time. The first insight to an anomaly
detection using time series can be based on simple thresholds and limits where an alert is
raised when the current value reaches some predefined value.

There are many types of network attacks or other anomalies that appear in computer
networks. The anomalies differ in many ways such as a volume of traffic, or a duration
of anomaly. For successful anomaly detection, a model of the network traffic is needed.
It is a complicated issue to create a working and precise model of a computer network
traffic as it is described in [27]. The absence of such model can lead to false alerts signaled
from detection methods. Based on long-term observation, some similarities and trends
can be seen in network traffic. More sophisticated detection methods are based on this
knowledge and use various kinds of smoothing such as moving averages or prediction models
to normalize measured characteristics.

Some types of a network anomaly are significant enough to be found by manual analysis
of the network traffic. The most significant anomaly that can be observed in the network
traffic is a DoS attack or its distributed version (DDoS) attack. They are observable as
a huge increase in the total traffic. However, from the ISP network point of view, even
a high increase of traffic at a link of a user can be below the resolution of the global
view and capacity of ISP’s backbone links. In addition, a manual analysis is not always
possible due to a huge volume of data and the efficiency of such analysis. Therefore, there
is a need for automatic detection. Besides trends and variations of the network traffic
that regularly appear on a network, the network traffic contains several irregular peaks of
legitimate traffic. The example of the legitimate traffic can be a flash crowd effect that
means a temporary increase of traffic due to users legitimate activity. These facts make
anomaly detection with low false alert rate very challenging.

SYN flood attacks1 have been studied for more than ten years, and various detection
approaches were published in many papers. However, this issue is currently still relevant

1a well-known type of flood attacks that is based on sending of several TCP packets with SYN flag,
these packets are used for establishment of a TCP session.

13

2. State-of-the-Art

because of the increase of network traffic volumes, the growth of networks and the higher
level of sophisticated attacks. The detection based on NP-CUSUM is used in [28], where
the authors present their observation about SYN-FIN pairs in network traffic under the
normal condition:

(1) there is a strong positive correlation between the SYN and RST packets;

(2) the difference between the number of SYN and FIN packets is close to the
number of RST packets.

The authors bring an experimental evaluation of flood detection using NP-CUSUM and
counts of TCP flags observation; however, they mention a possible disadvantage of aggre-
gated counting of packets that can be spoofed by an emission of mixed packet types by an
attacker.

The authors of [29] compare a straightforward adaptive threshold algorithm, which can
bring satisfactory performance for attacks with high intensity, and an algorithm based
on CUSUM. The adaptive threshold algorithm uses a deviation from a moving average
computed by exponentially weighted moving average (EWMA) algorithm. An alert is
signaled when a measured value is higher than moving average in last k consecutive inter-
vals. The authors propose to use some prediction method such as Holt-Winters to remove
non-stationary behavior before applying the CUSUM algorithm. However, because of time-
consuming calculations with minor gains compared to more straightforward approaches,
the authors used an approach based on CUSUM and the difference between measured value
and result of EWMA algorithm.

The idea to use EWMA for smoothing, Holt-Winters for prediction of seasonal trends of
traffic and CUSUM for change point detection was published in [9]. The authors designed
a prototype of a monitoring probe extended by anomaly detection as a software plug-in for
an existing monitoring probe. The paper proposed two algorithms with fixed parameters
evaluated on a dataset from backbone network.

The Holt-Winters method was proposed as a suitable approach to detection in [30].
The authors described the formula of the method as well as the way of its usage for a
detection. The detection is based on a prediction of a confidence band and a comparison
of current measured value with the confidence band.

The study of detection methods of DDoS attacks was published in [25]. The authors
discuss open issues and challenges. The example of the challenges is a development of new
detection methods that can detect even sophisticated attacks generated by tools that are
being rapidly improved. The paper uses the taxonomy of DDoS attacks and DDoS defense
mechanisms published by [24]. According to the taxonomy, DDoS detection methods can
be classified as a) statistical b) knowledge-based c) soft computing d) data mining and
machine learning.

The group of statistical detection methods contains various methods based on Change-
Point Detection (CPD) algorithms such as CUSUM or NP-CUSUM [31, 26] (described
in [P.17]), Change aggregation trees (CATs) [32] or D-WARD [33] based on continuous

14

2.2. Detection Methods

monitoring of bidirectional traffic flows between the network and the rest of the Internet
with analysis of deviation from the typical flow patterns.

Knowledge-based methods are based on predefined rules and patterns of attacks. Detec-
tion methods exploit various heuristics and data structures. Soft computing methods are
based on learning paradigms. Methods from this group use neural networks, radial basis
functions, and genetic algorithms. The data mining and machine learning algorithms are
also exploited for network attacks detection. However, the training and the deployment of
these methods are challenging because of lack of suitable datasets.

The authors of [25] propose some requirements on detection methods to be ideally
usable in real networks. Detection should be as fast as possible with acceptable resource
consumption. Detection should be accurate with low false alarms. Detection methods
should be prepared for real network traffic that means they should be scalable for high-
speed networks and the performance should be extensively evaluated. Detection methods
should be prepared for up-to-date sophisticated network attacks. Detection methods should
accurately segregate high-rate attack traffic from legitimate traffic such as flash crowds with
minimum resource consumption and low false alarm rate. Detection methods should be
able to handle an increased volume of data for processing and persist operable. Detection
methods should be able to handle spoofed IP addresses. Detection methods should be
dependent on a minimum number of input parameters if not independent of parameters
and should also be based on a minimum number of traffic parameters or characteristics.

The issue of estimation of parameters of detection methods is partially solved in several
different ways. Ozcelik et al. show in [34] that the current detection methods do not
entirely solve the variation of the utilization of the network. It can be partially solved
using multiple precomputed values of optimal parameters for different levels of utilization
and different network infrastructures. Operating parameters of detection methods can be
found using an exhaustive search as in [34].

In [35] the authors use the EWMA algorithm for a detection. They propose to estimate
parameters from training data that is free of intrusions or attacks. Important parameters
for detection are upper and lower control limits — thresholds.

The detection methods listed in this section have usually been applied on time series
of some aggregated counters such as the number of packets with TCP SYN flag. The
aggregation of characteristics does not allow to trace back the suspicion flows. Therefore,
it is complicated to identify the real reason of an anomaly. The authors of [5] propose an
architecture that uses a multi-stage Bloom filter or a sketch structure. The multi-layer
reversible sketch (MLRS) and the count-min sketch (CMS) that were used in [5] are briefly
described in [P.17].

Additionally, the authors of [5] use multi-chart CUSUM (MNP-CUSUM) proposed in
[36] with the input taken from the sketch structure. The sequential MNP-CUSUM over
a sketch for anomaly detection allows for detection of changes with a small delay and a
low false alarm rate. An alert is raised when at least one of the test statistics reaches the
threshold hi.

Currently, the sketches are used in various detection systems, sometimes, in combination
with different sophisticated mechanisms. Callegari et al. have proposed an architecture of

15

2. State-of-the-Art

a detection system that is based on reversible sketches and neural networks in [37]. The
paper is focused on short-term anomalies detection (without seasonal effect). However,
the authors publish the comparison of neural networks and training algorithms that can
be used for anomaly detection in computer networks. Another example of usability of the
sketches is in [38] where the detection is based on Principal Component Analysis (PCA).

2.3 Big Data Processing
Big Data (described, e.g., in [39]) is a term describing a particular character of complex data
that are challenging for storage, processing, and visualization. Big Data are significant for
its three characteristics: velocity, variety, and volume. According to the definition, network
traffic can be considered as the Big Data problem.

There are many papers about the parallel processing of network data. We focus on flow-
based processing that is the current state-of-the-art. There are several software solutions
for Big Data processing; one of the most popular is Hadoop. Technical report [40] shows
that existing Big data frameworks are not efficient enough for some applications. However,
Hadoop tools that support MapReduce algorithm have been used by many researchers.

It is necessary to split data for parallel processing, but this problem is usually handled
just by general mechanisms of the frameworks. For instance, the authors of [41, 42] use
a distributed database (like Hive or HBase) or a distributed filesystem (HDFS) to store
data files. Authors of [43] analyzed IP, TCP and HTTP traffic stored in offline data files.
Paper [44] presents experiments with several types of MapReduce jobs to analyze campus
network traffic (e.g., computing volume of traffic per subnet).

Authors of [45] use Spark with Netmap to extract traffic features for detection of dif-
ferent types of DDoS attacks in real-time. The detection uses machine learning methods
and relies on a distributed storage and an abstraction of objects called Resilient Dis-
tributed Dataset (RDD). The paper notes that the use of sampled data produces many
false-positives.

Detection of DDoS and SYN flood is presented in [46]. The processing is based on
HDFS and HBASE that uses a Bloom filter with several hash functions and a KEY that
consists of the fixed n-tuple (src and dst IP addresses and ports, protocol and TCP flags).
The authors do not explicitly explain the reason they chose the KEY, but they mention a
condition of detection of an attack with 100% accuracy.

In 2016, Cermak et al. in [47] presented a benchmark of stream processing systems (such
as S4, Spark, Samza, Storm, and Flink) for parallel processing. The chosen operations
(Identity, Filter, Count, Aggregation, TOP N, SYN DoS) were proposed for performance
comparison.

Jirsik et al. in [12] presented the performance of the proposed system for stream
processing based on Apache Big Data analytics tools as well. The benchmark was focused
on a set of typical analysis queries, and according to the results, the systems were able
to process up to 2 million flows/s on a cluster with 32 CPU cores in total. Contrary, the
solution of the author of this dissertation thesis is obviously less resource consuming since

16

2.4. Semantic Relations in Data

it can handle approximately the same flows/s with only half number of CPU cores (16)
(described in [P.3]).

The dissertation thesis by Garofalo [48] deals with anomaly detection using a traditional
Big Data approach. It describes existing Big Data analytics tools such as Apache Hadoop,
Apache Storm, Apache Kafka, and Apache Spark. The author proposes anomaly detection
using these tools. However, the datasets are currently out-of-the-date, and the work focuses
only on a few types of anomaly (DoS, DDoS, horizontal scan, vertical scan).

Papers [47, 12, 48] do not explicitly mention evaluating the system with extended flow
records with some L7 information (they only state that the flow records might be extended).
Therefore, we can assume that they used only traditional flow data with information up
to L4.

2.4 Semantic Relations in Data
Semantic relations in data and adverse effects of data splitting were mentioned in [49].
The authors show experiments with Hashdoop, an improved Hadoop, that splits data
using CRC hashes of srcip and dstip. The authors chose a packet counting and ASTUTE
algorithm for parallel processing. If more different algorithms were used, this hashing
would not be efficient enough. The splitting based on IP addresses is just a particular case
of the methodology described in this dissertation thesis.

The authors of [41] face the topic of data with semantic relations which require being
processed together. Accurately, the paper describes an analysis of TCP connection using
stitching flow parts (into one bidirectional connection). It is done by putting the whole
traffic of the same IP addresses together.

The authors and their works that were mentioned in Section 2.3 use the existing frame-
works for Big Data processing and distributed storage. Hence, they rely on the internal
mechanisms of data distribution by the frameworks. The algorithms must handle this
state, and it is usually solved by additional communication between the computing nodes
to exchange data or results. That is the reason why the authors need not care about the
semantic relation, even though the processing is not optimally efficient.

17

Chapter 3
Topics and Contributions in Details

The contributions of this dissertation thesis are all related to flow-based processing net-
work traffic of high-speed networks. A practical and experimental part of this research is
a developed NEMEA framework for a real-time flow-based analysis of the network traffic.
NEMEA is introduced in Section 3.1 and it is described in more detail in the paper in-
cluded in Appendix A.1. The main novel features of NEMEA are a stream-wise flow data
processing, which is described in the Section 3.2, and an application-awareness, which is
described in Section 3.3. Both features are used in the designed and developed detection
modules to evaluate the concept and they were presented in the published reviewed papers.
The theoretical part of this research is explained in Section 3.4 that defines important ter-
minology and elaborates on the idea of semantic relations — witnesses. Some examples of
the semantic relations are explained in Section 3.5. A feasible architecture for the parallel
flow data processing is based on a Flow Scatter component is described in Section 3.6.

Some of the following sections refer to the overall structure of the dissertation thesis
shown in Fig. 1.4. The name of the related block in the figure is mentioned in the name
of a section (in the bracket).

3.1 Network Measurements Analysis Framework (NEMEA)
Before this research has started, the existing tools worked mostly in a traditional way of
batch processing, where the flow data are stored into files on a file system before an analysis
can start. Each file contains flow data within a fixed time window. Since each file must be
closed before the analysis, there is a necessary delay before the processing starts. Also, one
file may contain flow records that belong to a different time window due to delayed export-
ing. This variability complicates the development of detection algorithms. However, it is
usually not an issue in practice. The need for data storage and delayed processing are the
significant limits that we avoided using a stream-wise approach (described in Section 3.2).

To support this research and to allow experiments, there was a need for a stream-wise
framework for the development of prototypes of detection algorithms. The aim was to test
and evaluate new stream-wise detection algorithms with real data. Because of lack of such

19

3. Topics and Contributions in Details

tools in 2013, development of a new universal framework has started. Even though the
batch approach of processing is still commonly used in practice, it is not efficient enough
for processing a continuous stream of data from large networks anymore.

As a result of years of research and development, Network Measurements Analysis
(NEMEA) Framework was released. NEMEA is deployed and analyzes flow data from
the perimeter of the CESNET2 network, the Czech national academic network. It is an
open source project that is publicly available at GitHub1 for a world-wide community
of network operators and researchers. Since the existence of NEMEA, several research
activities were done, and there are published papers that show some of the developed
detection methods and their feasibility in large-scale networks. Besides that, NEMEA
itself was successfully presented in Canada in 2016 [P.4]. The included conference paper
in Appendix A.1 describes NEMEA in more detail.

The main advantages of NEMEA are:

1. high modularity — each NEMEA module is an independent system process that
receives and transmits flow data and runs in an operating system2,

2. stream-wise approach of data processing (described in Section 3.2) that aims at low
memory consumption and decreases a delay of detection,

3. application-awareness (described in Section 3.3), which is an ability to analyze any
information field even from application layer headers and any NEMEA module may
define new fields without affecting the rest of the system.

NEMEA modules work with data in a proprietary binary data format UniRec that was
developed specially for fast in-memory processing and multiple access to data. UniRec
specifies data representation (i.e., how and where to obtain information from the data
messages). There is a UniRec API for C and Python languages that makes writing new
NEMEA modules easier.

UniRec defines two main types of information fields: fixed-length and variable-length.
Fixed-length fields are used mainly for frequently used fields of basic flow records, i.e., IP
addresses, ports, timestamps, TCP flags, number of packets and bytes. Variable-length
fields are more interesting for the application-awareness of NEMEA because a text string
value can represent information of the L7 headers. Variable-length fields contain starting
pointer and size of the “array of characters.” Therefore, a UniRec message with some
variable-length fields additionally contains a special table of offsets for them. The data
access is designed to have minimal overhead.

The NEMEA framework also contains a unified API for communication between NE-
MEA modules. Developers of NEMEA modules do not need to solve interconnection of
the modules at the time of development. The interconnection between NEMEA modules
is handled by the framework at run-time. Such approach makes modules more flexible be-
cause they can be easily run locally (e.g., for experiments) or in a production deployment

1https://github.com/CESNET/NEMEA
2GNU/Linux CentOS 7 is primarily supported

20

https://github.com/CESNET/NEMEA

3.1. Network Measurements Analysis Framework (NEMEA)

without any change of the source codes. NEMEA modules might also run on different
machines, and messages for processing are transferred via a computer network. Therefore,
developers of a module may focus only on the development of a detection algorithm.

In 2017, NEMEA was used for educational purposes in the Network security course
at the Faculty of Information Technology, Czech Technical University in Prague for the
first time. Students can quickly do hands-on experiments with the stream-wise flow data
analysis. Besides just usage of the existing NEMEA modules, it is possible to improve
them or invent own modules with novel detection algorithms.

In the time of writing of this dissertation thesis, NEMEA contains 11 detection modules
and about 22 general purpose modules for manipulation with UniRec messages. The
detection modules can detect malicious traffic of the following categories:

◦ DNS tunnels,

◦ amplification attacks,

◦ anomalous volume of traffic per observed host,

◦ brute-force attacks (guessing passwords, user accounts, open SIP URI prefixes),

◦ communication with blacklisted servers,

◦ horizontal scanning,

◦ traffic from miners of cryptocurrency,

◦ vertical scanning (port scan),

◦ volumetric DDoS attacks characterized by a significant increase of traffic volume and
the number of its sources.

Some of the detection algorithms are described or referenced from this thesis. Since the
NEMEA system is a community project, there are detection modules that are not authored
by the author of this dissertation thesis.

The main contribution of the author of this dissertation thesis is in the design concept of
the overall architecture of the current version of the whole NEMEA system. Additionally,
the author of the thesis was the essential developer of the communication interfaces of
NEMEA modules and he was the supervisor and designer of the NEMEA modules created
in the bachelor or master theses [P.30, P.31, P.34, P.35, P.36, P.37, P.38, P.39, P.40, P.41,
P.42]. Besides, he was an initiator of an idea to write down the published papers that
followed some of the mentioned theses and the essential author of the text of the papers
[P.2, P.7, P.8, P.13]. The vportscan_detector NEMEA module (especially observations
gained using the module) was published in [P.6] and it was not covered by any thesis.
Finally, the author of the dissertation thesis is a leader of the team of over ten NEMEA
developers located in Prague at the Faculty of Information Technology, CTU in Prague.

21

3. Topics and Contributions in Details

3.2 Stream-Wise Approach to Flow-Based Analysis (SW)
Traditional approaches of flow-based processing worked in batches, i.e., datasets are split
into time intervals and processed when the time interval elapses. On the other hand, the
stream-wise approach, which is preferred in this work, is based on an on-the-fly analysis of
the flow data without any long-term storage. The input data come from monitoring probes
continuously, and it is analyzed immediately. It is not intended to store data permanently
but all detection methods store only necessary state information temporarily.

It is worth noting that even this stream-wise approach works with some potential time
delays due to a standardized and commonly used process of flow records exporting. So-
called inactive and active timeouts cause a delay in flow exporters. Both timeouts affect
a particular time when a flow record is “exported,” i.e., sent from the flow exporter to
flow collector(s). The inactive timeout is used to recognize a closed connection, and it is
measured as the maximal elapsed time since the timestamp of the last captured packet of
the flow record. The active timeout is useful for exporting long active connection. A flow
record is exported (split) when the elapsed time since the first packet of the flow record is
longer than the active timeout.

Modern flow exporters send flow records continuously because the active timeout is
checked on every update of a flow record in the flow cache and the inactive timeout is
checked regularly. Therefore, the approach of processing (batch or stream-wise) depends
mainly on a flow collector, where the records are being processed. This work focuses on
stream-wise processing (security analysis) in a flow collector.

Stream-wise approach is inspired by traditional pipeline processing, where the input
data are also processed continuously, i.e., as it is received without long-term storage. There-
fore, it is possible to process a stream of Big Data using computing nodes with insufficient
resources. To imagine the situation, let t0 be the time of starting the detection system that
processes data observed at monitoring probes. For practical reasons, the detection system
should run without any interruption, so ideally, processing runs to infinity (t∞).

There are flow records Fi received by the detection system at ti. Naturally, for i ∈
(−∞, 0) the flow records were not processed because they were exported before the start
of the detection system.

The detection system usually consists of various detection algorithms that are imple-
mented as independent modules. Stream-wise approach of each module can be represented
by the following equation:

St = A(Ft, St−1), S≤0 = s0, (3.1)

where A is the algorithm that expects the current flow record Ft in time t and keeps its
previous state St−1 internally as an input. The algorithm returns a current state St that is
related to the observed traffic. The algorithm aims to identify malicious traffic. When the
detection module that runs the detection algorithm is started, the state S0 is set to some
initial constant s0.

Detection modules should depend only on a currently received flow record and the
internal state of the algorithm. However, the internal state can be a complex structure

22

3.3. Application-Aware Detection Methods (AA)

of information. Some detection methods that analyze anomalous changes of behavior of
network entities in time need information about history, which can be the previous state.

Additionally, the information about entities might be updated by appending new data
into the structure. This causes an increase of memory consumption. Therefore, it is
necessary to use some aging and cleanup of the current state when designing a stream-wise
module. Some approximation should be considered to sustain low resource consumption.
For instance, there can be some maximal limit of stored data per each analyzed entity
(e.g., srcip or dstip).

3.3 Application-Aware Detection Methods (AA)
Various security threats can be detected using aggregated flow data with a low level of
detail. Many methods can recognize attacks like network scanning, volumetric attacks or
even brute-force password guessing, as it was described in [11]. However, many types of
malicious traffic have very similar characteristics as the legitimate traffic, so it is hard to
distinguish malicious and legitimate traffic reliably. There are two issues: either malicious
traffic is not recognized, or some legitimate traffic is detected by mistake (false positive
alerts). For example, multiple unsuccessful attempts of registration to the SIP device
looks like a normal TCP or UDP communication (many short IP flows or, sometimes, only
two longer IP flows) between two IP addresses. Meanwhile, it should be identified as a
brute-force attack.

The included papers present several detection algorithms that use extended flow records
with L7 information. The paper in Appendix A.2 describes the most straightforward usage
of domain names and URLs in a filter that checks information from the flow records. For
this purpose, flow records were enriched by DNS_NAME — a domain name extracted from
a DNS request or response, HTTP_HOST — a hostname extracted from a Host: header of
an HTTP request, HTTP_URL — URL from an HTTP request. These information fields
are checked in publicly available blacklists, which are related to the identifiable suspicious
activity of known malware samples. For instance, a connection to a host that is listed as
a C&C server might indicate some malware infection.

It is known that users can encode and transfer user data via any communication pro-
tocol. Various scientific papers describe methods of communication tunnels also known as
covert channels. The paper in Appendix A.3 presents another usage of information from
DNS messages to detect a covert channel over DNS. This type of covert channel can be
established using tools such as iodine3. The developed detection module that can de-
tect iodine’s tunnels uses information extracted from DNS_RDATA — an information field
containing RDATA part of DNS answers.

The scope of some VoIP security events was elaborated in the papers in Appendix A.4
and Appendix A.5. The papers show detection algorithms that analyze SIP_CALLED_PARTY
— called SIP URI that is contained in the SIP To: header. Analysis of the values of this

3http://code.kryo.se/iodine/

23

3. Topics and Contributions in Details

information field disclosed very suspicious traffic generated by penetration testing tools (ac-
cording to SIP_USER_AGENT field) that tries to exploit a victim’s SIP device. In addition,
SIP_CSEQ field (CSeq header of SIP) is needed to match SIP requests and responses cor-
rectly. It was discovered that brute-force guessing the SIP account names or their password
is observable as a high number of unsuccessful SIP requests, whereas the SIP_STATUS_CODE
field represents the return value.

There is also an unpublished work described in the diploma thesis [P.34] on detection
of spoofing the victim’s system time using NTP (Network Time Protocol). The devel-
oped detection module analyzes time series of NTP_ORIG (origin timestamp) and NTP_RECV
(received timestamp) and looks for suspicious changes.

Even though the described approach based on extended flow records increases the pre-
cision and reliability of detection, it must be used very carefully. This improvement of
security (reliable detection of advanced application layer attacks) might conflict with the
privacy of users. It is worth noting the described detection algorithms work with unen-
crypted traffic only, whereas all private data should be transferred encrypted according
to the best practices. Nevertheless, many types of unencrypted traffic might disclose in-
formation about users. It is essential to design monitoring and detection systems so they
can reliably protect users against malicious traffic instead of spying them or disrupt their
activities.

Various documents deal with privacy issues and data protection. IETF community
created a document RFC7258 [50] that claims a pervasive monitoring as a privacy issue.
In addition, there is a General Data Protection Regulation (GDPR) of the European
Union about protection of user data and restricting service providers in frivolous storing
and processing user data. Naturally, many exceptions allow providers to process user data
(e.g., because of security purposes). However, the scope of information and purpose of
processing must always be kept in mind to avoid breaking users’ privacy.

Sometimes, it is possible to avoid the danger of privacy issues by using transformed
“anonymized” or “pseudonymized” data4. Processing such data is harmless since it is not
possible to identify users. The application-aware approach described in this thesis is based
on the extraction of particular headers from packets, whereas the user content (payload) is
completely skipped. This set of information fields is selected according to the requirements
of the detection algorithm. The fields can be trivially transformed so that the algorithm
is not affected and the privacy of users is still preserved.

Concerning stream-wise approach, the detection methods do not store any piece of
information permanently. In addition, information about IP addresses is deleted after a
given time interval to keep the memory consumption low.

Having the detection methods that are described in later sections, it was possible to
detect several application layer threats. The detection algorithms are described in more

4Both anonymized or pseudonymized data alone do not allow identification of users. However,
pseudonymized data are usually retrieved by some encryption mechanism so they can be transformed
back to the original data using a secret key. It is assumed that the detection system does not have access
to the secret key and decryption must be done during the alert reporting or incident handling.

24

3.4. Semantic Relations in Flow Data (WITNESS)

detail in Section 3.5 to explain principles of parallel processing presented in the following
section.

3.4 Semantic Relations in Flow Data (WITNESS)
Section 3.4.1 and Section 3.4.2 contain several definitions that were written for this disser-
tation thesis. Afterward, the terms are used in Section 3.5 to describe selected detection
algorithms symbolically.

3.4.1 General Terms
Definition 3.4.1. Network traffic: A sequence of all packets5 that were sent/received via
a computer network in a time window.

Definition 3.4.2. Malicious traffic: A subset of network traffic that is unwanted, either
it aims to spend capacity of links, or it threatens a target device or service.

Generally, malicious traffic might be generated by any device or software that can send
packets into the network. The source of malicious traffic can be, e.g., attackers, malware,
botnets.

Examples of malicious traffic can be a flood (TCP SYN, UDP), general DoS or DDoS,
communication of infected device with command and control server, unsolicited e-mail mes-
sages (SPAM, phishing, . . .), communication with a server hosting malware/ransomware.
In some network infrastructures especially in a business environment, an information exfil-
tration can be a severe issue. Therefore, covert channels can also be classified as malicious
traffic.

Definition 3.4.3. Detector: An algorithm that identifies malicious traffic in the network
traffic and generates alerts with information about the detected malicious traffic.

3.4.2 Witness types and witnesses
Definition 3.4.4. Witness type: A characteristic or feature of network traffic that is ana-
lyzed by a detector to identify particular malicious traffic. The witness type is dependent
on the detector, its parameters, and a type of malicious traffic that ought to be detected.

Examples of witness types are SYN packet rate or for more precise detection ratio of
SYN, FIN, RST packets in time for TCP SYN flood detection, number of unsuccessful
authentication requests, number of different prefixes of SIP URI, or domain names.

5A packet is a basic transferred data unit, a sequence of bytes that represents protocol headers and
payload.

25

3. Topics and Contributions in Details

Definition 3.4.5. Witness: A particular instance of a network traffic subset that was
identified (detected) as the malicious traffic by a detector and that resulted in an alert
created by the detector.

Since the malicious traffic is detectable using one or more witness types, many different
witnesses can exist for one alert. Some examples of witness types and witnesses are listed
below:

◦ Let us have communication of a piece of malware with a Command and Control
(C&C) server — head of botnet. If the content of the communication is known
(e.g., using reverse engineering), the witness type can be a sequence of bytes of a
packet, and the witness is any reassembled message containing the sequence of bytes
discoverable by some pattern matching algorithm.

◦ Having a malware sample with the fixed IP address as a C&C server, the witness
type can be an IP address and the witness is any packet with this IP address as
source or destination.

◦ Similarly, a C&C server can be specified as a domain name. The witness type can
be the domain name in such case, and the witness is any DNS query from a client or
any HTTP request containing this domain name as a hostname.

◦ When a C&C server uses specific communication patterns (e.g., deterministic timing
such as once per hour of requests and responses with the known characteristics like
number of packets, number of bytes, port numbers), the witness can be any sequence
of packets that represents the communication and shows the sought characteristic.
The same information might be equivalently contained in a sequence of flow records
aggregating the information about the packets.

It should be noted that a witness need not to be a complete communication between
two addresses. Statistic based detectors with thresholds may report an alert at any time
after processing a minimal subset of network traffic that contains enough data (bytes,
packets, flow records, . . .) to reach the threshold. In such case, an alert is reported for
every randomly selected subset of the network traffic that contains a witness.

Example 3.4.6. Minimal witness: Let us have a detector of port scans that is based
on observation of the number of unique destination ports for each pair of source and
destination addresses, but only TCP flow records with set SYN flag are processed. A
threshold is set to 50 unique port numbers. The detector looks for the witness type:
any 50 unique destination TCP ports of a pair of source and destination addresses. The
minimal witness would be any set of 50 flow records of destination and source addresses
with different destination TCP ports. It is clear that the pair of addresses may use much
more TCP ports and any set of more than 50 flows with at least 50 unique ones results in
an alert from the detector. However, if the detector observes less unique destination TCP
ports than 50, the port scan is not detected.

26

3.5. Selected Detection Algorithms in Details

Example 3.4.7. A complex example of terminology: Let us have network traffic targeted
against a server. The network traffic consists of legitimate traffic as well as malicious traffic
represented by an increased number of TCP SYN packets (TCP SYN flood or port scan).
There is a general detector that observes a ratio of TCP SYN and TCP FIN packets (i.e.,
this ratio is the witness type for this detector) and a maximum threshold T of the ratio.
The ratio is computed from flow records that are exported by a monitoring system. The
witness is a set of flow records which causes that the detector reaches the given threshold
of the ratio. Unfortunately, such a witness can be a “liar,” e.g., when the threshold is too
low, or the algorithm does not work correctly. An alert is a false positive in such cases.

3.5 Selected Detection Algorithms in Details
This section describes in more detail some of the developed detection algorithms that were
published in the reviewed papers. The detection methods were designed concerning the
stream-wise approach and are usually application-aware. The methods were implemented
as modules of the presented NEMEA system, and they were deployed in the Czech national
academic network.

This section aims to show examples of the stream-wise detection algorithms (detectors)
that can be used in a parallel environment discussed in Section 3.6 and Section 3.6.1 based
on the methodology about witnesses described in Section 3.4. It is possible to split a
continuous stream of flow data into subsets that can be processed in parallel. When the
splitting works according to the witness types, the malicious traffic in a traffic subset is still
detectable. This approach allows for scalable processing that is feasible for large networks.

Some helpers are defined to describe and analyze algorithms in the following sections.
A flow record is an n-tuple of information fields. It can be understood as a structure known
in programming languages. To access an information field in flow records, we will use a
notation with the operator []. For example, the access to the dstport field (destination
port number) in the flow record Fi can be written as follows:

Fi[dstport]. (3.2)
.

Stream-wise algorithms work with a sequence of flow records F (or its subsets)

F = {F0, . . . , Fn},

where n goes to infinity.
Let DISTINCT() be an indicator, which is equal to 1 for the first occurrence i of a

tracked attribute attr in the set of the observed flow records F :

DISTINCT(Fi[attr]) =

1 for i = 0,
1 for Fi[attr] /∈ {F0[attr], . . . , Fi−1[attr]},
0 otherwise.

(3.3)

27

3. Topics and Contributions in Details

Sometimes, it is useful to use a concatenated value of multiple attributes at once. For
instance, getting concatenated values of source and destination IP addresses (srcip and
dstip) of the flow record Fi is represented by:

Fi[srcip|dstip]. (3.4)

To compute the number of unique destination ports in the set of flow records F , let us
define a function COUNT() as follows:

COUNT(F [dstport]) =
n∑
0
DISTINCT(Fi[dstport]). (3.5)

Detection algorithms are usually specialized in the detection of some particular mali-
cious traffic. Therefore, only a subset of flow data with some characteristic is interesting
for detection. For instance, let us select a subset I of the set F , where I contains all flow
records with the same source IP (srcip). Let us define a new symbol

⊂
srcip

that is used to describe this relation between I and F . Let F and I are sets of flow
records, where I is a subset of F and I contains only flow records with the equal value of
the attribute srcip. This relation can be described as follows:

F = {F0, . . . , Fn},
I = {I0, . . . , Im},

I ⊂
srcip

F : I ⊂ F, ∀i, j : Ii[srcip] = Ij[srcip].
(3.6)

Naturally, F can contain multiple different subsets I (i.e., with different values of the
attribute), whereas each flow record of the subset I has the same value of attribute attr
used in the operator ⊂

attr
. Given that a detection algorithm analyzes a subset I to detect an

anomaly, it is necessary to analyze all existing subsets I separately. This will be described
using a loop over all existing subsets in the following algorithms.

3.5.1 Detection of Known Features (KF)
Detection of malicious traffic can be based on searching for known patterns or traffic
features. There are lots of lists of suspicious IP addresses, domain names or URLs. These
lists are usually called as blacklists. Flow-based detection can easily check the presence of
the traffic features on any blacklist.

For instance, there are blacklists of Command and Control (C&C) servers, which are
publicly available and maintained. Since any communication with an IP address that is
blacklisted as a C&C server is very suspicious and may be an indication of infected device,
it is helpful to perform online checking of the observer network entities (IP addresses, host-
names, URLs) against such blacklists. Cooperation with the forensic laboratory to retrieve

28

3.5. Selected Detection Algorithms in Details

and use information from malware samples was described in [P.15], which is included below
in this section.

A use-case similar to C&C server blacklists is a detection filter that was used for finding
communication with so-called booter services. The topic of booters is discussed in detail in
[51] by J. Santanna et al. A real-time detection of the communication with booter sites was
presented at TF-CSIRT meeting in Valencia 2017 during the Network Monitoring Training
session6.

Algorithm 3.1 Detection of Communication with Known Feature
F = {F0, . . . , Fn}
for all Fi ∈ F do

if Fi[feature] ∈ Blacklist then
Alertfeature

end if
end for

The detection algorithm is described in Alg. 3.1 and represents straightforward filtering
the observed flow records F . Every time a flow record contains a feature that is listed in
any blacklist, an alert is reported. The feature can be for example an IP address, a domain
name looked up using DNS, a hostname used in HTTP traffic. Naturally, there are many
different blacklists, and the equation shows just one general Blacklist for simplicity.

According to Alg. 3.1, we can derive a witness characteristic as follows: an alert is
reported when at least one flow record with some blacklisted feature is observed. As it will
be discussed in Section 3.6, this kind of detection can be parallelized using the splitting flow
data stream into separate substreams because the detector does not check any relations
between flow records.

Application of the described filter on L7 was presented in the included paper in Ap-
pendix A.2.

3.5.2 Detection of DNS Misusage — Covert Channel (DNS)
Domain Name System (DNS) [52] is one of the most important communication protocols for
the functionality of modern networks. This protocol is used to translate human-readable
domain names and IP addresses. It is usually allowed in security policies so that any
connected device can perform translation either directly or via a local DNS server.

The paper included in Appendix A.3 describes a scenario of a user that uses DNS
messages to establish a communication tunnel from a restricted area. The paper also
shows a detection method that is based on the analysis of a sequence of extended flow
records D with L7 information from DNS messages. The reason is that the DNS requests
and responses can carry any encoded user data. The main part of the detection algorithm
is a computation of the number of different subdomains for each domain name of the higher
level since subdomains are used for data transfer.

6https://www.first.org/events/symposium/valencia2017/program

29

3. Topics and Contributions in Details

To find the number of distinct requested subdomains, an indicator

DISTINCT_SUBDOMAIN()

is needed. In the implemented detection module, there is a prefix tree data structure,
which identifies distinct subdomains and computes their number. For this text, it is not
necessary to describe DISTINCT_SUBDOMAIN() in more detail.

The detection algorithm is described in Alg. 3.2, where D is a sequence of flow records
that contain DNS information. Let us have a subset I of the flow recordsD, which belong to
the same IP address. The detection module computes the number of distinct subdomains.
Therefore, we can derive the witness type as follows: an alert is reported when at least
Thr1 different subdomains are observed per source IP address.

Algorithm 3.2 Detection of Communication Tunnels over DNS
for all I ⊂

srcip
D do

S1 = COUNT(DISTINCT_SUBDOMAIN(D[domain]))
if S1 ≥ Thr1 then

Alertdnstun
end if

end for

The algorithm was implemented as a NEMEA module. The implementation and results
of deployment are presented in the included paper in Appendix. A.3.

3.5.3 Detection of Attacks Against VoIP Infrastructure (SIP)
Voice over IP (VoIP) is a successor of Public Switched Telephone Network (PSTN). It
uses standard computer network infrastructure. One of the well-known signaling proto-
cols, which is used for establishment or termination of phone calls, is Session Initiation
Protocol (SIP). Even though there are many best practices and specification for securing
SIP infrastructure, in practice, it is usually operated without any encryption.

The SIP messages in plain text allow for security analysis that can be used for suc-
cessful detection of malicious activity. Using the NEMEA framework, several detection
methods were developed to analyze information about SIP traffic. As it was mentioned in
Section 3.3, exporting some L7 headers helps to reliably discover attempts of attackers to
find a vulnerable setting of SIP devices.

Scanning and Password Guessing

There is a NEMEA module that can detect brute-force password guessing. This module
(sip_bf_detector) analyzes the number of SIP messages that represent unsuccessful au-
thentication attempts. The algorithm is described by Alg. 3.4, where we have a subset I
of the set F containing all observed flow records. I contains SIP extended flow records

30

3.5. Selected Detection Algorithms in Details

with the same n-tuple source IP, destination IP and To SIP URI. The algorithm analyzes
mainly the failed attempts, which are identified by exported information sipstatus. The
number of failed attempts is compared with Thr2 to trigger an alert. Therefore, we can
derive the witness type as follows: an alert is reported when at least Thr2 unsuccessful
authentication attempts are observed per any n-tuple of the destination IP (which is a SIP
client), the source IP (which is a SIP server) and the callee SIP URI (To:).

FAILURE(Fi) =

1 for Fi[sipstatus] = 401,
0 otherwise.

(3.7)

Algorithm 3.3 Detection of SIP Brute Force
for all L ⊂

dstip|sipto
I do

S2 = ∑n
0 FAILURE(Ii)

if S2 ≥ Thr2 then
Alertsipbf

end if
end for

In addition, the same sip_bf_detector module can detect scanning user accounts.
The scanning is based on analysis of responses from a SIP device to a user/attacker,
whereas an attacker tries a sequence of different SIP URI. The algorithm is described in
Alg. 3.4, whereas I is a set of SIP extended flow records of the same pairs of source IP and
destination IP. The algorithm computes the number of unique callee SIP URI.

Algorithm 3.4 Detection of SIP Scanning
for all M ⊂

(srcip|dstip)
I do

S3 = COUNT(DISTINCT(M [sipto]))
if S3 ≥ Thr3 then

Alertsipscan
end if

end for

Finally, the detection module is capable of detection of distributed brute-force attack.
When the number of unique source IP observed for any pair of destination IP and callee
SIP URI is higher than Thr4, it is assumed to be a distributed scan.

All three detection algorithms were implemented as one (sip_bf_detector) module
for NEMEA. The paper included in Appendix A.4 describes the algorithm and its imple-
mentation. There are also results and observation from the deployment of the detection
module on the real backbone network.

31

3. Topics and Contributions in Details

Algorithm 3.5 Detection of SIP Distributed Bruteforce
for all N ⊂

(dstip|sipto)
I do

S4 = COUNT(DISTINCT(I[srcip]))
if S4 ≥ Thr4 then

Alertsipdistbf
end if

end for

Dial Scheme Guessing

The paper included in Appendix A.5 focuses on detection of another malicious traffic
via SIP. There are SIP devices with a weak and vulnerable configuration that allows an
unknown user (without authentication) to establish a phone call based on knowledge of a
dial scheme. In practice, it means when an attacker knows or guesses a special prefix, it is
possible to make a call to some phone number.

Therefore, it is very usual that network traffic contains a lot of requests, mainly the
INVITE messages, with various prefixes. Such attempts try to find the right prefix. Since
there is a danger that a vulnerable device establishes a call to some premium rate number
that can lead to a significant financial loss, it is useful to focus on detection of this kind of
malicious traffic.

The detection algorithm is based on the analysis of the SIP requests from the same
source IP. The analyzed header field is the SIP To: URI. To find the number of distinct
requested prefixes,

DISTINCT_PREFIXES()
indicator is needed. In the implemented detection module, there is a prefix tree data
structure, which identifies distinct subdomains and computes their number. However, for
this text, it is not necessary to describe DISTINCT_PREFIXES() in more detail. The
detection algorithm is described in Alg. 3.6. The detection module computes the number
of distinct prefixes in the SIP To: URI. Therefore, we can derive the witness type as
follows: an alert is reported when at least Thr5 different prefixes are observed per source
IP address.

Algorithm 3.6 Detection of SIP Dial Scheme Guessing
for all I ⊂

srcip
F do

S5 = COUNT(DISTINCT_PREFIXES(I[sipto]))
if S5 ≥ Thr5 then

Alertdialscheme
end if

end for

The algorithm was implemented as a NEMEA module, and it was presented in the
paper included in Appendix A.5.

32

3.5. Selected Detection Algorithms in Details

3.5.4 Vertical and Horizontal Port Scan (VS)
Network scanning is a widespread activity observable in every network. It is generally an
innocent activity performed by, e.g., network operators. However, network scanning can
also be a useful source of information for attackers, who want to find potentially vulnerable
targets. Therefore, it makes sense to track such behavior in the network.

There are many approaches for detection of network scanning. Included paper in Ap-
pendix A.6 presents a simple method based on the computation of statistics per each host
(IP address). The value, which is computed from flow records of specific characteristics,
is then compared with defined threshold Thr6. The detection algorithm is described in
Alg. 3.7 and it was implemented as a stream-wise module of the NEMEA system.

Algorithm 3.7 Detection of vertical scanning
for all K ⊂

srcip|dstip
I do

S6 = COUNT(K[dstport])
if S6 ≥ Thr6 then

Alertvscan
end if

end for

For vertical scans, the number of unique destination TCP ports is counted for each
pair of source and destination IP but only flows with a low number of packets and only
SYN flag set are considered. Therefore, we can derive a witness characteristic as follows:
an alert is reported when at least Thr6 unique destination ports are observed per one pair
of source and destination IP addresses.

Considering witnesses, we should ideally keep flow records of each pair of source and
destination addresses together. However, it is sufficient to analyze at least Thr6 flow records
of a pair with different destination ports together in one detector to identify a scan.

The detection method of horizontal scanning works similarly. In this case, the num-
ber of different destination IP addresses is counted per each source address and destination
port. Therefore, we can derive a witness characteristic as follows: an alert is reported when
at least Thr7 unique destination addresses are observed per source address and destination
port.

3.5.5 Brute-Force Password Guessing (BF)
To get users’ credentials, attackers can use various approaches such as social engineering,
phishing, however, these approaches are out of the scope of this work. A brute-force
password guessing that is performed via the network is more interesting for this analysis.
It is a well-known attack which is based on checking various combinations of the username
and password. Having valid knowledge of the user’s credentials, an attacker may gain
access to the resources and services of the targeted victim.

33

3. Topics and Contributions in Details

Usually, attacks use some dictionaries, which list popular usernames and passwords.
Therefore, the guessing checks all entries of a dictionary one by one.

Detection of brute-force attacks in encrypted data is complicated. However, there are
studies (like in [11]) that show successful detection based on analysis of both directions of
communication between the two hosts. The detection algorithms assume that characteris-
tics of traffic of successful and unsuccessful authentication differ.

An indicator CHECKBRUTEFORCE() used in Algorithm 3.8 is dependent on the
analyzed communication protocol and the detection approach. The subset K represents
all flow records between two IP addresses in both directions. K ⊂

biflow
F can be described

as a subset with the following condition:

K ⊂
biflow

F : K ⊂ F, ∀i, j :

Ki[srcip] = Kj[srcip] and Ki[dstip] = Kj[dstip],
Ki[srcip] = Kj[dstip] and Ki[dstip] = Kj[srcip].

(3.8)

Algorithm 3.8 Detection of Brute Force Guessing
for all K ⊂

biflow
F do

if CHECKBRUTEFORCE(K) then
Alertbf

end if
end for

3.5.6 Distributed Denial of Service (DDoS)
DDoS attacks are frequent and very powerful. They are based on depletion of a victim’s re-
sources such as computing power, memory, or network bandwidth. When a victim receives
too many requests from attacking devices, it is no longer able to respond to legitimate
users, so the service seems to be unavailable.

There are many ways how to achieve this state. Generally, botnets are being used
for this purpose. In such case, each device from the botnet creates some small number
of requests against the victim. Since there are plenty of devices in botnets (more than
thousands), the overall volume of traffic against the victim is higher than the victim can
handle. The attacks may generate over hundreds of gigabits per second traffic.

A straightforward detection algorithm can analyze the number of bytes and the number
of unique clients observed within a time window. Alg. 3.9 shows a detection algorithm,
where Thr8 is a threshold for the number of unique sources of traffic, and Thr9 is a threshold
for the total number of bytes transferred to the destination IP.

The supervised bachelor thesis [P.30] has studied DDoS attacks and their detection.
The result of the thesis was a NEMEA module for detection of DDoS attacks.

34

3.6. Construction of Flow Data Scatter (PARINFRA)

Algorithm 3.9 Detection of DDoS
for all J ⊂

dstip
F do

S8 = COUNT(DISTINCT(J [srcip])
S9 = COUNT(J [bytes])
if S8 ≥ Thr8 and S9 ≥ Thr9 then

Alertddos
end if

end for

3.6 Construction of Flow Data Scatter (PARINFRA)
This thesis presents a parallel approach to flow data processing at (near) real-time. The
infrastructure for parallel processing that was built for our experiments is shown in the
high-level view in Fig. 3.1. The Flow Scatter box splits a single stream of flow records
(incoming flow data) into subsets and distributes the subsets among multiple equivalent
computing nodes. Equivalent means that every node has the same configuration of the
detection modules. Each node processes independent set of flow records without additional
communication with other nodes. The results are alerts containing detected security events.

Figure 3.1: A high-level view of the infrastructure for parallel stream-wise processing using
a Flow Scatter. This figure was published in the paper included in Appendix A.7.

The heart of the infrastructure is the Flow Scatter that must decide which computing
node processes which flow record. The decision must be made with minimal delay; other-
wise, the Flow Scatter is a bottleneck of the whole infrastructure. In addition, the selection
of a node must be made concerning semantic relations in data, whereas the importance of
such relations was explained in Section 3.4 and in the paper included in Appendix A.8. The
experiments about splitting the stream of flow records were described in the paper included
in Appendix A.7. The experiments showed that disrupting the semantic relations affects
the performance of the detection algorithms, i.e., a security event might be undetected if
there is not enough data together on one computing node.

The detection algorithms that were described in Alg. 3.1 Alg. 3.2, Alg. 3.3, Alg. 3.4,
Alg. 3.5, Alg. 3.6, Alg. 3.7, Alg. 3.8, Alg. 3.9, show characteristics for the observed traffic

35

3. Topics and Contributions in Details

that must be fulfilled to successfully identify the anomalous traffic by an algorithm with
particular parameters.

Construction of the Flow Scatter that respects semantic relations depends on a set of
detection algorithms that are used. The practical experiments with the flow data captured
from a real backbone network and the set of detection modules (the NEMEA system)
showed that a Flow Scatter can distribute flow records uniformly among computing nodes
to the algorithms of the same group, and there are different groups of algorithms (scattering
groups). Each scattering group is identified by common characteristics that define “what
data should stay together.” Therefore, the first challenge is to find the scattering groups,
whereas each group is then implemented as a hashing method in the scatter.

Algorithm 3.10 shows a straightforward way how to find such groups of algorithms. Let
us have a set of the scattering groups S, which is empty at the beginning, and the list A
of the detection algorithms, which are formally described. The set S contains descriptions
of subsets of flow records that contain complete non-broken witnesses. Every scattering
group Si contains algorithms with similar witness types, and therefore it defines a scattering
function of the scatter that chooses the computing node number for processing a particular
flow record by the group of algorithms. A description of the witness type of the algorithm
Ai is represented by δ(A).

Algorithm 3.10 Construction of scatter
S = ∅
for all Ai ∈ A do

if δ(Ai) ∈ S then
do nothing, witness is already contained

else if Sj ⊂ δ(Ai) for any j then
change Sj to contain witnesses of Ai

else
add δ(Ai) into S.

end if
end for
S contains at least one scattering group

More clearly, 3.10 puts all algorithms into scattering groups. During the grouping,
descriptions of the witness types δ are compared and the algorithm Ai is put into the
existing scattering group Sj if and only if the δ(Ai) is a subset of δ(Ak), whereas Ak

already belongs to Sj. Assuming the set S is implemented optimally, the algorithm must
iterate over all n algorithms only once. Let us also assume that the time of testing whether
an Ai belongs into Sj is constant. As a result, the computational complexity of Alg. 3.10
is O(n).

The experiments from Appendix A.7 identify three different scattering groups as it
is shown in Fig. 3.2. Generally, some algorithms analyze flow records of the same srcip,
dstip, and the last group contains algorithms that expected bi-directional flow records, i.e.,
traffic between two IP addresses in both directions. Therefore, the Flow Scatter has three

36

3.7. Recapitulation of the Main Contributions

Figure 3.2: Example of three groups of algorithms that are controlled by a Flow Scatter.
This figure was published in the paper included in Appendix A.7.

scattering functions inside. Since all scattering functions are computed for each incoming
flow records, it is possible that the Flow Scatter duplicates a flow record and resends it
to at most three computing nodes. However, the flow record is processed only once by all
detection algorithms (even though it might be on different nodes).

3.6.1 Scalable Infrastructure for Processing with Flow Scatters
To overcome a possible throughput limit of a single Flow Scatter that would affect the
performance of the whole infrastructure, an extended scheme with multiple Flow Scatters
was designed. Figure 3.3 presents a set of computing nodes known from Fig. 3.1. In
addition, there is a set of Flow Scatters that receive the flow data. In the figure, there
is also a Round-Robin Scrubber, which simply distributes the single stream of flow data
among the Flow Scatters, however, it is also possible that each Flow Scatter receives a
separate flow data stream (e.g., from flow exporters). The point is that all Flow Scatters
have completely same configuration and so the resulting node number is always the same
no matter which Flow Scatter computed it. Naturally, the number of Flow Scatters is not
limited.

3.7 Recapitulation of the Main Contributions
This chapter presented the main contributions of this dissertation thesis. It contains a
feasible approach to the stream-wise analysis of flow data, usage of extended flow records
with L7 information, real examples of the developed detection algorithms and, finally, the

37

3. Topics and Contributions in Details

Roud-Robin
Scrubber

Node 1

Node 2

Node N

Alert handling

Flow Scatter

Flow Scatter

Figure 3.3: Scaling infrastructure contains multiple computing nodes with Flow Scatter. It
is possible to duplicate the Flow Scatter to increase the maximal throughput of one scatter,
i.e., to scale up. It is assumed that all used Flow Scatters have the same configuration.

scalable infrastructure for parallel analysis of flow data. The parallel analysis uses a Flow
Scatter that is created according to witness types of the described detection algorithms.

This work is built on the NEMEA system that was developed as a proof-of-concept
during the last years. It became an important platform for our research, development, and
experiments.

The following paragraphs summarize the contributions from a higher perspective.

Processing high data volume for anomaly detection at real-time
Modern network infrastructures, especially backbone networks, produce high data volume,
and it is complicated to store and analyze even aggregated data — flow records. Stream-
wise processing (Section 3.2) was proposed as a feasible approach to process such data.

The stream-wise approach was implemented as a Network Measurements Analysis (NE-
MEA) framework that was published in [P.4]. Several detection methods were developed in
the last years as a proof-of-concept for this work. NEMEA has been successfully deployed
in the Czech national academic network (NREN) and helps to discover suspicious traffic.

The NEMEA system contains several detection methods that are analyzing extended
flow records with carefully selected information from headers of application protocols that
are used unencrypted. This application aware approach (described in Section 3.3) allows
for detection of attacks that are hidden from classical analysis based on basic flow data.

Modules of the NEMEA system can be easily distributed among multiple computing
nodes because of the modular nature of the system’s design. However, the main power
of distributed processing is in the possible splitting the data into substreams of flow data
that can be processed in parallel.

Data distribution for parallel processing with preserved detection results
The part of this research that was published in [P.1] defines semantic relations in the flow
data that are necessary for successful anomaly detection. Moreover, the paper [P.3], which

38

3.7. Recapitulation of the Main Contributions

was created in cooperation with my master student, shows these relations in practice using
experiments with real data. Both papers show the impact of breaking the relations during
some careless splitting of a stream of flow data into subsets.

Section 3.5 contains several case studies, whereas most of them are also described in
Appendix A in the included papers that were published at international conferences. The
papers cover some detection abilities of the NEMEA system that was used as the platform
for experiments with processing high-speed network data. Besides the included papers, the
section describes formal descriptions of the detection algorithms to show so-called witnesses
that were defined in Section 3.4.2 as well as in [P.1].

In Section 3.6, there is an algorithm that can be used to take information from the
formal descriptions of the detection algorithms to design a unique Flow Scatter for splitting
a stream of flow data concerning witnesses. The constructed scatter can be used to create
subsets of data that can be processed separately in parallel without affecting detection
results. The benefit of the Flow Scatter is the higher granularity of the flow data subsets,
so even massive volumetric attacks targeted against one destination do not affect only
one computing node of the monitoring and analysis system. Therefore, the witness-based
scatter protects the detection system against overload.

The proposed witness-based scatter splits the single stream of flow data into multiple
separate substreams. Generally, the approaches of splitting data are based on fixed basic
characteristics of the traffic such as IP addresses. Contrary to this traditional approach,
the Flow Scatter in this thesis goes further in the splitting the data because it takes
the witnesses into account. A witness, or more general witness type, is defined using
many factors such as the type of the traffic to detect, chosen detection algorithm and its
parameters, values of thresholds.

Naturally, the scatter is designed concerning the stream-wise approach too, so the set of
rules, which are used for splitting, are evaluated at real-time and every flow record is passed
to the right computing node immediately. The current prototype of the Flow Scatter is
based mostly on hash functions that compute the identifier of the computing node.

Since the decision of the scatter takes a non-zero time due to the computational com-
plexity of the rules evaluation, the throughput of one scatter is limited in the real deploy-
ment. To overcome this limit, we have designed the architecture of a scatter cascade in the
diploma thesis of M. Švepeš [P.33] that was supervised by the author of this dissertation
thesis.

39

Chapter 4
Conclusions

Network monitoring, as well as anomaly detection, are essential parts of every well-running
network infrastructure. Since the network infrastructures grow and the bandwidth in-
creases, it is necessary to adapt monitoring and analysis systems to handle high data
volumes. Additionally, many security threats are difficult to detect using traditional ap-
proaches based on basic flow data (NetFlow). Therefore, this dissertation thesis deals with
several challenges to overcome the current state and prepare the systems for the future.

The contributions of this thesis, as they were described in the previous chapters, might
be divided into several areas. From the practical point of view, a NEMEA framework for
the analysis of IP flows has been designed and developed. The framework allowed for per-
forming practical experiments with real network traffic monitoring as well as starting this
research in multiple scopes: stream-wise processing, application-aware detection algorithms,
semantic relations in the flow data, parallel processing the flow data.

Monitoring systems of large networks produce high data volumes of flow data. Opera-
tors ought to store the flow data by law; however, only basic flow records with information
up to transport layer (L4) are being stored. Additionally, the traditional approach to
an analysis of the basic data is based on processing the fixed length time windows. The
fixed time windows necessarily cause higher detection delays. Therefore, this research
on stream-wise processing started. The stream-wise algorithms process data immediately
without any need of waiting for the end of a time window, i.e., they work online. Besides,
the stream-wise algorithms do not store data permanently by design. They are designed
to process infinite stream of flow data on-the-fly.

This research showed that some advanced security threats are invisible for the tradi-
tional NetFlow tools. Such security events look like legitimate flow records. The application-
aware detection methods were studied and designed to overcome the lack of visibility. The
application-aware approach is based on extended flow records containing information from
higher protocol layers (up to application layer — L7). Application headers from unen-
crypted network traffic allow for reliable detection of some application threats such as
brute-force dictionary attacks. Naturally, this approach requires capable tools that can

41

4. Conclusions

process extended flow records. This was the reason for developing the NEMEA frame-
work.

Years of studying and development of detection algorithms brought experiences about
semantic relations in the flow data. Practical experiments with the real network traffic
from the Czech academic network showed that breaking the relations in the flow data has
a significant impact on the detection results. However, it is useful to split a stream of
flow data into independent substreams. It was hence necessary to find a methodology that
would preserve those semantic relations during the splitting. A published paper describes
the semantic relations as witnesses in the flow data that must remain complete to keep the
security events detectable.

The use witnesses allows for parallel processing that is essential for analysis of the
increasing volume of flow data. This dissertation thesis describes a Flow Scatter module
that is constructed according to the witness types. The Flow Scatter splits the stream of
flow records among multiple computing nodes. As a result, the monitoring and detection
system can scale up.

Finally, the valuable achievement of this many-years work is the deployment of NE-
MEA in the Czech national research and education network (NREN) — CESNET2, in a
significant commercial data center & ISP network in the Czech Republic, and in NREN
of Switzerland. The author of this dissertation thesis has successfully started to build a
community of researchers and developers that contribute to this project. NEMEA was also
successfully used for educational purposes, and it is planned to continue with this effort
because NEMEA is a suitable tool for students and researchers to study network traffic
and detection algorithms.

This thesis is a collection of published papers on anomaly detection in computer net-
works. Each paper represents a particular contribution in the network security area, par-
ticularly, in the detection of suspicious traffic using flow data from monitoring systems.
This work focused on large high-speed networks, especially the backbone ones. The top-
ics and contributions of this dissertation thesis were described as parts of the published
papers. The papers also contain some observations and statistics about the real network
traffic that could be gathered using the developed tools. All works have been tested and
deployed in the Czech national academic network and therefore the papers usually contain
results and statistics from our experiments with the real network traffic that was observed.

4.1 Future Work
As a future research, there are several unsolved challenges related to this dissertation thesis:

◦ automatic adaptation of the Flow Scatter based on, e.g., Machine learning algorithms,

◦ automatic mitigation triggered by the detected security events,

◦ granularity of the Flow Scatter — find minimal subsets and sample data among the
computing nodes without affecting the detection results.

42

Bibliography

[1] Krebs, B. DDoS on Dyn Impacts Twitter, Spotify, Reddit. Available at:
https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-
spotify-reddit/, last checked on: 2018-05-30.

[2] Claise, B. Cisco Systems NetFlow Services Export Version 9.
http://www.ietf.org/rfc/rfc3954.txt, Oct. 2004.

[3] Bhuyan, M. H.; Bhattacharyya, D. K.; Kalita, J. K. Network Traffic Anomaly Detec-
tion and Prevention: Concepts, Techniques, and Tools. Springer, 2017.

[4] Hu, J.; Yu, X.; Qiu, D.; et al. A simple and efficient hidden Markov model scheme for
host-based anomaly intrusion detection. Network, IEEE, volume 23, no. 1, 2009: pp.
42–47.

[5] Salem, O.; Vaton, S.; Gravey, A. A scalable, efficient and informative approach for
anomaly-based intrusion detection systems: theory and practice. International Journal
of Network Management, volume 20, no. 5, 2010: pp. 271–293.

[6] Santiago del Rio, P. M.; Rossi, D.; Gringoli, F.; et al. Wire-speed Statistical Classifi-
cation of Network Traffic on Commodity Hardware. In Proceedings of the 2012 ACM
Conference on Internet Measurement Conference, IMC ’12, New York, NY, USA:
ACM, 2012, ISBN 978-1-4503-1705-4, pp. 65–72, doi:10.1145/2398776.2398784.

[7] Kekely, L.; Pus, V.; Korenek, J. Software defined monitoring of application protocols.
In INFOCOM, 2014 Proceedings IEEE, IEEE, 2014, pp. 1725–1733.

[8] Puš, V. Hardware acceleration for measurements in 100 gb/s networks. In Proceedings
of the 6th IFIP WG 6.6 international autonomous infrastructure, management, and
security conference on Dependable Networks and Services, AIMS’12, Berlin, Heidel-
berg: Springer-Verlag, 2012, ISBN 978-3-642-30632-7, pp. 46–49, doi:10.1007/978-3-
642-30633-4_7. Available at: http://dx.doi.org/10.1007/978-3-642-30633-4_7

43

https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
https://krebsonsecurity.com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/
http://dx.doi.org/10.1007/978-3-642-30633-4_7

Bibliography

[9] Hofstede, R.; Bartos, V.; Sperotto, A.; et al. Towards real-time intrusion detection for
NetFlow and IPFIX. 2013.

[10] Hofstede, R.; Čeleda, P.; Trammell, B.; et al. Flow Monitoring Explained: From
Packet Capture to Data Analysis With NetFlow and IPFIX. IEEE Communications
Surveys & Tutorials, volume 16, no. 4: pp. 2037–2064.

[11] Hellemons, L.; Hendriks, L.; Hofstede, R.; et al. SSHCure: A Flow-Based SSH
Intrusion Detection System. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
ISBN 978-3-642-30633-4, pp. 86–97, doi:10.1007/978-3-642-30633-4_11. Available at:
http://dx.doi.org/10.1007/978-3-642-30633-4_11

[12] Jirsik, T.; Cermak, M.; Tovarnak, D.; et al. Toward Stream-Based IP Flow Analysis.
IEEE Communications Magazine, volume 55, no. 7, 2017: pp. 70–76, ISSN 0163-6804,
doi:10.1109/MCOM.2017.1600972.

[13] Claise, B.; Trammell, B.; Aitken, P. Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of Flow Information. RFC 7011 (INTERNET
STANDARD), Sept. 2013. Available at: http://www.ietf.org/rfc/rfc7011.txt

[14] CESNET, a.l.e. Liberouter / Cards. Available at: https://www.liberouter.org/
technologies/cards/, last checked on: 2018-05-30.

[15] Chaudet, C.; Fleury, E.; Lassous, I. G.; et al. Optimal positioning of active and passive
monitoring devices. In Proceedings of the 2005 ACM conference on Emerging network
experiment and technology, ACM, 2005, pp. 71–82.

[16] GÉANT et al. PerfSONAR. 2017. Available at: https://www.perfsonar.net, last
checked on: 2018-05-30.

[17] Enterprises, N. Nagios. 2017. Available at: https://www.nagios.org, last checked on:
2018-05-30.

[18] NCC, R. RIPE Atlas. 2017. Available at: https://atlas.ripe.net, last checked on:
2018-05-30.

[19] Flowmon Networks. Flowmon ADS. 2017. Available at: https://www.flowmon.com/,
last checked on: 2018-05-30.

[20] Hoque, N.; Bhuyan, M. H.; Baishya, R. C.; et al. Network attacks: Taxonomy, tools
and systems. Journal of Network and Computer Applications, volume 40, 2014: pp.
307–324.

[21] Ahmed, M.; Mahmood, A. N.; Hu, J. A survey of network anomaly detection tech-
niques. Journal of Network and Computer Applications, volume 60, 2016: pp. 19
– 31, ISSN 1084-8045, doi:https://doi.org/10.1016/j.jnca.2015.11.016. Available at:
http://www.sciencedirect.com/science/article/pii/S1084804515002891

44

http://dx.doi.org/10.1007/978-3-642-30633-4_11
http://www.ietf.org/rfc/rfc7011.txt
https://www.liberouter.org/technologies/cards/
https://www.liberouter.org/technologies/cards/
https://www.perfsonar.net
https://www.nagios.org
https://atlas.ripe.net
https://www.flowmon.com/
http://www.sciencedirect.com/science/article/pii/S1084804515002891

Bibliography

[22] Bhuyan, M. H.; Bhattacharyya, D. K.; Kalita, J. K. Network Anomaly De-
tection: Methods, Systems and Tools. IEEE Communications Surveys Tutori-
als, volume 16, no. 1, First 2014: pp. 303–336, ISSN 1553-877X, doi:10.1109/
SURV.2013.052213.00046.

[23] Zargar, S. T.; Joshi, J.; Tipper, D. A Survey of Defense Mechanisms Against Dis-
tributed Denial of Service (DDoS) Flooding Attacks. IEEE Communications Sur-
veys & Tutorials, volume 15, no. 4, 2013: pp. 2046–2069, ISSN 1553-877X, doi:
10.1109/SURV.2013.031413.00127.

[24] Mirkovic, J.; Reiher, P. A taxonomy of DDoS attack and DDoS defense mechanisms.
ACM SIGCOMM Computer Communication Review, volume 34, no. 2, 2004: pp.
39–53.

[25] Bhuyan, M. H.; Kashyap, H. J.; Bhattacharyya, D. K.; et al. Detecting Distributed
Denial of Service Attacks: Methods, Tools and Future Directions. The Computer
Journal, 2013: p. bxt031.

[26] Tartakovsky, A. G.; Rozovskii, B. L.; Blažek, R.; et al. A Novel Approach to De-
tection of Intrusions in Computer Networks via Adaptive Sequential and Batch-
Sequential Change-Point Detection Methods. IEEE Transactions on Signal Process-
ing, volume 54, no. 9, 2006: pp. 3372–3382.

[27] Willinger, W.; Paxson, V. Where mathematics meets the Internet. Notices of the
AMS, volume 45, no. 8, 1998: pp. 961–970.

[28] Wang, H.; Zhang, D.; Shin, K. Detecting SYN flooding attacks. In INFOCOM 2002.
Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 3, 2002, ISSN 0743-166X, pp. 1530–1539, doi:
10.1109/INFCOM.2002.1019404.

[29] Siris, V. A.; Papagalou, F. Application of anomaly detection algorithms for detecting
SYN flooding attacks. Computer communications, volume 29, no. 9, 2006: pp. 1433–
1442.

[30] Brutlag, J. D. Aberrant Behavior Detection in Time Series for Network Monitoring.
In LISA, 2000, pp. 139–146.

[31] Blazek, R. B.; Kim, H.; Rozovskii, B.; et al. A novel approach to detection of denial-
of-service attacks via adaptive sequential and batch-sequential change-point detection
methods. In Proceedings of the IEEE Systems, Man, and Cybernetics Information
Assurance Workshop, West Point, NY, USA, 2001.

[32] Chen, Y.; Hwang, K.; Ku, W.-S. Distributed change-point detection of DDoS attacks
over multiple network domains. In Proc. of Int’nl Symp. on Collaborative Technologies
and Systems, 2006, pp. 543–550.

45

Bibliography

[33] Mirkovic, J.; Prier, G.; Reiher, P. Attacking DDoS at the source. In Network Protocols,
2002. Proceedings. 10th IEEE International Conference on, IEEE, 2002, pp. 312–321.

[34] Ozcelik, I.; Fu, Y.; Brooks, R. DoS Detection is Easier Now. In Research and Edu-
cational Experiment Workshop (GREE), 2013 Second GENI, March 2013, pp. 50–55,
doi:10.1109/GREE.2013.18.

[35] Ye, N.; Borror, C.; Zhang, Y. EWMA techniques for computer intrusion detection
through anomalous changes in event intensity. Quality and Reliability Engineering
International, volume 18, no. 6, 2002: pp. 443–451.

[36] Tartakovsky, A. G.; Rozovskii, B. L.; Blažek, R. B.; et al. Detection of intrusions
in information systems by sequential change-point methods. Statistical Methodology,
volume 3, no. 3, 2006: pp. 252–293.

[37] Callegari, C.; Giordano, S.; Pagano, M. Neural Network based Anomaly Detection.
In 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD) (CAMAD 2014), Athens, Greece,
Dec. 2014.

[38] Callegari, C.; Gazzarrini, L.; Giordano, S.; et al. A novel PCA-based network anomaly
detection. In Communications (ICC), 2011 IEEE International Conference on, IEEE,
2011, pp. 1–5.

[39] Sagiroglu, S.; Sinanc, D. Big data: A review. In 2013 International Conference on
Collaboration Technologies and Systems (CTS), May 2013, pp. 42–47, doi:10.1109/
CTS.2013.6567202.

[40] Zadnik, M.; Krobot, P.; Wrona, J. Experience with big data frameworks for IP flow
collector. In Technical report, 2016.

[41] Lee, Y.; Lee, Y. Toward scalable internet traffic measurement and analysis with
hadoop. ACM SIGCOMM Computer Communication Review, 2013.

[42] Lee, Y.; Kang, W.; Son, H. An internet traffic analysis method with mapreduce. In
IEEE/IFIP Network Operations and Management Symposium Workshops (NOMS),
2010.

[43] Ibrahim, L. T.; Hassan, R.; Ahmad, K.; et al. A study on improvement of internet
traffic measurement and analysis using Hadoop system. In International Conference
on Electrical Engineering and Informatics (ICEEI), IEEE, 2015.

[44] Bumgardner, V. K.; Marek, V. W. Scalable Hybrid Stream and Hadoop Network
Analysis System. In Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering (ICPE), 2014.

46

Bibliography

[45] Karimi, A. M.; Niyaz, Q.; Sun, W.; et al. Distributed network traffic feature extrac-
tion for a real-time IDS. In IEEE International Conference on Electro Information
Technology (EIT), 2016.

[46] Zhang, J.; Zhang, Y.; Liu, P.; et al. A Spark-Based DDoS Attack Detection Model
in Cloud Services. In Proceedings of 12th International Conference on Information
Security Practice and Experience (ISPEC), 2016.

[47] Čermák, M.; Tovarňák, D.; Laštovička, M.; et al. A performance benchmark for Net-
Flow data analysis on distributed stream processing systems. In IEEE Network Op-
erations and Management Symposium (NOMS), 2016.

[48] Garofalo, M. Big Data Analytics for Flow-based Anomaly Detection in High-Speed
Networks. Dissertation thesis, 2017.

[49] Fontugne, R.; Mazel, J.; Fukuda, K. Hashdoop: A MapReduce framework for network
anomaly detection. In IEEE Conference on Computer Communications Workshops
(INFOCOM), 2014.

[50] Farrell, S.; Tschofenig, H. Pervasive Monitoring Is an Attack.
http://www.ietf.org/rfc/rfc7258.txt, May 2014.

[51] Santanna, J. J.; van Rijswijk-Deij, R.; Hofstede, R.; et al. Booters — An analy-
sis of DDoS-as-a-service attacks. In 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), May 2015, ISSN 1573-0077, pp. 243–251, doi:
10.1109/INM.2015.7140298.

[52] Mockapetris, P. Domain names - implementation and specification. RFC 1035 (Stan-
dard), Nov. 1987.

47

Publications of the Author

Reviewed Relevant Publications of the Author
[P.1] T. Cejka, M. Zadnik Preserving relations in parallel flow data processing 11th IFIP

WG 6.6 International Conference on Autonomous Infrastructure, Management, and
Security, AIMS 2017, Zurich, Switzerland, 2017.

[P.2] T. Jánský, T. Čejka, V. Bartoš Hunting SIP Authentication Attacks Efficiently 11th
IFIPWG 6.6 International Conference on Autonomous Infrastructure, Management,
and Security, AIMS 2017, Zurich, Switzerland, 2017.

[P.3] M. Švepeš, T. Cejka Making flow data analysis parallel 11th IFIP WG 6.6 Interna-
tional Conference on Autonomous Infrastructure, Management, and Security, AIMS
2017, Zurich, Switzerland, 2017.

[P.4] T. Cejka, V. Bartoš, M. Svepes, Z. Rosa, H. Kubatova NEMEA: A Framework for
Network Traffic Analysis 12th International Conference on Network and Service
Management (CNSM 2016), Montreal, Canada 2016.

[P.5] Z. Rosa, T. Cejka, M. Zadnik, V. Puš Building a Feedback Loop to Capture Evi-
dence of Network Incidents 12th International Conference on Network and Service
Management (CNSM 2016), Montreal, Canada 2016.

[P.6] T. Cejka, M. Svepes Analysis of Vertical Scans Discovered by Naive Detection
Management and Security in the Age of Hyperconnectivity: 10th IFIP WG 6.6
International Conference on Autonomous Infrastructure, Management, and Security,
AIMS 2016, Munich, Germany, 2016.

[P.7] T. Cejka, V. Bartos, L. Truxa, and H. Kubatova Using Application-Aware Flow
Monitoring for SIP Fraud Detection Intelligent Mechanisms for Network Config-
uration and Security: 9th IFIP WG 6.6 International Conference on Autonomous
Infrastructure, Management, and Security, AIMS 2015, S. Latré, M. Charalambides,
J. François, C. Schmitt, and B. Stiller, Eds. Ghent, Belgium: Springer International
Publishing 2015.

49

Publications of the Author

[P.8] T. Cejka, Z. Rosa, H. Kubatova Stream-wise Detection of Surreptitious Traffic over
DNS 19th IEEE International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (IEEE CAMAD 2014), Athens, Greece 2014.

The paper has been cited in:

◦ Nuojua, V., David, G., Hämäläinen, T.: DNS tunneling detection techniques
– Classification, and theoretical comparison in case of a real APT campaign.
In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 10531 LNCS, pp.
280-291, 2017. DOI: 10.1007/978-3-319-67380-6_26

[P.9] P. Benacek, R. B. Blazek, T. Cejka, H. Kubatova Change-Point Detection Method
on 100 Gb/s Ethernet Interface Proceedings of the Tenth ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, New York, USA
2014.

The paper has been cited in:

◦ Nakamura, K., Hayashi, A., Matsutani, H.: An FPGA-based low-latency net-
work processing for spark streaming. In Proceedings of the IEEE International
Conference on Big Data, Big Data 2016, art. no. 7840876, pp. 2410-2415, 2016.
DOI: 10.1109/BigData.2016.7840876

[P.10] T. Cejka, L. Kekely, P. Benacek, R. B. Blazek, H. Kubatova FPGA Accelerated
Change-Point Detection Method for 100Gb/s Networks MEMICS proceedings, 9th
Doctoral Workshop on Mathematical and Engineering Methods in Computer Science
(MEMICS 2014), Telč, Czech Republic 2014.

[P.11] P. Benáček, V. Puš, H. Kubátová, T. Čejka P4-To-VHDL: Automatic generation
of high-speed input and output network blocks, Microprocessors and Microsystems,
Vol. 56, Elsevier, pp. 22–33, 2018.

The paper has been cited in:

◦ Garcia, Luis Fernando Uria, et al.: Introdução à Linguagem P4-Teoria e
Prática. Minicursos do Simpósio Brasileiro de Redes de Computadores e Sis-
temas Distribuídos (Minicursos_SBRC) 36 (2018).

Other relevant publications

[P.12] T. Čejka and R. Krejčí Configuration of open vSwitch using OF-CONFIG
IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey,

50

Publications of the Author

2016.

The paper has been cited in:

◦ P. Bellavista, et al. Multi-domain SDN controller federation in hybrid FiWi-
MANET networks, EURASIP Journal on Wireless Communications and Net-
working 2018.1 (2018).
◦ P. Jha, and B. Tech. End-to-End Quality-of-Service in Software Defined Net-
working, 2017.

[P.13] T. Čejka and A. Robledo Detecting Spoofed Time in NTP Traffic The 4th Prague
Embedded Systems Workshop, Roztoky u Prahy, Czech Republic, 2016.

[P.14] M. Svepes and T. Cejka Overload-resistant Network Traffic Analysis The 4th Prague
Embedded Systems Workshop, Roztoky u Prahy, Czech Republic 2016.

[P.15] T. Čejka, R. Bodó, and H. Kubátová Nemea: Searching for Botnet Footprints The
3th Prague Embedded Systems Workshop, Roztoky u Prahy, Czech Republic 2015.

[P.16] V. Bartoš, M. Žádník, T. Čejka Nemea: Framework for stream-wise analysis of
network traffic CESNET Technical Report 2013.

The paper has been cited in:

◦ Y.K. Lai, T. Wellem, H.P. You. Hardware-assisted estimation of entropy norm
for high-speed network traffic, Electronics Letters, 2014.

[P.17] T. Čejka Hardware Accelerated Anomaly Detection in Computer Networks, A Doc-
toral Study Report submitted to the Faculty of Information Technology, Czech
Technical University in Prague Prague, December 2014.

[P.18] T. Cejka, R. B. Blazek Real-time Detection of Anomalies in High-speed Computer
Networks The 1st Embedded Systems Workshop - ESW 2013, Temešvár, Czech
Republic 2013.

[P.19] T. Cejka Systém pro detekci anomálií v počítačových sítích Počítačové architektury
a diagnostika - PAD 2013, Teplá, Česká republika 2013.

[P.20] T. Cejka Hardwarově akcelerovaná detekce anomálií v počítačových sítích s využitím
FPGA Počítačové architektury a diagnostika - PAD 2012, Milovy, Česká republika
2012.

Projects

[P.21] deputy task leader, member of team GN4 JRA2T6 GÉANT
[P.22] member of team CESNET e-Infrastructure Operational Program Research and

Development for Innovations (OP VaVpI in Czech) project, CESNET, a.l.e

51

Publications of the Author

[P.23] member of team Large Infrastructure Operational Program Research and Develop-
ment for Innovations (OP VaVpI in Czech) project, CESNET, a.l.e

[P.24] member of team DMON100 TAČR alfa project, CESNET, a.l.e
[P.25] member of team SGS Czech Technical University in Prague

Selected Relevant Supervised Theses

[P.26] L. Stejskalová System for grouping suspicious network addresses, (in Czech),
Diploma thesis, FIT, CTU in Prague, 2018.

[P.27] M. Tomáš Extension of reputation database with information from Passive DNS,
(in Czech), Bachelor thesis, FIT, CTU in Prague, 2018.

[P.28] J. Jančička Automatic classification of network entities, (in Czech), Bachelor thesis,
FIT, CTU in Prague, 2017. Honored as an excellent thesis

[P.29] A. Plánský: Automatic Analysis of Security Incident Alerts, (in Czech) Diploma
thesis, FIT, CTU in Prague, 2017.

[P.30] O. Hollmann Detection of network attacks of Denial of Service type, (in Czech),
Bachelor thesis, FIT, CTU in Prague, 2017.

[P.31] Jiří Havránek Network flows exporter supporting application information, (in Czech),
Bachelor thesis, FIT, CTU in Prague, 2017. Honored as an excellent thesis

[P.32] Z. Rosa Automatic data capture for detected events, (in Czech) Diploma Thesis,
FIT, CTU in Prague, 2017.

[P.33] M. Švepeš Extension of the NEMEA system for deployment in a distributed envi-
ronment, (in Czech), Diploma Thesis, FIT, CTU in Prague, 2017. Honored as an
excellent thesis

[P.34] A. Robledo Network Time Protocol attacks detection, Diploma thesis, FIT, CTU in
Prague, 2016.

[P.35] M. Kalina Traffic monitoring in 100Gb/s network infrastructures, (in Czech),
Diploma thesis, czech, FIT, CTU in Prague, 2016.

[P.36] Z. Kasner Flow-Based Classification of Devices in Computer Networks, Bachelor
thesis, FIT, CTU in Prague, 2016.

[P.37] T. Jánský Application for analysis of VoIP/SIP network flows, (in Czech), Bachelor
thesis, FIT, CTU in Prague, 2016. Honored as an excellent thesis

[P.38] L. Truxa Detection of VoIP Exchanges Fraud, (in Czech), Diploma thesis, czech,
FIT, CTU in Prague, 2015.

[P.39] N. Jíša Detection of Network Attacks to Voice over IP Infrastructure, (in Czech),
Diploma thesis, czech, FIT, CTU in Prague, 2015.

52

Publications of the Author

[P.40] Z. Rosa Detection of tunneling in computer networks, (in Czech), Bachelor Thesis,
FIT, CTU in Prague, 2014, Honored as an excellent thesis

[P.41] M. Švepeš Configuration and monitoring system for distributed system NEMEA, (in
Czech), Bachelor Thesis, FIT, CTU in Prague, 2014, Honored as an excellent thesis

[P.42] J. Neužil P2P Botnet Detection in Computer Networks, Bachelor Thesis, FIT, CTU
in Prague, 2014.

53

Appendix A
Included Papers

A.1 NEMEA: A Framework for Network Traffic Analysis
Ing. Tomáš Čejka (20%), Ing. Václav Bartoš (20%), Ing. Marek Švepeš (20%),
Ing. Zdeněk Rosa (20%), doc. Ing. Hana Kubátová, CSc. (20%)
In Proceeding of the 12th International Conference on Network and Service Management
(CNSM 2016).
Montreal, Canada, 2016
DOI: 10.1109/CNSM.2016.7818417

The following included paper ([P.4]) presents a unique stream-wise NEMEA system
for network flow analysis and anomaly detection. It was originally developed for research
purposes. It has been deployed in the CESNET2 network infrastructure for analysis of the
traffic at the perimeter of the network since 2013. NEMEA (besides honeypots) is one of
the most significant sources of detected security events in CESNET2. NEMEA was firstly
introduced in the CESNET technical report [P.16] written in 2013

The NEMEA framework is the core of the NEMEA system. It was used to implement
several algorithms for analysis and detection. Also, the system was used for experiments
with splitting a stream of flow data into separate substreams based on witnesses as it was
described in the previous chapters.

The paper was written in cooperation with Zdeněk Rosa, Marek Švepeš, Václav Bar-
toš, and Hana Kubátová. The work of Václav Bartoš was focused on the efficient data
format UniRec, and his primary interest is an incident handling and processing security
events detected by NEMEA and other IDS. The dissertation thesis of Václav Bartoš (not
finished yet) focuses on computation of reputation for the “evil” network entities. Marek
Švepeš worked on the module for configuration and management of the NEMEA system.
Additionally, Marek Švepeš and Zdeněk Rosa helped with implementation of the NEMEA
modules and proofreading and improvement of the text of the paper. My authorship on
NEMEA and this paper was summarized at the end of Section 3.1.

55

NEMEA: A Framework for Network Traffic Analysis

Tomas Cejka∗, Vaclav Bartos∗, Marek Svepes∗, Zdenek Rosa∗ and Hana Kubatova†

∗CESNET, a.l.e.
Zikova 4, 160 00 Prague 6, Czech Republic
{cejkat,bartos,svepes,rosa}@cesnet.cz

†CTU in Prague, FIT
Thakurova 9, 160 00 Prague 6, Czech Republic

kubatova@fit.cvut.cz

Abstract—Since network attacks become more sophisticated,
it is difficult to discover them using traditional analysis tools.
For some kinds of attacks, it is necessary to analyze Application
Layer (L7) information in order to detect them. However, there is
a lack of existing tools capable of L7 processing and manipulation.
Therefore, we propose a flow-based modular Network Measure-
ments Analysis (NEMEA) system to overcome the situation.
NEMEA is designed with respect to a stream-wise concept, i. e.
data are analyzed continuously in memory with minimal data
storage. NEMEA is developed as an open-source project and is
publicly available for world-wide community. It is designed for
both experimental and operational use. It is able to process off-
line traffic traces as well as live network flows. The system is
very flexible and can be easily extended by new modules. The
modules are developed within a NEMEA framework that is a
key component of the project. NEMEA thus represents a unified
platform for research and development of new traffic analysis
methods. It covers several important topics not limited to analysis
and detection. Originally, NEMEA has been developed for the
purposes of Czech National Research and Education Network
operator. Therefore, it is focused on handling high speed network
traffic with links working at 100 Gbps.

I. INTRODUCTION

Monitoring computer networks belongs to important tasks
of every network operator. Monitoring systems can provide
valuable information about status and utilization of a network
infrastructure. Network security must be kept in mind due to
the importance of computer networks, safety of users and their
data. Due to the huge volume of data that is transferred via
modern network infrastructures, monitoring systems usually
aggregate information about traffic into smaller flow records.
These traditionally consist of network addresses, ports, times-
tamps and volume information. This data can be used for ac-
counting, statistical analysis to improve situational awareness
or for anomaly detection. An overview of concepts of the flow-
based network monitoring can be found in [1], [2].

Since network attacks are becoming more sophisticated and
hidden, it is sometimes very difficult to recognize them in
normal benign traffic. There are several methods for detection
of malicious traffic based on traditional flow records. The
records can even be used for detection of some attacks on
Application Layer (L7) (e. g. SSH bruteforce [3]). However,
for some kinds of malicious traffic, traditional flow records
are not sufficient and information from L7 headers is needed
for reliable detection. L7 information is however not well
supported in current flow analysis tools.

Monitoring
Probe

Monitoring
Probe

Monitoring
Probe

Collector
NEMEA
System

Alert
Handling

Fig. 1. Monitoring system infrastructure is based on exporting flow records
(by Monitoring probes) that are passed for storage (Collector) and analysis
(NEMEA). Detection modules of NEMEA produce alerts in a unified format
suitable for subsequent processing and storage.

To overcome a lack of existing tools, we developed a new
platform for online stream-wise traffic analysis and anomaly
detection, capable of L7 data processing – Network Mea-
surements Analysis (NEMEA). Fig. 1 shows a typical flow
monitoring infrastructure with traffic analysis done by NE-
MEA. The network is monitored by monitoring probes (flow
exporters) which send flow data to a central collector in form
of flow records. The probes contain plugins to parse selected
information from L7 protocols and extend the flow records by
this information. The IPFIX protocol is used to transfer such
data. In our deployment at CESNET2 network (Czech NREN),
we use FlowMon [4] probes based on special devices with
hardware acceleration in order to process backbone traffic (up
to 100 Gbps) without sampling. However, any exporter capable
of parsing L7 protocols can be used. Collectors usually store
received flow records and in our case the collector (IPFIXcol
[5]) also resends them for analysis to the NEMEA system. The
probes with the collector are the source of data for analysis.
The results of the analysis are statistics of traffic and alerts
produced by various detection mechanisms.

NEMEA was firstly introduced in our technical report [6] in
2013 but since that time, it is still being improved. This paper
presents main features of NEMEA. The system is composed
of independent interconnected modules, it is extensible and
it can run in distributed environment. Every module has its
own task that can be, for example, anomaly detection, filtering
or statistics computation. Each module is built using a set
of libraries that create a common framework. Everything
is developed as an open-source project and is available at
github.com1.

1https://github.com/CESNET/NEMEA

978-3-901882-85-2 c© 2016 IFIP

This paper is organized as follows. Section II compares
the NEMEA system with existing related projects. Section III
describes architecture and shows main features of the NEMEA
system. Section IV lists real use-cases that we target and
Section V presents results that we have achieved using the
NEMEA system. Finally, Section VI concludes the paper.

II. RELATED WORK

This section describes related existing systems for traffic
monitoring and analysis. The analysis and anomaly detection
is often done using Intrusion Detection Systems (IDS) or
Intrusion Prevention Systems (IPS). Such systems analyze the
network based on packets or network flows. The most popular
packet based systems are Bro [7] and Snort [8]. They process
every packet and use pattern matching, possibly enhanced by
scripting, to search for suspicious traffic and perform actions
when a predefined rule matches. Since these systems operate
on packets, they can see more details than flow based systems.
In contrary, flow based systems usually analyze data on a
higher level of abstraction and are thus able to detect different
kinds of events. Also, since they process less detailed data,
they usually have better performance. These two approaches
may complement each other in many scenarios.

Nfdump [9] is a set of tools for storage and processing
of flow records. It receives data from the network and stores
them into files corresponding to time windows, typically 5
minutes long. Nfsen [10] is a graphical frontend for nfdump
that visualizes the stored data in form of graphs and reports.
It also allows manual analysis of the data and it can be
configured to automatically generate alerts based on simple
rules. More advanced data analysis can be done using plugins.
The disadvantage of this approach is that the data must be
stored to a disk and then read by all the plugins. This is often
a performance bottleneck in large networks. Moreover, nfdump
does not support flow records extended by L7 information.

The Network Situational Awareness (NetSA) group at
CERT created Analysis Pipeline [11] based on SiLK [12].
SiLK is a set of tools for manipulation of records in a flexible
data format containing information from flow records. Analysis
Pipeline processes the data according to a configuration file
that describes a sequence of operations in three stages — fil-
tering, evaluation or statistics computation, and alerting. There
is a set of predefined options for each stage. By combining
them into a pipeline a complex query can be assembled.
Building a complex analysis task from simpler modules is an
approach very similar to that of NEMEA. The latest version
of Analysis Pipeline also adds a support for L7 data. However,
functionality of the building blocks of the pipeline and their
possible interconnections are very limited in comparison to
NEMEA.

III. NEMEA SYSTEM

A. Overview

The NEMEA system is designed as a heterogeneous modu-
lar system. Modules are independent processes interconnected
by unidirectional interfaces for communication. The interfaces
transfer data in the form of streams of messages — flow
records, results of some analysis etc. A simple example of
an instance of the NEMEA system is shown on Fig. 2. Each

Preproc.

Statistics

Input

Detector

Filter Logger

ReportingDetector

Detector

Fig. 2. Example of several NEMEA modules and their interconnection.

module is basically a program which performs a specific task,
such as flow data preprocessing, filtration, anomaly detection,
or logging and reporting results.

Each instance of the NEMEA system can be put together
out of different sets of modules, interconnected in various
ways. Different deployments of the NEMEA system may
use completely different configurations of modules and thus
perform different tasks. Therefore, NEMEA is very flexible. In
a typical configuration, modules are interconnected into a tree
or directed acyclic graph with a single module acting as main
input of the whole system. This module gathers or creates flow
records and sends them to other modules which process them.
On the other end of the system, there are usually modules for
logging the results to log files, a database or for sending alerts
via email. In our deployment, we use a plugin for IPFIXcol
collector as an input of the system — the collector receives
and parses IPFIX data from our monitoring probes, the plugin
transforms them to a format used by NEMEA and forwards
them to NEMEA modules. This was shown in Fig. 1. However,
for smaller deployments or for testing it is possible to use
NEMEA module flow meter as an input. It can read packets
from a network interface or a PCAP file, generate flow records
and send them directly to the rest of the NEMEA system, so
no external exporters and collector are needed.

NEMEA is not only easily reconfigurable, it can also be
easily extended by new functionality. The NEMEA framework
is designed to allow quick and easy implementation of new
modules. Although NEMEA can be used in production en-
vironment for analysis of live traffic, it is also designed to
serve as a common platform for researchers in the area of
network security and monitoring. It allows for fast prototyping
of new traffic analysis methods, testing them on both offline
and online data and comparing them with existing methods.
Therefore, although we already provide a number of modules
for common tasks and several detectors of malicious traffic,
we hope a community will develop much more in the future.

The framework used by the NEMEA system is developed
in C language and brings support for implementation of
NEMEA modules in C, C++ or Python (with possibility to add
more languages later). The system should run on any UNIX-
like operating system.

B. Architecture

Figure 3 shows a simplified architecture of the NEMEA
system. There is a set of running modules (interconnected by
interfaces, which is not shown here). The set of modules can
be controlled and monitored by a tool called Supervisor. All

NEMEA Framework

Module Module Module

Supervisor NEMEA Module

Algorithm

NEMEA Framework

IF
C

IF
C

Fig. 3. High level look at the NEMEA system.

the modules are programs built upon NEMEA framework, i. e.
the modules use functionality that is implemented in shared
libraries of the NEMEA framework.

The right side of Fig. 3 points out usual inner organization
of a module. Every module implements an algorithm or method
for traffic analysis or detection and it uses features of the
NEMEA framework for communication with other modules
and for access to information contained in data records.

The most important part of the framework is TRAP library
(Traffic Analysis Platform), which implements the communi-
cation interfaces and other basic functions needed by every
NEMEA module. Another library – UniRec – implements
a data format for binary representation of flow records and
other information. UniRec is the default data format used for
communication of modules. There is a Python wrapper around
these two libraries that supplies API for modules written
in Python. The last part of the NEMEA framework is the
common library that provides a number of functions and data
structures commonly used in network data analysis algorithms,
such as various hash functions, hash tables, Bloom filter, prefix
tree, or B+ tree.

The NEMEA system follows stream-wise concept of data
processing. That means it is designed to process data con-
tinuously at real-time or near real-time without a need of a
data storage. Writing and reading flow data to/from hard-drive
is often a performance bottleneck in other systems for flow
data analysis. In NEMEA, all the data remains in operation
memory (unless some module intentionally stores them to
disk or database), allowing real-time processing of data even
from large networks using a single server. However, if needed,
NEMEA can be distributed to more servers since each module
can run separately and communicate with others via network.

C. Communication interfaces

TRAP Communication Interfaces (IFC) allow modules to
communicate with each other. The IFCs are unidirectional,
each one represents either input or output of the module. Each
module can use multiple input and output IFCs. An output IFC
of a module (sender) can be connected to one or more input
IFCs of other modules (receivers). All receivers connected to
the same sender get the same data.

The data are sent over an IFC as a potentially infinite
stream of short messages (max 64 kB each). A message may be
a flow record, result of a detection algorithm (alert), statistics
computed from flow records in some time window or anything
else. Formats of the messages are described later.

The IFCs are in fact an abstraction of several different
underlying methods of interprocess communication. The two
main ones are based on UNIX domain sockets and TCP
sockets. The former one is used for communication between
modules on the same system, the latter one for communication
over a network. There are also two special types of IFCs – file
and blackhole. The file type allows to store a stream of data
into a file (when used as output IFC) and replay it later (when
used as input IFC). The blackhole type can be used as output
IFC only. It simply discards all messages sent to it.

The key point is that a data processing algorithm inside a
module is completely abstracted from the type and parameters
of module’s IFCs. It just calls functions to receive data from
or send to a specified interface. The types of interfaces to
use, together with parameters specifying where they should
be connected (socket name, IP address and port, file name),
are passed as command-line parameters when the module is
started. The parameters are processed by the TRAP library
so the developer of the module do not need to care about it.
The library also handles most of the IFC related errors that
may occur, for example if a connection to the other module
breaks (e. g. because the other module is restarted) the library
automatically tries to reconnect.

Generally, NEMEA is designed in such a way that the
developer of a module can focus on data processing algorithm
only, leaving all the integration work up to the TRAP library.
It significantly shorten the time needed to develop, test and
deploy a new traffic analysis method. It also opens the system
to less experienced programmers, e. g. researchers focusing
rather on traffic analysis methods than on programming.

D. Data formats

Data are exchanged over IFCs in one of three supported
formats – unstructured data, JSON and NEMEA’s own binary
format UniRec. The first two are rarely used, flow data as well
as most of other data records are transferred in UniRec format.

UniRec is an efficient binary format for storage and transfer
of simple data records similar to plain C struct. In addition to
the C struct it supports fields with variable length. UniRec
itself is a generic data structure, a particular format is given
by template, i. e. a set of fields in a record.

In comparison to other formats for transfer of simple
records like IPFIX, JSON or its binary equivalents BSON
or MessagePack, UniRec has two key differences. First, it is
designed to allow very fast access to fields of a record. While
other formats have to be parsed before fields can be accessed,
UniRec fields can be read directly, with access speed almost
equal to plain C struct2. But contrary to C struct, an UniRec
template can be defined at run-time. Second, all records sent
over a single IFC have the same template. This is not a problem
in most use cases (when it is, JSON can be used instead) and
it significantly simplifies data processing.

The data format compatibility is checked automatically by
IFCs. Each output IFC specifies the data format it is able
to send, while each input IFC specifies a set of required
fields. These formats can be specified at run time, which

2There is one additional memory access to a small table which easily fits
into L1 cache.

adds to flexibility of the system. When two IFCs are about
to be connected, their formats are checked. If the output
IFC contains all the fields required by the input IFC, the
connection is established and data transfer begins. Otherwise
the connection is refused.

Therefore, if a module for processing HTTP traffic needs
flow data with URL field and a user tries to connect it to an
IFC providing only basic flows with no L7 data, the connection
fails.

This mechanism is useful not only for error checking.
For example, it allows to create a generic logging module
which automatically recognize what data it receives. Using
this information, the module knows how to interpret messages
and how to log them.

We want to explicitly point out that NEMEA natively
supports flow records extended by L7 information. UniRec is a
generic format whose records can contain any fields, therefore,
flow records can be naturally extended by any new information
elements, even at run-time. In general, the system allows to
add or remove modules at run-time without an interruption
of other modules. This property is important for production
deployment of complex configurations of the NEMEA system.

E. Central Configuration and Monitoring

Modules of the NEMEA system can be run manually as
any other set of UNIX processes. However, the system can
also be controlled and monitored centrally by a tool called
nemea-supervisor, which is usually a better option, especially
for instances composed of a large number of modules. Nemea-
supervisor can run as a system daemon or in an interactive
mode. It also supports configuration via the standard NET-
CONF protocol [13].

Nemea-supervisor takes care of modules according to an
XML configuration file. The file defines modules, their pa-
rameters and a grouping to profiles – groups of modules that
can be started or stopped together, e. g. for an experiment. The
configuration can be changed at run-time using provided thin
client or any NETCONF client.

As a monitoring tool, nemea-supervisor periodically re-
trieves state information of every module and, with respect
to the configuration, performs actions needed to keep the
modules running or stopped. Besides the module’s status,
nemea-supervisor reads some statistics about the resource con-
sumption of modules (CPU and memory usage) and also about
their interfaces. Every module’s IFC automatically updates
counters of received or sent messages and the counters are
read by nemea-supervisor via a special service IFC opened in
every module. All statistics about modules can be periodically
exported into the Munin system [14].

F. System Performance

Overall performance of the NEMEA system depends
mainly on a set of deployed modules and their resource
requirements. However, there is a limitation given by maximal
throughput of IFCs. Every output IFC uses a buffer to optimize
utilization of data transfer in order to increase throughput.

Maximal number of messages per second (MPS) that can
be sent depends on a message size. Fig. 4 shows a relation

0

1

2

3

4

5

6

7

8

M
e
ss

a
g
e
s

p
e
r

se
co

n
d

1e6

65
53

3

32
76

7

16
38

3
81

91
40

95
20

47
10

23 51
1

30
0

25
5

20
0

12
7 66

Message size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
y
te

s
p
e
r

se
co

n
d

1e9

Bytes per second Messages per sec.

Fig. 4. Impact of message size on throughput of the socket based IFC.

2 4 6 8 10 20 30 40 50 60
Number of modules

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
u

m
b

e
r

o
f

m
e
ss

a
g

e
s

p
e
r

se
co

n
d

1e7

total

1 module

Fig. 5. Impact of number of running modules to IFC throughput. The number
of modules (x-axis) contains all running modules (senders and receivers).

between MPS and message size measured between a pair
of test modules (one sender and one receiver) on the same
machine, whereas, messages were generated in memory. The
green bars in the figure show the number of MPS that can
be sent/received via IFC. The highest number of MPS (over
7 million per second) was measured for 66 B message size,
which is the size of a basic flow record that we use. Due to
significant overhead for this size of message, the transmission
speed in bytes per second (purple line in the figure) is the
lowest (over 480 MB/s). L7 information consumes additional
memory besides the basic flow information. For the biggest
measured messages (65 KB messages), the number of MPS is
low (53 thousand MPS) but the transmission speed is about
3.5 GB/s.

Philosophy of NEMEA is based on running several mod-
ules at once. However, the more running modules, the less
resources are available for each module. Figure 5 shows
throughput of IFCs when running multiple pairs of modules.
All the modules were sending messages of a fixed size (66 B
was chosen). The purple bars represent the average number
of MPS that was received by a single receiver, the green bars
represent the sum of MPS from all receivers. For two modules
(one pair), the total number equals to the MPS of one receiver.

The real-world performance of a complete system heav-
ily depends on a particular set of instantiated modules and

complexity of algorithms they implement. However, as shown
in Sec. V, it is not a problem to process flow data from a
medium-sized NREN by tens of modules using only a single
server.

IV. TARGETED REAL USE-CASES

NEMEA already contains a number of modules for differ-
ent purposes, mostly for detection of various kinds of malicious
traffic. This section describes main topics that are covered by
the modules. Most of them are currently in use in CESNET2
network.

A. Detection up to L4

Network scanning belongs to the most common activities
that occur in the Internet. It is usually harmless, however, it can
be used by attackers to gather information. There are NEMEA
modules for scans detection (port scans were analyzed in [15]).

Denial of Service (DoS) and Distributed DoS (DDoS)
belongs to the most powerful types of attack. According to
various reports (e. g. [16]), number of DoS/DDoS attacks
increases and volume of traffic that attackers can generate
gets higher. Detection and mitigation of these attacks is a
challenging task, since it is very difficult to reliably and
timely recognize malicious and benign traffic. The NEMEA
system tries to get into the topic by providing several detection
modules based on different analysis methods. For example,
we implemented a detection method based on MULTOPS tree
[17]. There is also a specialized NEMEA module for detection
of amplification attacks.

B. Detection using L7

Session Initiation Protocol (SIP) can be used as a signalling
protocol for Voice over IP (VoIP) that is a modern successor of
telephone services. In specific circumstances, a misconfigured
SIP Private Branch Exchange (PBX) allows to call to a PSTN
phone number just by using the correct prefix, added to the
number. Attacks trying to guess the prefix and make calls to
premium-rate numbers are quite common and if successful,
they can lead to a significant financial loss for the owner of
the vulnerable PBX. A NEMEA module detecting this kind
of attack using flow records extended by selected SIP headers
was proposed in [18].

DNS protocol is usually not restricted by security poli-
cies and firewall settings because it belongs to indispensable
services. It can sometimes be used to circumvent a network
connection restrictions or escape from a secured network
by encapsulating data into DNS messages and thus creating
a communication tunnel. There is a NEMEA module for
detection of such tunnels based on statistical analysis of DNS
messages, further described in [19].

Heartbleed is a critical bug discovered in the OpenSSL
library in 2014. It gives an opportunity for attackers to re-
motely read random chunks of memory from a server that
uses the vulnerable version of OpenSSL. A NEMEA module
for Heartbleed exploit detection was developed in a few days
after the bug was published. It analyzes information from SSL
protocol headers which are extracted by a special plugin for
flow exporter. Within the first two months of operation, the

module discovered more than a thousand vulnerable hosts in
our network that were attacked (or probed) from the outside.
The detection mechanism is described in detail in [20].

NEMEA can be used to detect devices infected with
malware as well. The paper [21] presents that, having samples
of malware, it is possible to retrieve valuable information for
the detection of infected devices connected to the network. A
generic filter module can be used to find a communication with
suspicious servers. In such a scenario, extended flow records
with domain names and URLs of HTTP are the input of the
filter. The filtering condition can contain the suspicious ad-
dresses, domain names and URLs. Every matching connection
is immediately reported, since its source is probably infected
by the malware.

C. Alert Handling

The detection modules generate records about detected
security incidents (alerts). To abstract the detectors from tasks
related to alert handling, such as logging or reporting, NEMEA
provides a means to handle the alerts in a unified way. This is
represented by a set of modules called reporters that convert
alerts from detectors into a unified format and then they
can: log alerts into files, store alerts into database, send e-
mails containing information from alerts, send alerts into the
Warden3 system.

Since these modules are implemented as Python scripts, it
is easy to extend them to support any output data format or to
export alerts to any other system.

D. Offline testing

NEMEA does not have to be used just in a production
deployment processing live data. It can work offline and
process stored data as well. There are modules for reading
flow data from files in nfdump format, fastbit database used
by IPFIXcol or CSV files. It is also possible to store and replay
a stream of data generated by any NEMEA module directly in
UniRec format.

This allows to repeatedly send the same data into a set of
processing modules, which is useful for testing modules (and
therefore processing methods) as well as for research, e. g. for
comparison of different methods or parameter settings using
the same input data.

Detector
under test

LoggerMerger

Attack
trace

generator

Live flow data from networkCollector
plugin

Artificial attack trace

Fig. 6. Testing a detector by injecting artificial attack traces into a live stream
of flow data

An interesting use-case is also a possibility to mix two or
more streams of data using the merger module. For example a

3Warden is a system for sharing information about detected inci-
dents within a community of security teams, developed at CESNET,
https://warden.cesnet.cz/

stream of flow records got from normal traffic can be merged
with a stream generated by an attack simulator or with a trace
of an attack stored previously. Thus, attack traces can be mixed
into normal traffic to test abilities of detection modules, as
shown in Fig. 6.

V. REAL WORLD DEPLOYMENT AND RESULTS

An instance of NEMEA system is deployed at CESNET
since early 2014. It receives and analyzes flow data from
probes deployed on the perimeter of CESNET2 network, that
is ten lines with capacity ranging from 10 Gbps to 100 Gbps
connecting CESNET2 to other backbone networks. The data
are not sampled in any way. On average, the probes generate
120,000 flow records per second during peak hours.

At the time of writing (June 2016), our instance of the
NEMEA system consists of 28 modules. All the modules run
on a single server with 6 CPU cores and 12 GB of memory
and are able to process all incoming data without any loss. In
fact, no more than 40 % of server’s resources (both CPU and
memory) are utilized in normal circumstances.

The system is able to detect port scans, DDoS attacks
(simple SYN floods as well as DNS and NTP amplification at-
tacks), dictionary attacks on SSH, and watches for connections
to several malicious IP addresses and URLs. Also, various
statistics about the traffic are computed and stored. At last, one
of the modules performs on-the-fly anonymization of the flow
data and re-sends them to a server with less restricted access.
This is used for development and testing of new modules by
network security students and other academic people who can
not get access to real data due to privacy concerns.

On average, every day the NEMEA system detects and
reports the following events in the CESNET2 network:

• 110,000 horizontal port scans4 (76 every minute).

• 12,000 dictionary or bruteforce attempts to log in to
SSH (8.3 per minute).

• 2,400 DDoS attacks (mostly DNS and NTP amplifi-
cation).

The number of DDoS attacks may seem very high. This
is partly caused by the fact that a single attack may be
reported by two modules and that long attacks may be reported
several times due to properties of methods used for detection.
Therefore, it is rather a number of alerts generated by detectors
than real number of attacks. Nevertheless, even if the alerts
are aggregated, the number of attacks is still in the order of
hundreds. This is because most of the DDoS attacks today
use thousands of DNS or NTP servers across the world for
reflection and amplification of the attack traffic. If traffic to
just one of the servers passes through the CESNET2 network,
the attack can be detected. In fact, we often observe use of a
single server for several separate attacks at the same time.

We also have several modules for analysis of L7 data
present in our extended flow records, for example a detector of
attacks on VoIP servers or detector of DNS tunnels. They are

4To avoid false alerts, we set thresholds quite high. Port scan is reported
when more than 200 connections on different destinations are attempted within
5 minutes.

still considered experimental and are not running on the main
NEMEA instance, but for example, the VoIP detector reports
around 1,100 attacks per day if it gets data from all the probes.

We also often use L7 data for ad-hoc filtering by URL in
HTTP or hostname in DNS requests based on current needs of
security management. That means ad-hoc addition of modules
for filtering and logging the traffic of interest. For example we
recently acquired a sample of a new malware and analyzed it in
cooperation with our forensic laboratory [22]. This resulted in
a list of IP addresses and URLs used to control a botnet. A set
of filter modules looking for those IP addresses and URLs in
L7-extended flow data was immediately added to our NEMEA
system. It revealed 11 infected devices in our network during
2 weeks. The detection was done continuously and alerts were
sent at near real-time.

VI. CONCLUSION

Flow-based measurement and analysis became a standard
approach for network monitoring. Traditional flow records
provide visibility to transport layer (L4) only. However, for
detection of some kinds of problems, application layer (L7)
information is necessary. Although there exist exporters capa-
ble of parsing L7 information, it is hard to process them with
current tools. We therefore created a new platform for analysis
of L7-extended flow data – NEMEA.

The NEMEA serves for both experimental and operational
use. One of its most important features is the capability of L7
processing. At the same time, it is a flexible modular system
that allows researchers and network operators to extend its
functionality by implementing new NEMEA modules. It can
also be viewed as a common platform for development of
traffic analysis algorithms, which allows to easily test them on
both offline traces and live data, compare to other algorithms
and eventually deploy them operationally. The modularity of
NEMEA also makes the system scalable to handle even large
numbers of flow records. In case one machine does not have
enough resources, it is possible to distribute the computation,
i. e. start NEMEA modules on multiple hosts.

In this paper, we have shown a complex deployment
combining NEMEA system with a set of high performance
exporters and an open-source collector IPFIXcol. However,
since NEMEA contains its own minimalistic exporter, it can
also be used independently on smaller networks.

Deployment at CESNET2 network have proven that
NEMEA can be successfully used to monitor large networks
and detect various kinds of malicious traffic. Thousands of
incidents have been detected thanks to NEMEA.

ACKNOWLEDGMENT

This work was partially supported by the
“CESNET E-Infrastructure” (LM2015042), CTU grant
No. SGS16/124/OHK3/1T/18 both funded by the Ministry
of Education, Youth and Sports of the Czech Republic and
by the Technology Agency of the Czech Republic under
No. TA04010062 Technology for processing and analysis of
network data in big data concept.

REFERENCES

[1] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis With NetFlow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[2] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of IP flow-based intrusion detection,” IEEE Communi-
cations Surveys & Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[3] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “SSHCure: A flow-based SSH intrusion detection system,” in
Dependable Networks and Services. Springer, 2012, pp. 86–97.

[4] Flowmon Networks, “The Most Powerful NetFlow Probes in the
World.” [Online]. Available: https://www.flowmon.com/en/products/
flowmon/probe

[5] CESNET, “IPFIXcol.” [Online]. Available: https://github.com/
CESNET/ipfixcol/

[6] V. Bartoš, M. Žádnı́k, and T. Čejka, “Nemea: Framework for stream-
wise analysis of network traffic,” CESNET, a.l.e., Tech. Rep., 2013.
[Online]. Available: http://www.cesnet.cz/wp-content/uploads/2014/02/
trapnemea.pdf

[7] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[8] M. Roesch and et. al., “Snort: Lightweight intrusion detection for
networks,” in LISA, vol. 99, 1999, pp. 229–238.

[9] P. Haag, “NFDUMP – Netflow processing tools.” [Online]. Available:
http://nfdump.sourceforge.net/

[10] ——, “NfSen – Netflow Sensor.” [Online]. Available: http://nfsen.
sourceforge.net/

[11] CERT/NetSA at Carnegie Mellon University, “Analysis Pipeline.”
[Online]. Available: {http://tools.netsa.cert.org/analysis-pipeline}

[12] ——, “SiLK (System for Internet-Level Knowledge).” [Online].
Available: http://tools.netsa.cert.org/silk

[13] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241, Internet Engineering
Task Force, Jun. 2011.

[14] “Munin.” [Online]. Available: http://munin-monitoring.org

[15] T. Cejka and M. Svepes, Analysis of Vertical Scans Discovered
by Naive Detection. Munich, Germany: Springer International
Publishing, 2016, pp. 165–169. [Online]. Available: http://dx.doi.org/
10.1007/978-3-319-39814-3 19

[16] Kaspersly Lab, “Kaspersky DDoS Intelligence Re-
port Q3 2015,” November 2015. [Online]. Avail-
able: https://securelist.com/analysis/quarterly-malware-reports/72560/
kaspersky-ddos-intelligence-report-q3-2015/

[17] T. M. Gil, “MULTOPS: A data structure for denial-of-service attack
detection,” Ph.D. dissertation, Vrije Universiteit, 2000.

[18] T. Cejka, V. Bartos, L. Truxa, and H. Kubatova, “Using Application-
Aware Flow Monitoring for SIP Fraud Detection,” in Intelligent Mecha-
nisms for Network Configuration and Security (LNCS 9122). Springer
International Publishing, 2015, pp. 87–99.

[19] T. Cejka, Z. Rosa, and H. Kubatova, “Stream-wise detection of surrep-
titious traffic over DNS,” in 19th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD). IEEE, 2014, pp. 300–304.

[20] V. Bartoš, “Heartbleed Detection at CESNET using Extended Flow
Monitoring,” in Proceedings of 8th International Scientific Conference
on Security and Protection of Information, 2015.

[21] T. Cejka, R. Bodó, and H. Kubatova, “Nemea: Searching for Bot-
net Footprints,” in The 3rd Prague Embedded Systems Workshop
(PESW2015), 2015.

[22] CESNET, “FLAB – Forensic laboratory.” [Online]. Available:
https://flab.cesnet.cz/

A.2. Nemea: Searching for Botnet Footprints

A.2 Nemea: Searching for Botnet Footprints
Ing. Tomáš Čejka (33%), Ing. Radoslav Bodó (33%),
doc. Ing. Hana Kubátová, CSc. (33%)
In proceedings of the 3th Prague Embedded Systems Workshop, PESW2015
Roztoky u Prahy, Czech Republic, 2015
ISBN: 978-80-01-05776-6, pp. 11-16

Botnets are dangerous groups of infected devices (bots) that can perform various mali-
cious activities. All bots use some communication channel for their synchronization. There
are botnets with a central control server, usually referred as command and control servers
(C&C). The address of a C&C server must be known to bots, so that it is either contained
in the source codes of the malware or it is generated by some deterministic algorithm at
runtime.

The following included paper ([P.15]) describes usage of addresses of C&C servers gained
from samples of malware by a forensic laboratory. Application-aware approach of detection
allows for identification of such a communication with the C&C servers. The detection is
based on filtering extended flow records that contain a domain name or IP address that is
contained in some malware sample.

The paper was written in cooperation with Radoslav Bodó and Hana Kubátová. The
idea of stream-wise filtering the L7 extended flow records as well as most of writing the
paper are the work of the author of this dissertation thesis. Radoslav Bodó was cooperat-
ing as a member of forensic laboratory and provided us with features from real malware
samples.

The algorithm and its possibility of parallel processing were described in Section 3.5.1.

63

Nemea: Searching for Botnet Footprints

Tomas Cejka1, Radoslav Bodó1, Hana Kubatova2

1 CESNET, a.l.e.
Zikova 4, 160 00 Prague 6, Czech Republic

cejkat@cesnet.cz, bodik@cesnet.cz
2 CTU in Prague, FIT

Thakurova 9, 160 00 Prague 6, Czech Republic
kubatova@fit.cvut.cz

Abstract. Malicious network traffic originated by malware means a se-
rious threat. Current malware is designed to hide itself from the eyes
of victim users as well as network administrators. It is very difficult or
impossible to discover such traffic using traditional ways of flow-based
monitoring. This paper describes a network traffic analysis of a back-
bone network as an attempt to discover infected devices. Cooperation
with forensic laboratory and analysis of samples of malware allow to
gain information that can lead to find unwanted traffic. Special tailored
Nemea framework with high speed monitoring pipeline was used to dis-
cover infected devices on the network.

1 Introduction

This paper is focused mainly on network traffic monitoring and analysis on a
backbone networks. Backbone networks are very specific because of the volume
of traffic that flows through the network infrastructure. The growth of network
speed and bandwidth makes monitoring and analysis complicated. There are
several issues related to this area [10].

Standard monitoring mechanisms (well described e.g. in [8]) exploits various
mechanism of traffic aggregation or sampling that allow storage of information
about traffic. Many security threats are still detectable even though the used
aggregation looses precise information about transferred packets. Information
about communication over network is represented as so called flow record, i.e.
tuple of network addresses, ports and protocol that uniquely identify “one con-
nection” between two hosts.

Basic flow records contain volume statistics such as number of packets and
number of bytes. Analysis of the flow records is used to detect Denial of Service
attacks (DoS), scanning or sweeping of addresses or ports, brute-force attacks
etc. However, there are malicious applications that generate traffic very similar
to normal benign traffic. The malicious applications (usually called malware),
forged by attackers, usually exploit standard protocols and services. Addition-
ally, this traffic is composed of a few packets in long time periods. Basic volume
information about malware traffic is almost useless for detection of infected de-
vices.

As we will explain in following sections, malware sometimes generate specific
patterns that appear in packets. The patterns are e.g. URL in the HTTP protocol
or DNS lookups containing suspicious domain names. Detection of such traffic
could be based on application layer analysis of transferred packets, sometimes
called as deep packet inspection [14]. The examples of detection of suspicious
traffic using application layer information can be found e.g. in [2, 3].

Application layer analysis is very difficult or impossible for large networks
without any hardware acceleration. The main obstacle is the volume of data that
must be processed. On current high-speed networks, it is needed to analyze traffic
at speed over 10 Gbps. Such traffic is very difficult to be transferred into software
for processing by standard tools. For this task, a special tailored hardware card
[7] can be used for hardware accelerated preprocessing in monitoring probes.
Using the monitoring probes it is possible to process headers of application
layers export information for additional analysis.

The rest of this paper describes real use case of cooperation of monitoring
system, network traffic analysis tools and forensic laboratory that is able to
analyze malware and provide valuable information to discover infected devices
on the network.

2 Malware Sample Analysis

Currently, most of devices that are connected into internet can be infected by
a malicious software. When malware gets into a device, it usually works as a
downloader and starts to download additional applications such as backdoor
[13].

Malicious codes spread through the internet via many means, but so far most
used channel is a simple e-mail. The most typical scenario includes the obfuscated
executable sent as an e-mail attachment, latter upon delivery the user itself is
forced (perhaps by an urgently composed text) to open an attachment and thus
executing the malicious program on one of his devices. Our analyzed samples
were acquired as an suspicious incoming e-mail and were securely sent to forensic
laboratory [4] for extended analysis.

This section briefly describes a process of malware analysis performed in the
forensic laboratory.

At first, malware samples are passed to several simple tools for extracting
basic data and metadata from the samples. This phase includes file, strings,
antivirus software, PE Explorer, . . . Finaly samples are disassembled to gain
basic overview of its functionality. The data, metadata and assembler code of
the executable file supplies the first insight and sometimes it can provide e.g.
domain names or IP addresses or other interesting keywords in readable text
format.

The second step is execution of the malicious code in specially prepared
virtualized environment. Isolated virtual machine contains tools that monitors
system calls (e.g. using procmon [12], strace, . . .) and state of the system. It
is needed to be able to take snapshots of disk and memory in a different phases

of malware execution (starting with the state before execution). Execution of
malware can bring valuable information about the infiltration into the operating
system as well as the activity of malicious process. The activity of the process
include disk operations (writing data) or network communication (downloading
other binaries, contacting command and control servers).

Fig. 1: Network communication of infected computer with attacker’s server.

Traces of process monitor and network traffic dump (e.g. using Wireshark [11])
can be visualized by ProcDOT [15]. This application can generate call graph that
represents behaviour of the analyzed sample. Network dump is useful source of
addresses and domain names that should be traced and monitored in real net-
work traffic. Communication with gained addresses can expose infected hosts on
the network.

Forensic analysis discovered several characteristics of malware behavior. The
interesting characteristics for our purposes are related to the network traffic
generated by malware. Fig. 1 shows the example of captured traffic from testing
virtual environment.

Fig. 2 shows visualisation of malware activity. It summarizes information
of process monitoring and network monitoring. The figure contains part of the
graph that was created by ProcDOT [15].

The laboratory analysis found the list of suspicious domain names and IP
addresses that is shown in the following list and those pieces of information can
be used to locate other infected nodes in monitored network:

– globalgateone.com
– globalgatetwo.com
– lac-fessenheim.org
– ogarape.com

Fig. 2: Part of the diagram of malware activity gained using ProcDOT in forensic
analysis.

– ndiprintmaking.ca

– 195.114.18.x
– 97.74.144.x
– 217.76.156.x

3 Real Network Monitoring – Infrastructure

Our monitoring infrastructure consists of monitoring probes [9] with the COMBO
cards [7] for hardware acceleration, the open-source IPFIXcol collector [5] for col-
lecting information about network traffic and finally the Nemea system [6] for
stream-wise data analysis. The monitoring infrastructure is shown in Fig. 3.

The Nemea system a modular system for network traffic analysis and anomaly
detection. It is composed by independent modules developed using the Nemea
framework [1]. The framework tries to make development of Nemea modules
easier and faster due to implementing common tasks in form of shared libraries.

Nemea contains several modules that work as a source of data for the Nemea
system. An important example of such modules is a plug-in for IPFIXcol. This
plug-in can export all flow records that collector receives from monitoring probe
and pass them in format that Nemea modules understand. Using IPFIXcol plug-
in, it is possible to get flow records extended by application layer information at

Fig. 3: Monitoring infrastructure consisting of monitoring probes, collector and
Nemea system.

Fig. 4: Example of interconnected modules of the Nemea system.

near real-time into detection modules in the Nemea system. The example of the
Nemea system configuration is shown in Fig. 4.

For the purposes of tracking of malicious traffic, a special filter module was
used. The filter is able to take user-defined condition and apply it on incoming
messages with information about flow. Messages that do not satisfy the condition
are dropped, the rest of messages is passed for next processed.

The module supports many operators that can be used in condition. We have
used mainly matching regular expressions with values of fields extracted from
application layer. The following listing shows the example of condition that filter
messages of DNS traffic:

:DNS_NAME=~".*globalgate.*\.com$"||DNS_NAME=~".*ogarape\.com$"||

DNS_NAME=~".*lac-fessenheim\.org$"||

DNS_NAME=~".*ndiprintmaking\.ca$"

It is possible to filter traffic of discovered addresses that are probably com-
mand and control servers as follows (addresses are anonymized):

:SRC_IP==195.114.18.x||DST_IP==195.114.18.x

This condition was applied on HTTP data and we can discovered other poten-
tially infected computers on our network infrastructure that communicate with
the given server.

4 Results

After few days of monitoring, we have discovered 11 devices connected into
the monitored network infrastructure that tried to resolve domain names used
by malware samples or to communicate with discovered servers via the HTTP
protocol.

Except domain names listed in previous section, we found that infected de-
vices tried to query another suspicious domain name dqwdwqwqdqwddqw.cn. In
addition, we discovered URLs that appeared in malicious HTTP queries that
probably work as keep-alive ping: /so/ and /hr/.

Most frequent source and destination IP address that appeared in our obser-
vation is from France. The second most frequent addresses belong to subnets of
the Czech Republic, to the academic networks.

5 Conclusion

Discovering of infected computers on computer network infrastructure is a non-
trivial but critically important task for every network operators. Attackers and
authors of malicious code try hard to hide not only the running malware in the
victim’s system but also the traffic that malware produces. It is very difficult
maybe impossible to find malicious traffic or traffic originated from infected
devices using basic flow records.

This paper described the case study of cooperation of department of tools
for monitoring and configuration with the forensic laboratory to discover in-
fected devices on the monitored network infrastructure. As a result, 11 infected
computers were discovered communicating with suspicious servers. In addition,
it could be observed how infected devices communicated with command and
control servers to let them know that they are still alive (infected).

The whole monitoring was allowed by monitoring infrastructure based on
hardware accelerated monitoring probes that can operate at link speed (10 Gbps).
Exported information about network traffic was extended by some headers of
application protocols such as DNS and HTTP. The resulting flow records were
processed by modular Nemea system that is designed for stream-wise traffic
analysis at near real-time.

After 10 days of monitoring, the most active command and control server
that communicated from domain name globalgateone.com stopped responding,

however, infected computers still continued to send their TCP SYN packets. The
infected addresses discovered by our work were reported to members of CSIRT
team.

Acknowledgments This work was partially supported by the “CESNET Large
Infrastructure” (LM2010005), CTU grant No. SGS15/122/OHK3/1T/18 funded
by the Ministry of Education, Youth and Sports of the Czech Republic.

References

1. Bartos, V., Zadnik, M., Cejka, T.: Nemea: Framework for stream-wise analysis of
network traffic. Tech. rep., CESNET (2013)

2. Cejka, T., Bartos, V., Truxa, L., Kubatova, H.: Using Application-Aware Flow
Monitoring for SIP Fraud Detection. In: Proc. of 9th International Conference on
Autonomous Infrastructure, Management and Security (AIMS15) (2015)

3. Cejka, T., Rosa, Z., Kubatova, H.: Stream-wise detection of surreptitious traffic
over dns. In: Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), 2014 IEEE 19th International Workshop on. pp. 300–304.
IEEE (2014)

4. CESNET, a. l. e.: FLAB forensic laboratory, https://flab.cesnet.cz/
5. CESNET, a. l. e.: IPFIXcol, https://github.com/CESNET/ipfixcol/
6. CESNET, a. l. e.: Nemea, https://www.liberouter.org/nemea/
7. CESNET, a. l. e.: Programmable Hardware, http://www.liberouter.org/

technologies/cards/

8. Hofstede, R., Celeda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A., Pras,
A.: Flow monitoring explained: From packet capture to data analysis with netflow
and ipfix. IEEE Communications Surveys Tutorials 16(4), 2037–2064 (2014)

9. INVEA-TECH a.s.: FlowMon Probe – High-performance NetFlow Probe
up to 10 Gbps, http://www.invea-tech.com/products-and-services/flowmon/
flowmon-probes

10. Kekely, L., Pus, V., Korenek, J.: Software defined monitoring of application pro-
tocols. In: INFOCOM, 2014 Proceedings IEEE. pp. 1725–1733. IEEE (2014)

11. Orebaugh, A., Ramirez, G., Beale, J.: Wireshark & Ethereal network protocol
analyzer toolkit. Syngress (2006)

12. Russinovich, M.: Process Monitor v3.1, https://technet.microsoft.com/en-us/
library/bb896645.aspx

13. Skoudis, E.: Malware: Fighting malicious code. Prentice Hall Professional (2004)
14. Velan, P., Celeda, P.: Next generation application-aware flow monitoring. In: Mon-

itoring and Securing Virtualized Networks and Services, LNCS, vol. 8508, pp. 173–
178. Springer (2014)

15. Wojner, C.: ProcDOT — Visual Malware Analysis, http://www.procdot.com/

A.3. Stream-wise Detection of Surreptitious Traffic over DNS

A.3 Stream-wise Detection of Surreptitious Traffic over
DNS

Ing. Tomáš Čejka (33%), Ing. Zdeněk Rosa (33%),
doc. Ing. Hana Kubátová, CSc. (33%)
In IEEE 19th International Workshop on Computer Aided Modeling and Design of Com-
munication Links and Networks (CAMAD)
Athens, Greece, 2014
DOI: 10.1109/CAMAD.2014.7033254

This section includes the paper ([P.8]) that describes a particular example of detection
of so-called covert channels. Some tools can be used to encapsulate user data into packets
of standard operational protocols such as DNS or ICMP. The aim of such encapsulation
can be, e.g., avoiding security policies in networks where communication is forbidden for
users. For instance, there are hotspots, which allow users to connect to the Internet only
after paying some fees. Another example can be blocking outgoing traffic to protect secret
data of an organization.

DNS can be misused to create a communication tunnel and to avoid the security poli-
cies. The following paper describes a principle of DNS tunnels and presents a stream-wise
detection algorithm. The algorithm was implemented as an application-aware module for
the NEMEA system.

The paper was written in cooperation with Zdeněk Rosa, who worked on the develop-
ment and evaluation of the NEMEA module in his bachelor thesis [P.40] (supervised by
the author of this dissertation thesis), and Hana Kubátová. The idea of the flow-based de-
tection of the DNS tunnels using extended flow records was the contribution of the author
of this dissertation thesis.

The algorithm and its possibility of parallel processing were described in Section 3.5.2.

71

Stream-wise Detection of Surreptitious Traffic
over DNS

Tomas Cejka
CESNET, a.l.e.

Zikova 4, 160 00 Prague 6, Czech Republic
cejkat@cesnet.cz

Zdenek Rosa
and Hana Kubatova
CTU in Prague, FIT

Thakurova 9, 160 00 Prague 6, Czech Republic
{rosazden,kubatova}@fit.cvut.cz

Abstract—The Domain Name System (DNS) belongs to crucial
services in a computer network. Because of its importance, DNS
is usually allowed in security policies. That opens a way to
break policies and to transfer data from/to restricted area due
to misusage of a DNS infrastructure. This paper is focused on
a detection of communication tunnels and other anomalies in
a DNS traffic. The proposed detection module is designed to
process huge volume of data and to detect anomalies at near
real-time. It is based on combination of statistical analysis of
several observed features including application layer informa-
tion. Our aim is a stream-wise processing of huge volume of
DNS data from backbone networks. To achieve these objectives
with minimal resource consumption, the detection module uses
efficient extended data structures. The performance evaluation
has shown that the detector is able to process approximately
511 thousand DNS flow records per second. In addition, according
to experiments, a tunnel that lasts over 30 seconds can be detected
in a minute. During the on-line testing on a real traffic from
production network, the module signalized on average over 60
confirmed alerts including DNS tunnels per day.

I. INTRODUCTION

Domain Name System (DNS) [1], [2] is prevalently utilized
for translation of domain names to network addresses and
vice versa. Misconfiguration or limitation of the DNS service
(e.g. by successful attacks on DNS infrastructure) can cause
collapse of the most of all network services. Therefore, it
is useful to concentrate on DNS traffic analysis. Because of
importance of this protocol, it is usually allowed in security
policies and firewall settings. That opens a possibility for a
covert communication channel.

DNS is a client-server protocol based on the well-known
principle of request-response where clients send requests and
servers answer with appropriate responses. With a special
tailored tools, it is possible to encapsulate arbitrary data into
DNS messages on one side and decapsulate it on the other
side. The resulting DNS messages seem to be legitimate
and are normally processed by DNS servers. Local DNS
servers are usually permitted to communicate with the Internet.
Principle of communication tunnels over DNS protocol is
shown in Fig. 1 and well-described in [3], [4]. Exploiting DNS
mechanisms, it is possible to misuse the local DNS server to
establish a tunnel with the user’s tunneling server.

The contribution of this paper is a proposal of the soft-
ware module for near real-time detection of suspicious DNS
communication. The module is able to signalize alerts about
communication tunnels in DNS traffic. In addition, used data

Fig. 1. Communication tunnel via DNS servers.

structures and detection procedure allows for analysis of huge
volumes of network traffic of Internet Service Providers (ISP).
The module is built on known and published detection and
analysis principles adapted for high speed networks. The
module is prepared and deployed as a stream-wise component
to process huge volumes of data from the Czech National
Research and Education Network (NREN).

This paper is organized as follows: Sec. II shows the
related work and the difference of the proposed realization.
Sec. III describes the implemented and tested detection mod-
ule. Sec. IV describes chosen data structures for storage of
information from DNS traffic and for stream-wise analysis.
Sec. V summarizes the parameters of the detection module.
Sec. VI presents the monitoring infrastructure and results of
the running detection module. Sec. VII concludes the paper.

II. RELATED WORK

The area of surreptitious communications detection has
been studied for many years and there are several detection
methods that are more or less related to our work. In this
section, we try to list the most relevant works of other
authors. The main type of surreptitious communications, that
we are focused on, is data tunneling over the DNS protocol.
Dns2tcp [5], Iodine [6], OzymanDNS [7], and tcp-over-dns [8]
are some examples of tools for establishment of the tunnel.
There are also free or commercial services (e.g. Wi-Free [9])
that supply a server service for easier tunnel setup. The server
plays the role of the second side of the tunnel for users.

Some of the listed tools generate regular patterns in the
network traffic. This type of communication can be detected by

well-known detection systems such as Bro [10] or Snort [11].
However, pattern matching is out of our focus.

The detection method that uses matching of regular expres-
sions with domain names is presented by Farnham in [12] as
a part of detection system. Farnham’s system also uses a basic
statistical evaluation of DNS traffic. The implementation was
based on a commercial Capture and Parse system. In addition,
Farnham uses the MySQL database to store DNS data that are
later queried for the source bytes and the destination bytes and
their ratio is compared with a limit value.

Bilge et al. proposed a detection procedure in [13] that
exploit the CUSUM method for change point detection of
distributions of several features. Farnham and Bilge use longest
meaningful substring (LMS) analysis based on meaning of do-
main name parts. The idea of LMS is based on the generation
of benign domain names that usually consist of meaningful
words (e.g. words from dictionary) or at least human readable
easy-to-remember text strings.

The difference from our approach is the view on domain
name strings. Bilge et al. look for the similarities and meaning-
ful substrings, whereas we focus on number of differences be-
tween each DNS requests. Even though these two approaches
seem very similar, the advantage of our approach is that the
module needs no dictionaries, knowledge of natural language,
nor domain names generation algorithm.

Paxson et al. presented a complex detection procedure for
communication tunnels over DNS detection in [4]. Paxson’s
module is designed for a great volume of a DNS traffic
processed with a day period. The performance of the module
is based on sophisticated massive filtering of the traffic and
removing of a benign traffic without any communication tunnel
over DNS. One criterion for removing is the number of
look-ups of the same domain name. Repeated domain names
represent a traffic without tunneled data.

Our detection module differs mainly in the size of the
time window that is processed at once because we concentrate
on stream-wise near real-time detection. The volume of data
in a short time period is much lower so that the module is
able to process all the data. To spare the computer’s memory,
domain names are stored and analyzed only for suspicious
addresses. The processed domain names are stored separately
for each network address. However, repeating domain names
may appear only once per one network address. This way of
analysis allows the module to detect not only tunnels over
DNS but also other anomalies such as Denial of Service
(DOS) attacks, distributed DOS (DDOS) attacks, or DNS
amplification attack.

III. DETECTION MODULE

The proposed detection module is a software application
written in the C language. It is based on a stream-wise concept
of the Nemea system [14] that will be briefly explained in
Sec. VI. The detection module is built using the Nemea
framework [15] that simplifies the connection with a data
source. In our case, the data source is a special module that
collects data with DNS information from monitoring probes.
The module currently receives basic flow records extended
with DNS fields such as domain name, type and class of DNS
messages and fragments of RDATA field.

The detection module contains 4 types of detection mech-
anisms based on the set of features that is used: 1) tunnel in
DNS requests, 2) tunnel in DNS responses, 3) other anomalies
in DNS requests, and 4) other anomalies in DNS responses.
The four detection mechanisms perform analysis of domain
names, and fields of DNS messages (CNAME, TXT, MX and
NS) that are potential places for encoded data of a tunnel.

The module contains two detection modes: basic and
advanced. Every observed address is analyzed in basic mode.
When an address is claimed as suspicious by the basic mode,
the mode is switched to the advanced detection for the address.
The decision is made according to preset thresholds and limits.

The basic and advanced modes work with several observed
features. The basic mode is based on statistics of flow
information such as the number of DNS messages per host
and size of packets of DNS messages. Therefore, the basic
mode has lower resource and time consumption.

The advanced mode is the heart of the detection module
and it is used for all suspicious addresses. It is based on
extended information about application protocol gained by
payload analysis in a monitoring probe. The additional ob-
served features are the number of similar looked up domain
names per host, the number of different subdomains of the
nth level, the length of domain names, the number of digits
and unique characters in domain name, the ratio of letters and
digits in domain names.

There are many cases of benign DNS traffic with suspicious
statistical characteristics. The example of such traffic can be a
DNS query for Content Delivery Network (CDN) services, an-
tivirus software communication, or reverse address translation
(using arpa top level domain). To avoid false alerts signaling
well-known benign traffic, the module supports whitelisting of
addresses and domain names.

The proposed detection module can signalize various in-
teresting alerts. The alerts can be classified as follows: a) tun-
neling data over DNS, b) CDN and load balancing, and c)
other anomalies. The first group contains alerts of probable
tunnels over DNS. This kind of traffic is significantly similar
to traffic of tunneling tools that were evaluated in simulation
environment of virtual network and that were observed during
our experiments in the real network traffic. The second group
represents valid traffic of CDN and load-balancing services
and probably benign communication of antivirus software
systems. The last group represents other detected anomalies
such as DOS, DDOS, or DNS amplification attacks, that are
characterized by increased number of DNS messages targeted
to some host or set of hosts.

IV. DATA STRUCTURES

Based on the study of the nature of monitored data from
a network traffic, we encountered an issue of storage of all
data needed for analysis and detection. For a detection of
tunnels over DNS and other surreptitious communications, the
detection module needs to store flow information. Additionally,
the content of DNS messages is stored for the advanced mode.

There are several ways to store this kind of data. The
naive approach would use arrays or more sophisticated hash
maps. Because of hierarchical structure of domain names and

canonical transcription of network addresses, we decided to use
tree data structures that decrease the size of required memory
without loss of information for duplicate subset of data.

Storage of all possible addresses would theoretically need
an array of almost 232 resp. 2128 elements. Unfortunately, in
practice, this approach would consume much resources. Using
hash maps, the memory consumption decreases, however,
collisions that can occur in hash maps are unwanted. We need
precise information about communicating addresses to identify
tunnel origin and unresolved collisions would group data from
different addresses together. Joining different data would lead
to false alerts. Therefore, we decided to use B+ tree to store
data with a network address as a key.

Network addresses are used as keys in B+ trees [16] and
are stored as 32 b resp. two 64 b numbers for IPv4 resp. IPv6.
The module uses separate B+ tree for each protocol. The
structure of B+ tree is shown in Fig. 2 where the numbers
represent keys (network addresses). The stored values (val in
the figure) consist of continuously updated information needed
for detection purposes.

Fig. 2. B+ tree structure

A communication tunnel over DNS needs to use some
registered domain name in order to route data from the user
to the tunneling server. In addition, the subdomain part of
the domain name is a suitable place for transported data.
The same domain name is common to all messages of the
tunnel. Therefore, it is advantageous to group domain names
by suffixes (top level domain – TLD) and examine the number
of different prefixes (subdomains) per domain and per address.
Domain names can be efficiently stored in prefix tree (well-
known data structure based on [17]), where TLD represents
root element. Used data structure is shown in Fig. 3. Domain
names are processed and stored backwards because of faster
matching of common parts.

The implementation of the prefix tree is enriched with
special nodes containing metadata (represented by the square
with dot in Fig. 3). These nodes are used as a separator of
common and different parts of a domain name. In addition,
the separator nodes accumulate statistical information about
subtrees in the prefix tree. It is useful for fast evaluation of all
stored domain names of one network address.

The performance of the implemented prefix tree was com-
pared with a simple array. Both data structures were used for
storage of domain names that appear on the real network. The
comparison was focused mainly on the memory consumption.
The results show that the prefix tree can save about 60 % of
memory that would be needed for simple array because due
to the data deduplication of common parts of domain names.

Combination of B+ trees and prefix trees gives us an
opportunity to analyze traffic of each network address sepa-
rately. Computational complexity of operations on B+ trees is

Fig. 3. Domain names stored backwards in the prefix tree: circle nodes
contain domain name substring and square nodes represent separators after
common substrings. Separators contain metadata about the subtree.

O(logm n), where m is the number of node’s children. The
mostly used operation during the processing of real data is a
look-up of network addresses, it is performed about 80.7 % of
computation (other operations – insert and remove constitute
the remaining 19.3 %).

V. MODULE CONFIGURATION

The module works with various limits and thresholds that
influence the detection, especially the transition between the
basic and the advanced modes. The number of suspicious
addresses highly influences the resources consumption. The
module is fully tuneable via a set of parameters of the module.
There are limits and thresholds for all observed features that
were introduced in Sec. III. Some thresholds represent mean
value or variance that should not be exceeded for the feature.
The detection works in cycles with given size of a time window
in seconds.

The module has default values of all limits and thresholds
that were found as optimal values for the traffic on the CES-
NET2 network. The values were estimated using observations
of average behavior of addresses that use DNS. We used
annotated data set with tunnels to find the optimal values. The
experiments that tested detection capability of the module will
be described in Sec. VI. Some of the thresholds (such as the
number of unique characters in domain names) were set and
evaluated with respect to values found in [12].

Some of the default thresholds of a legitimate traffic are:
the interval of the mean values of the size of DNS requests
in bytes – 〈70, 100〉, the interval of the variance of the size of
DNS requests in bytes – 〈30, 150〉, the interval of the mean
values of the size of DNS responses in bytes – 〈70, 600〉, the
interval of the variance of the size of DNS responses in bytes
– 〈200, 5000〉, the maximal count of unique letters in request –
24 and response – 30, the maximal number of digits in domain
names – 12, and the default size of the time window is 60 s.

The size of the time window is the most important parame-
ter that influences the resources consumption. The size of time
windows also controls the duration of the module cycle and a

detection delay. The increase of the time window size causes
the increased size of stored data in memory.

VI. EVALUATION

We have used two different environments to test the
proposed detection module. The environments were used for
offline and online testing. The first and simpler offline environ-
ment consists of the standalone detection module that is able
to load file with data set. The data set contains annotated traffic
with benign traffic and communication tunnels over DNS.

This offline environment allowed us to examine the memory
consumption and computational performance of the module.
We have evaluated the memory consumption depending on
the size of the time window. The graph with results is shown
in Fig. 4. The figure shows the increase of the memory con-
sumption with increasing time window that is caused by higher
number of different domain names. The figure also shows that
the configuration of the limits and thresholds influences the
memory consumption. The blue line with circle points shows
the default configuration of parameters. The line with triangles
and the line with squares represent different configurations
(decrease of the interval of the legitimate domain name sizes).

Fig. 4. Memory consumption in logarithmic scale depending on the time
window size and different module configuration.

For the performance evaluation, a large data set was
replayed and sent into the module. This way, it was possible
to simulate high flow records rate. The module successfully
handled the load of 90 millions of flow records in 176 seconds
that corresponds to approximately 511 kflows/s1.

The offline evaluation of the module configuration was
performed on a machine with Intel Core2 Duo E8500 3.16 GHz
and 8 GB of an operation memory.

For the online tests, we have used the existing monitoring
infrastructure of the CESNET2 network (Czech NREN) with
the Nemea system. The environment allowed us to examine
the usability of the module for near real-time detection in the
real traffic of the backbone network.

11 kflow/s means one thousand flow records per second

In ordinary way, monitoring probes export data in preset
regular time intervals (usually 5 minutes) into a monitoring
system (e.g. NfSen / nfdump). Contrary, the Nemea system
is based on transfers of flow information without fixed time
intervals. The simplified scheme of monitoring of a network
is shown in Fig. 5. The advantage of used monitoring probes
and the Nemea concept is a stream-wise and near real-
time approach. Special tailored monitoring probes [18] can
export data into the Nemea system continuously and much
sooner. Additionally, it is possible to export information about
application protocols that is needed by the detection module.

Fig. 5. Monitoring probe exporting application information as soon as
possible.

The online experiments were based on establishment of
communication tunnels using various tunneling tools. We used
data from monitoring probes on the perimeter of the CESNET2
network. During preparations of the experiments, we put the
server application (one end of tunnel) inside the CESNET2
network and we started the client application placed outside
the network. This configuration causes that the tunnel goes
through the perimeter of the network and it can be monitored
and detected as it is shown in Fig. 5.

During the tests, various tunneling tools over DNS were
used for establishment of tunnels. The used tunneling tools for
experiments were iodine and dns2tcp. The time course of one
experiment is shown in Fig. 6. After a tunnel establishment,
iperf(1) was executed in order to generate traffic through
the tunnel and to measure the throughput of the tunnel. The
experiments show that tunnels can operate at about 600 kb/s
(the client application was connected to the Internet via 2 Mb/s
link). The detection module found all tunnels that were man-
ually established in real traffic network. The results show that
communication tunnels that last over 30 seconds are detected
in about 1 minute.

The overall information about traffic of the CESNET2
network and the results of the detection module on non-
annotated data can be described as follows. Sum of all address
ranges that are connected to the Internet via CESNET2 is
approximately one million. The network is mainly academic
and therefore it is possible to see seasonal differences in
volumes of the network traffic. However, the total number

Fig. 6. Time diagram of an experiment with detection of a short tunnel
established over DNS. The traffic transferred through the tunnel was generated
by iperf(1).

of flows moves in an interval 33–119 kflows/s as it is shown
in Tab. I. During the experiments, we observed traffic of
approximately 78 kflows/s, one tunnel transferred about 3 MB
of data and generated about 0.1 % of all packets.

TABLE I. TRAFFIC ON THE PERIMETER OF CESNET2

[kflows/s] all TCP UDP DNS
Maximal 119 77 39 17
Minimal 33 16 17 9

Fig. 7a and Fig. 7b show average distribution of the traffic
on the network. There is approximately 37 % of UDP flows
and over a half of that flows has source or destination port 53.
About 0.01 % of about 95 millions of analyzed flow records of
the DNS protocol was analyzed in advanced mode. 3 % of the
suspicious addresses was reported by alerts, 7 % of alerts was
classified and manually verified as tunnels over DNS (the rest
alerts were recognized as DOS attacks and other anomalies).

(a) The ratio of the UDP
and other traffic.

(b) The ratio of the DNS
and other UDP traffic.

VII. CONCLUSION

This paper presented the known misusage of the DNS
protocol that allows users to establish a communication tunnel.
We have shown the monitoring infrastructure for experiments
with near real-time detection of such surreptitious traffic.

We have presented a comprehensive detection module that
detects communication tunnels over the DNS protocol and
other anomalies such as Denial of Service. The module is
a combination of well-known traffic and payload analysis
methods adapted for huge volume of DNS data processing.
The module was designed to be deployed as a stream-wise
near real-time detector based on the principle of the Nemea
system [14], [15].

Performance of the module was tuned for huge volumes of
network traffic. The used suitable data structures for storage

of domain names allowed for saving memory space. Due
to continuous computation and the extensions of the data
structures, the module processes a DNS traffic of 511 kflows/s.

The functionality of the module was tested on annotated
and partially annotated data sets containing benign traffic as
well as a tunneled communication over DNS. The evaluation
of the module showed promising results of the detection. The
module was deployed into the running instance of the Nemea
system in the existing infrastructure of the CESNET2 network.

ACKNOWLEDGMENT

The authors would like to thank co-workers from CESNET
for helpful advices. This work was partially supported by
the “CESNET Large Infrastructure” (LM2010005) and CTU
grant No. SGS14/107/OHK3/1T/18 funded by the Ministry of
Education, Youth and Sports of the Czech Republic.

REFERENCES

[1] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034
(Standard), Internet Engineering Task Force, Nov. 1987. [Online].
Available: http://www.ietf.org/rfc/rfc1034.txt

[2] ——, “Domain names - implementation and specification,” RFC 1035
(Standard), Internet Engineering Task Force, Nov. 1987. [Online].
Available: http://www.ietf.org/rfc/rfc1035.txt

[3] M. Dusi, , and et. al., “Tunnel hunter: Detecting application-layer
tunnels with statistical fingerprinting,” Computer Networks, vol. 53,
no. 1, pp. 81–97, 2009.

[4] V. Paxson and et. al., “Practical comprehensive bounds on surreptitious
communication over dns,” in Presented as part of the 22nd USENIX
Security Symposium. USENIX, 2013, pp. 17–32.

[5] O. Dembour, “Dns2tcp.” [Online]. Available:
http://www.hsc.fr/ressources/outils/dns2tcp/

[6] Ekman, E. and et. al., “Iodine, tunnel IPv4 over DNS,” 2011. [Online].
Available: http://code.kryo.se/iodine/

[7] D. Kaminsky, “Ozymandns.”
[8] “TCP-over-DNS.” [Online]. Available: http://analogbit.com/software/
[9] Wi-Free Ltd., “WI-Free.” [Online]. Available: http://wi-free.com/

[10] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[11] M. Roesch and et. al., “Snort: Lightweight intrusion detection for
networks.” in LISA, vol. 99, 1999, pp. 229–238.

[12] Farnham, G., “Detecting DNS Tunneling,” 2013. [Online]. Available:
http://www.sans.org/reading room/whitepapers
/dns/detecting-dns-tunneling 34152

[13] L. Bilge and et. al., “Exposure: Finding malicious domains using passive
dns analysis.” in NDSS, 2011.

[14] V. Barto and et. al., “Nemea: Framework for stream-wise analysis of
network traffic,” CESNET, a.l.e., Tech. Rep., 2013. [Online]. Available:
http://www.cesnet.cz/wp-content/uploads/2014/02/trapnemea.pdf

[15] CESNET, a.l.e., “Nemea.” [Online]. Available:
https://www.liberouter.org/nemea/

[16] D. Comer, “Ubiquitous b-tree,” ACM Comput. Surv., vol. 11,
no. 2, pp. 121–137, Jun. 1979. [Online]. Available:
http://doi.acm.org/10.1145/356770.356776

[17] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,
pp. 490–499, 1960.

[18] INVEA-TECH a.s. [Online]. Available: http://www.invea-
tech.com/products-and-services/flowmon/flowmon-probes

A.4. Hunting SIP Authentication Attacks Efficiently

A.4 Hunting SIP Authentication Attacks Efficiently
Bc. Tomáš Jánský (33%), Ing. Tomáš Čejka (33%), Ing. Václav Bartoš (33%)
In Security of Networks and Services in an All-Connected World: Proceedings of the 11th
IFIP WG 6.6 International Conference on Autonomous Infrastructure, Management, and
Security, AIMS 2017
Zurich, Switzerland, 2017
Publisher: Springer International Publishing
ISBN: 978-3-319-60774-0, pp. 125–130
DOI: 10.1007/978-3-319-60774-0_9

This section includes the published paper ([P.2]) related to the detection of SIP attacks.
This paper focuses on detection of password guessing (e.g., dictionary attack) and scanning
user accounts on a SIP server.

Scanning and password guessing are frequent and well-known attacks that can target
even SIP infrastructure. The success of attackers in the case of password guessing can lead
to financial loss. Additionally, the attacker gains access to the SIP account and, generally,
it is possible to establish any call that could be established by the legitimate user.

The stream-wise and application-aware detection module, which is presented in the fol-
lowing paper, deals with a trade-off of resource consumption and precision of the detection
algorithm. Since this single detection module can detect more attack types, the gathered
data are reused. As a result, the module is more efficient and requires lesser resources.

The paper was written in cooperation with Tomáš Jánský and Václav Bartoš. The idea
about analysis of the extended flow records with information from SIP headers to detect
the mentioned suspicious SIP traffic was the contribution of the author of this dissertation
thesis, and it was successfully developed as a bachelor thesis [P.37] (supervised by the
author of this dissertation thesis). Václav Bartoš participated on the writing of the paper
as a consultant and a proofreader, and he significantly improved the text of the paper.

The algorithm and its possibility of parallel processing were described in Section 3.5.3.

77

Hunting SIP Authentication Attacks Efficiently

Tomas Jansky1, Tomas Cejka2, Vaclav Bartos2

1 CTU in Prague, FIT, Thakurova 9, 160 00 Prague 6, Czech Republic
janskto1@fit.cvut.cz

2 CESNET, a.l.e., Zikova 4, 160 00 Prague 6, Czech Republic
cejkat@cesnet.cz, bartos@cesnet.cz

Abstract. Extended flow records with application layer (L7) informa-
tion allow for detection of various types of malicious traffic. Voice over IP
(VoIP) is an example of technology that works on L7 and many attacks
against it cannot be reliably detected using just basic flow information.
Session Initiation Protocol (SIP), which is commonly used for VoIP sig-
nalling, is a frequent target of many types of attacks. This paper proposes
and evaluates a novel algorithm for near real time detection of username
scanning and password guessing attacks on SIP servers. The detection is
based on analysis of L7 extended flow records.

1 Introduction

Voice over IP (VoIP) is a technology that replaces classic telephone services and
is used to transfer multimedial data such as voice or video over common packet
switched networks. One of the core protocols used in VoIP services is Session
Initiation Protocol (SIP), which is used for signalling between communicating
parties.

There are many types of attacks against SIP infrastructure. The most dan-
gerous attacks often compromise Private Branch Exchange (PBX) devices and
cause a significant financial loss to the owner of PBX. According to [3], a total
worldwide loss due to VoIP hacking and calling to premium rate services goes
to billions of dollars per year.

Even though there are standards that describe security considerations and
extensions of the SIP protocol, it is still often observed unencrypted in real
network traffic. This allows for security analysis of SIP traffic at a network
level using a network passive monitoring. The analysis may detect malicious SIP
traffic so that a network operator can inform owners of the target device about
a potential threat or take appropriate actions to mitigate malicious traffic.

Network traffic monitoring in large networks is usually done using so called
flow records, i.e. aggregated information about communicating hosts that is com-
puted from observed packets. A typical flow record consists of information from
packet headers up to the transport protocol. This approach is feasible and it
allows for detection of various types of malicious traffic. However, as it was
presented in [2], many types of attack at application protocol (L7) cannot be
reliably detected using just the basic flow records. This paper shows usage of

application layer flow records [6], in this case flows extended by L7 information
about SIP traffic, for detection of brute-force password guessing and scanning
for user accounts (called extensions in SIP terminology) on PBX. This work is
a continuation of [2] and an improvement of detection abilities of the previous
detection mechanism.

2 SIP attacks

This work focuses on two types of network attacks by an unauthenticated ex-
ternal attacker against a SIP server – extension scanning (i.e. finding valid user-
names) and password guessing.

Both are based on sending large amount of requests (usually REGISTER) to
the server. When a client sends the request requiring authentication, server chal-
lenges it with a response code 401 Unauthorized. Normally, the client sends
valid credentials and server responds with 200 OK. If the username is not valid,
server responds with 404 Not Found or 401 Unauthorized, depending on con-
figuration1. In case of correct username but wrong password, 401 Unauthorized

is returned.
Therefore, both types of attacks are characterized by a high number of

REGISTER requests and 401 Unauthorized (or 404 Not Found) responses, using
either different extensions (extension scanning) or a single extension but differ-
ent passwords (passwod guessing). Combination of both is also possible. More
details about these SIP attacks can be found in [4].

3 Detection algorithm

In line with the L7 flow monitoring approach, our monitoring probes use a plugin
which is able to extract necessary SIP information from traffic (response code,
To and CSeq). As it is shown in Fig. 1, flow records are sent from probes to a col-
lector in the IPFIX format and afterwards analyzed by the detection algorithm
which is implemented as a part of the NEMEA [1] system.

The detection method is designed to work without any prior knowledge of
VoIP infrastructure or existing extensions. It is based on an analysis of 401

responses from SIP servers. By aggregating these responses by a PBX IP address,
an extension (username) and a client IP address, the detection algorithm can
detect non-standard and potentially malicious traffic.

The algorithm shifts between two stages. In the first stage, it receives data
and stores it into data structures. For each SIP server (i.e. IP address sending SIP
responses), the following data is stored – a list of client IPs, a list of usernames,
and a mapping between them that tells which clients tried which usernames and
a number of such attempts.

1 The former is considered insecure since it eases the extension scanning as it imme-
diately discloses existence of the extension on the server.

SIP Brute-Force
Detector

NEMEA system

Report

Network
administrator

CollectorMonitoring
probe

Client

SIP server

Fig. 1: Monitoring infrastructure.

After a certain time period, the algorithm gets to the second stage where
it evaluates the stored data. First a type of (potential) attack is determined.
If a single client attempts to register one certain extension, it is classified as a
brute-force attack. This attack can be reclassified as a distributed brute-force
attack if more clients attempt to register the particular extension on the same
server. When a client tries to register more than one extension, the behavior is
classified as a scan. When the number of attempts exceeds a threshold, the attack
is reported. If 200 OK response code is detected as part of the communication,
the attack is considered successful. If no communication between the server and
the client is observed for a certain amount of time, the corresponding structures
are released from memory.

The algorithm was implemented as a module for open-source NEMEA system
and published at GitHub2.

4 Evaluation

Since the algorithm is threshold based, it was necessary to estimate some key
values based on the behavior on a real network. We temporarily captured SIP
traffic from CESNET2 network3.

After the analysis of the captured data, we discovered that more than 99.9%
of all successful register attempts use 20 messages or less. We therefore set 20
attempts as a threshold for deciding whether the communication is malicious or
not.

We also examined the frequency of malicious requests in individual attacks
and discovered that only 0.01% have more than 30 minutes delay between
individual requests. Therefore an information about a communication is released
from the program memory if no new message is observed for 30 minutes. It also

2 https://github.com/CESNET/Nemea-Detectors/
3 CESNET2 network is monitored at all its 7 peering links at the 10 and 100 Gbps

wire speeds. Average total amount of traffic: 110,000 flows/s, average SIP traffic:
1,500 flows/s.

means that an elapsed attack is reported after this delay since the last observed
message.

Finally, we counted unique extensions attempted by every client in 30 minute
windows. Most observed clients attempted to register as less than 10 unique
extensions on a certain server. This value is surprisingly high, but it is possible
that the client is actually a proxy server or there are multiple SIP clients hidden
behind NAT. We used 10 distinct extensions as a threshold for extension scanning
detection.

First, the detection module was tested on a real network with generated
malicious traffic using auditing tool SIPVicious [5]. All generated attacks were
successfully distinguished from other SIP communication and reported.

Then, the module was run for one week to capute real attacks in the CES-
NET2 network. Total number of 7,008 events were reported. Table 1 shows some
statistics about reported events. One of the most interesting findings is that
46.3% of all 200 and 401 SIP responses to REGISTER requests are a malicious
traffic and are directly related with one of reported alerts.

Tab. 1: Statistics after one week of flow detection
Brute-force events 6,488 (92.6 %)

Extension scanning events 520 (7.4 %)

Successful brute-force events 7

Strongest brute-force 6,930,911 attempts

Largest scan 9,360 extensions

SIP flows observed 718,627,758

SIP flows analyzed (401 & 200 responses) 40,909,352 (5.7 %)

Number of malicious flows 18,945,291 (46.3 %)

Detection results were stored to a log file during the the week. Thorough
examination showed that most attackers perform either brute-force attacks or
extension scanning. However, some of the attackers combine these two attacks
to one, usually trying a small number of password guesses (between 20 to 100)
to a large number of extensions. This behavior indicates that these attackers use
some sort of a set of common and frequently used passwords.

To confirm that the detection module is working correctly, we manually ana-
lyzed traffic of some of the reported attacks. Most of them are certainly scanning
or brute-force attempts. In just a few cases were the traffic did not look like any
of the attacks and can be viewed as false positive (we estimate total FP rate to
0.1%), however, it was still an unusual traffic, probably caused by misconfigura-
tion of some devices, which is worth inspecting. To prove practical usefulness of
the detection, we chose one of the attacks marked as successful and contacted
the administrator of the attacked PBX. He confirmed that, indeed, the account
was compromised and informed us that appropriate steps to fortify the PBX will
be taken.

5 Conclusion

We designed a method for detection of SIP attacks, namely username scanning
and password guessing, based on an analysis of SIP headers in extended flow
records. The algorithm works without any prior knowledge of VoIP infrastruc-
ture. Its key parameters and thresholds can be adjusted by network admin-
istrators in accordance to the characteristics of their network to reach optimal
detection results. It is efficient and it is able to process data from an NREN-sized
network (several 10 and 100 Gbps links) in real time.

Using the algorithm, we were able to detect thousands of scanning and pass-
word guessing against SIP infrastrucutre. The software is also capable of de-
tecting distributed guessing of user’s password, however, this type of attack was
not observed in our network yet. Some of the attacks, which were identified as
successful, were reported to network administrators who subsequently confirmed
the attacks. Analysis of detection results showed only a small amount of false
positive reports with frequency around 0.1 % of all reported events. Most of the
false positives are caused by a few clients that communicate in an unusual way
and can be easily filtered using a whitelist.

6 Acknowledgments

This work was supported by Packet analysis based network diagnostics (DIS-
TANCE) project No. TH02010186 granted by Technology Agency of the Czech
Republic, project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the
MEYS of the Czech Republic and ERDF and the CTU grant No. SGS17/212/
OHK3/3T/18 funded by the MEYS of the Czech Republic.

References

1. Cejka, T., Bartos, V., Svepes, M., Rosa, Z., Kubatova, H.: NEMEA: a framework for
network traffic analysis. In: 12th International Conference on Network and Service
Management (CNSM 2016). Montreal, Canada (Oct 2016)

2. Cejka, T., Bartos, V., Truxa, L., Kubatova, H.: Using application-aware flow moni-
toring for sip fraud detection. In: Intelligent Mechanisms for Network Configuration
and Security (AIMS 2015). pp. 87–99. Springer (Jun 2015)

3. Communication Fraud Control Association: Global fraud loss survey (2015),
http://www.cfca.org/pdf/survey/2015_CFCA_Global_Fraud_Loss_Survey_

Press_Release.pdf

4. Dwivedi, H.: Hacking VoIP: protocols, attacks, and countermeasures. No Starch
Press (2009)

5. Gauci, S.: SIPVicious. Tools for auditing sip based voip systems (2012),
https://code.google.com/p/sipvicious/

6. Velan, P., Celeda, P.: Next generation application-aware flow monitoring. In: Mon-
itoring and Securing Virtualized Networks and Services, LNCS, vol. 8508, pp. 173–
178. Springer (2014)

A.5. Using Application-Aware Flow Monitoring for SIP Fraud Detection

A.5 Using Application-Aware Flow Monitoring for SIP Fraud
Detection

Ing. Tomáš Čejka (25%), Ing. Václav Bartoš (25%), Ing. Lukáš Truxa (25%),
doc. Ing. Hana Kubátová, CSc. (25%)
In Intelligent Mechanisms for Network Configuration and Security: 9th IFIP WG 6.6 In-
ternational Conference on Autonomous Infrastructure, Management, and Security, AIMS
2015.
Publisher: Springer International Publishing
Ghent, Belgium, 2015
ISBN: 978-3-319-20034-7, pp. 87–99
DOI: 10.1007/978-3-319-20034-7_10

As the modern technologies evolve, they replace the traditional ones because of flexibil-
ity and efficiency. Telephone services are one of such examples. Nowadays, it is possible to
establish a phone call (even with various multimedia functions) over the Internet. There
are various standards and specification of protocols and mechanisms that can be used. In
our work, we focused on the Session Initiation Protocol (SIP), which is a signaling protocol.

The following paper ([P.7]) presents a stream-wise and application-aware detection
algorithm that analyzes extended flow records with information about SIP headers. The
aim is to automatically detect suspicious traffic that was observed in a real network. The
anomalous and suspicious traffic can be characterized as multiple attempts to establish a
phone call using many different combinations of prefixes of the callee phone number.

According to the experts on the telephone technologies, the aim of attackers, in this
case, is probably to establish an unauthorized phone call via a SIP server owned by the
victim. In case the attack is successful, this fraud can cause a significant financial loss.
Unfortunately, the attackers try to exploit a bad configuration that can be set in a victim’s
SIP server.

The idea about analysis of the extended flow records with SIP headers to detect sus-
picious SIP traffic was the contribution of the author of this dissertation thesis, and it
was successfully developed by Lukáš Truxa as a diploma thesis [P.38] (supervised by the
author of this dissertation thesis). It was the intention of the author of this dissertation
thesis to extend the results of the diploma thesis and to transform it into the conference
paper. Václav Bartoš participated on the writing of the paper [P.2], he generalized the idea
of the processing application information (i.e. application-awareness), and he significantly
improved the text quality of the paper.

The algorithm and its possibility of parallel processing were described in Section 3.5.3.

83

Using Application-Aware Flow Monitoring
for SIP Fraud Detection

Tomas Cejka1, Vaclav Bartos2, Lukas Truxa1, Hana Kubatova3

1 CESNET, a.l.e.
Zikova 4, 160 00 Prague 6, Czech Republic

cejkat@cesnet.cz
2 Faculty of Information Technology, Brno University of Technology

Bozetechova 2, Brno, Czech Republic
ibartosv@fit.vutbr.cz
3 CTU in Prague, FIT

Thakurova 9, 160 00 Prague 6, Czech Republic
kubatova@fit.cvut.cz

Abstract. Flow monitoring helps to discover many network security
threats targeted to various applications or network protocols. In this pa-
per, we show usage of the flow data for analysis of a Voice over IP (VoIP)
traffic and a threat detection. A traditionally used flow record is insuffi-
cient for this purpose and therefore it was extended by application-layer
information. In particular, we focus on the Session Initiation Protocol
(SIP) and the type of a toll-fraud in which an attacker tries to exploit
poor configuration of a private branch exchange (PBX). The attacker’s
motivation is to make unauthorized calls to PSTN numbers that are
usually charged at high rates and owned by the attacker. As a result,
a successful attack can cause a significant financial loss to the owner of
PBX. We propose a method for stream-wise and near real-time analy-
sis of the SIP traffic and detection of the described threat. The method
was implemented as a module of the Nemea system and deployed on
a backbone network. It was evaluated using simulated as well as real
attacks.

1 Introduction

Computer networks are a multifunctional communication channel used by vari-
ous different applications. The example of such an application that is studied in
this paper is the telephone service – the Voice over IP (VoIP) technology. This,
as well as many other applications, is often considered to be critically important
for users. It is therefore important to have effective ways for quick detection
of any problems, including security threats. This often means a necessity for
monitoring and analysis of the traffic. A common approach allowing situational
awareness even in high speed networks is the usage of flow monitoring.

Traditional flow monitoring provides data extracted from packet headers up
to the transport layer. Therefore, it provides information about IP addresses,

TCP/UDP ports, TCP flags or ICMP message types in form of flow records.
The flow records also contain statistics such as number of packets, number of
transferred bytes and information about observation time. However, there is no
detailed information about application layer protocols in the flow records.

The traditional flow record is sufficient for many purposes, including detec-
tion of several types of malicious traffic. For example, port scanning and SYN
flood attacks are easy to detect using only these basic flow data, since these
attacks have clearly distinguishable characteristics on network and transport
layers. Even some attacks on application layer, such as dictionary attacks on
SSH, can be detected using basic flow data with proper algorithms [7]. How-
ever, this is not always possible or it may be very difficult and unreliable. For
some kinds of malicious traffic, knowledge of additional information from the
application layer is necessary for reliable detection.

Fortunately, application awareness has been implemented into some flow ex-
porters in the last years, usually in the form of plugins [9]. Such exporters inspect
packet payload, extract information from headers of application layer protocols
and add this information into flow records. The extended flow records can con-
tain e.g. URLs, response codes from HTTP, or domain names from DNS requests
along with common features of the flow record. The flow records are then trans-
ferred to a collector using the IPFIX protocol [3].

The extension of flow records by application layer information was added
mainly to allow more detailed statistics about traffic or to support application
performance monitoring. However, it can be used for detection of security threats
as well. In this paper, we show an example of such a usage.

We focus on monitoring of the VoIP traffic, in particular the Session Ini-
tiation Protocol (SIP). Our goal is to detect one of the most common VoIP
frauds – the one in which an attacker tries to misuse a poorly secured gateway
to the public switched telephone network (PSTN) to make unauthorized calls.
Such calls are often made to premium-rate numbers (operated by the attackers)
causing significant financial losses to operators of the misused gateway.

According to [4], worldwide losses due to VoIP hacking and calling to pre-
mium rate services go to billions of dollars per year. It is one of the most costly
fraud types in the telecommunication industry. Therefore, even though success-
ful attacks are not very usual, it is highly important to detect them as soon as
possible, before a significant damage is caused.

The rest of this paper is organized as follows. The next section describes the
related work. Sec. 3 describes details about the attack on which we focus. Sec. 4
describes the detection method and our implementation of it, followed by Sec. 5
where it is evaluated. Sec. 6 concludes the work.

2 Related Work

Attacks and security threats are an ordinary part of network traffic. There are
several different types of attacks that are targeted to VoIP infrastructure. Some
possible attacks and vulnerability exploits are shown in [5] by El-Moussa et

al. The paper describes denial of service attacks, which are very common in
computer networks, or SPAM over internet telephony. Furthermore, the authors
mention brute-force attacks against authentication mechanism, which are some-
what similar to the prefix-guessing attacks described in this paper. They however
do not present any countermeasures or a way of detection of such attacks.

Another work enumerating possible attacks against VoIP technology is a
survey by A. Keromytis [12]. Although it summarizes hundreds of papers from
the area, there is no mention about the kind of attack we deal with, nor any
work using flow measurement to detect security threats in VoIP traffic.

To our best knowledge, the only paper providing a way of detection of toll
fraud attempts is [8] by Hoffstadt et al. It is focused on monitoring of VoIP
threats using honeypots. The authors describe principle of toll fraud based on
hijacking of a SIP account. An attacker that gains a user’s identity is able to
establish a phone call that can be charged. Discovery of a fraud is based on
an off-line analysis of honeypot logs. Even though the authors stated that they
observed manual attempts of toll fraud, we are observing automatic brute-force
guesses of dialing prefixes. Also, our flow-based approach allows to monitor traffic
going to real gateways, not only honeypots, therefore we are able to detect real
attacks and possibly raise alerts on the successful ones.

Besides common hardware and software VoIP phones, there are several tools
that allow users to communicate over SIP in unusual ways. For example, they
allow to craft a request with any values of headers or to perform brute-force
attacks automatically. Examples of the tools are [6, 11, 13, 15].

A detailed description of the flow monitoring technology can be found in the
article [9] by Hofstede et al. It also contains an overview of available software.
The paper [14] by Velan and Celeda introduces the concept of application-aware
flow monitoring.

3 Principle of the Phone Call Fraud

The following subsection provides a brief introduction to VoIP telephony and
SIP. We focus only on aspects needed to understand the type of fraud discussed
in this paper and the proposed detection method; we knowingly leave out many
otherwise important details for brevity.

3.1 Short Introduction to SIP

Voice over IP is a technology for transferring voice and multimedial data over
computer networks. Session Initiation Protocol (SIP) is the well-known protocol
used for initiation, control and termination of VoIP sessions (or calls). The mul-
timedial data are transferred in a separate channel using Real-time Transport
Protocol (RTP).

SIP is a protocol based on a request-response transaction model. Every device
can act both as a client or as a server. The client creates and sends requests, the

server receives and processes them, and generates one or more replies. The high-
level architecture consists mostly of end devices (hardware or software phones)
and SIP proxy servers. The proxies receive requests for calls, localize called par-
ties and route the requests to them (possibly via other proxies). They also route
replies on their way back to the callers. The proxies also provide authentication
services and several other tasks, which are out of scope of this short introduction.

There are several types of requests in SIP. The one which is crucial for this
work is INVITE. It is used to initiate a new call. As any request in SIP, it
carries several headers describing parameters of the request. The most important
headers of INVITE request are:

– Request-URI: Used for addressing the called party. It is usually in the
form sip:user@host, although more complex forms are possible. The user
part usually consists of user name or phone number and the host part is the
destination server where the request should be sent to (domain name or IP
address).

– To: Called party identification.
– From: Identification of the caller.
– Call-ID: Unique identifier of a call, usually a long random string.

When INVITE is sent by a client to a proxy server, the request is propagated
to the destination, possibly via other proxy servers. Responses such as TRYING

and RINGING are returned and when the called party eventually indicates that
it is ready to establish the call, the OK response is sent to the caller and the
multimedia transfer begins. When the connection can not be established for
some reason, a reply with corresponding error code is returned.

If a SIP proxy server is deployed in some private organization to serve as a
central hub for internal phone communication and as a proxy for communication
with outer world, it is usually called a Private Branch Exchange (PBX). These
PBXs usually operate with both VoIP as well as classic telephone networks
(PSTN), acting as gateways between those two technologies. The following text
focuses on misuse of such gateways.

3.2 Principle of the Fraud

Depending on configuration a PBX may allow users to make VoIP calls to PSTN
numbers by setting the destination user ID in an INVITE request to the called
number prepended by a special prefix. For example, to call a PSTN number
555-555-0123 a SIP call to 995555550123@example.com needs to be performed,
assuming that the gateway is located at example.com and it has ”99” configured
as the prefix for PSTN calls.

The attack is based on finding poorly secured PBXs and using them to make
fraudulent calls to PSTN. Motivations to make such calls may differ, but the
common one is to gain money by calling to paid services. This is outlined in
Fig. 1. The attacker first loans a premium-rate phone number4, usually in a

4 I. e. a number which is charged at a high rate in favour of the line operator.

Attacker

Gateway to PSTN

Paid
service

PSTN
operator

Organization

Company

Computer
infected with

malware

$

Fig. 1: Principle of the SIP fraud.

foreign country and via some intermediary company. Any calls to that number
generate revenue for the attacker. Computers controlled by the attacker are
then instructed to find open PBXs and make fake calls via them. When a call is
successful, the PSTN operator charges the organization operating the PBX. The
money goes to the company operating the premium line and to the attacker.

In order to make calls to PSTN via a PBX, the attacker needs to know the
prefix which must be prepended in front of the number. Since this prefix depends
on a particular PBX and its configuration, attackers usually do not know it. They
must therefore guess it by trying various possibilities until the correct prefix is
found and the call is successful or until all possibilities from a dictionary are
used and the attacker moves on to another victim.

Such guessing can be recognized as a large number of INVITE requests from
the same source, all trying to call the same number but with different prefixes.
A typical sequence of URIs in the INVITE requests is shown in Fig. 2.

Such a sequence typically contains tens of INVITE requests with different
prefixes. All the prefixes may be tried within a few minutes, but attackers often
try to evade detection by putting long intervals between individual trials, so it
may take up to several days. Such slow attacks are harder to notice in logs and
generally harder to detect by any means.

In some cases, PBXs are configured insecurely and allow to make such calls
without a proper authentication. More secured PBXs require an authentication
header in the INVITE request. In such a case, attackers can perform a dictionary
attack first, in order to find login credentials of some user. If some login and
password is successfully found, the attacker may impersonate the user and the
prefix guessing can be run in the same way as described. This paper focuses solely
on the prefix guessing part of attacks. The detection method described in the
next section makes no difference between authenticated and non-authenticated
users.

00972592577956@A.B.C.D
000972592577956@A.B.C.D
900972592577956@A.B.C.D

+972592577956@A.B.C.D
972592577956@A.B.C.D

100972592577956@A.B.C.D
800972592577956@A.B.C.D
600972592577956@A.B.C.D
700972592577956@A.B.C.D
400972592577956@A.B.C.D
300972592577956@A.B.C.D
200972592577956@A.B.C.D
500972592577956@A.B.C.D

99900972592577956@A.B.C.D
999900972592577956@A.B.C.D

9999900972592577956@A.B.C.D

99999900972592577956@A.B.C.D
999999900972592577956@A.B.C.D

9999999900972592577956@A.B.C.D
99999999900972592577956@A.B.C.D

999999999900972592577956@A.B.C.D
9000972592577956@A.B.C.D

0972592577956@A.B.C.D
0000972592577956@A.B.C.D

0000000972592577956@A.B.C.D
00000000972592577956@A.B.C.D

000000000972592577956@A.B.C.D
0000000000972592577956@A.B.C.D

91000972592577956@A.B.C.D
9900972592577956@A.B.C.D
9100972592577956@A.B.C.D

. . .

Fig. 2: An example of URIs called during a typical prefix guessing attack (IP
address anonymized).

4 Detection Method

The detection method is designed to work without any prior knowledge of VoIP
infrastructure and dialing plans on the network. The assumed deployment is on
an ISP level or in a network of a large organization, where an operator of the
detection system has no direct control over VoIP equipment but still wants to
know about any issues related to it.

The detection is based on an analysis of SIP INVITE requests trying to
make calls to PSTN numbers. The goal is to find IP addresses that generate
large number of such requests varying only in a prefix of the called number. The
detection method works even if prefixes are tried in a very low rate (e.g. one
attempt per day). Also, it was needed to design the method to be efficient since
we are targeting large networks with high volumes of traffic.

The input data comes from flow monitoring probes. Basic flow records are
not sufficient for the detection of the SIP fraud, it is needed to extract addi-
tional information from SIP headers. In particular, we extended the flow records
by request/response code, Request-URI and To, From, Call-ID and User-Agent
headers from SIP messages. We achieved this by using a plugin for FlowMon
probes [10]. It is the probe able to monitor high speed networks and parse infor-
mation from application layer protocols. The whole monitoring infrastructure is
shown in Fig. 3. Data from the monitoring probes are passed to a collector in
the IPFIX format [3] and then into the Nemea system [1, 2] – a modular frame-
work for network traffic analysis and anomaly detection. The detection method
described in the following paragraphs was implemented as a software module for
the Nemea system. It receives and analyses extended flow records of SIP traffic
and reports detected attacks.

Collector
Nemea system

Report

Supervisor

Monitoring
probe

PBX and VoIP
gateway to

PSTN

VoIP fraud
detector

User

Fig. 3: Infrastructure of the monitoring system with the detection module.

The detection algorithm works as follows. For each incoming flow record
carrying information about an INVITE request a called party identification is
taken from Request-URI (or To header, depending on configuration; however,
both are usually the same). If its user part, i.e. the part before the @, contains
only digits or some of the allowed special symbols (+, *, #, -, :) it is further
processed. Otherwise, the message is ignored since it is not a call to a phone
number.

Responses to the INVITE messages are also processed and are used for de-
termination whether the call was successfully established. In particular, when
an OK response is observed after a previous INVITE request and their Call-ID
headers match, the call is considered to be successful.

A set of URIs observed in INVITE requests is stored for each source IP
address. In order to allow efficient storage and analysis of such sets, the URIs
are stored into a specially designed data structure based on the suffix tree.
Figure 4 shows an example of a set of URIs stored in such a tree. In the suffix
tree, the common suffix of two or more URIs is represented by a parent node
while the children nodes (or subtrees) represent their different prefixes. There is
a rule that none of nodes can have a common part with its sibling. Therefore,
in case a newly inserted URI contains an unknown prefix which has a common
part with some existing prefix, it can cause a split of an existing node.

Each node represents an URI given by its value concatenated with values of
all its ascendants. Each node also contains a number of call attempts to that
URI, number of successfully established calls and other information, mostly for
optimization of the detection algorithm.

Such a tree is constructed for each source IP address and is continuously
updated as new INVITE requests from that address are observed. The trees are
periodically analyzed in order to detect prefix guessing attacks. As shown in
Sec. 3.2, during such attack a large number of URIs is observed with the same
phone number and destination host but many different prefixes. That results in

@dom

ain.tld

972595
243897

00

1 9920

+

000 123 9

0 888 911 22 999*904

Fig. 4: Suffix tree for analysis of phone number prefixes.

a tree in which there is a single node which contains the phone number and have
a large number of descendants.

The algorithm for detection of such a node works with two parameters – max-
imal prefix length (lmax) and a threshold on number of tested unique prefixes
(T). At first, the tree is traversed from the bottom to the top (i.e. from leaves to
the root). For each leaf node, the algorithm goes up through its ascendants until
the total length of numbers stored in the visited nodes exceeds lmax. The final
node potentially represents the called number. Then, the number of its descen-
dants satisfying the following two conditions is counted: 1) the prefix represented
by a node must be shorter than lmax and 2) there must be an unsuccessful call
attempt made to the node’s URI. If the number of such descendants is the same
or higher than the threshold T , an attack is reported. Otherwise, the algorithm
continues traversing the tree from another leaf node.

After the attack is reported, all related nodes are removed from the tree, so
the same attack is not reported in the next run of the algorithm. Basic infor-
mation about the attack is however kept. Therefore, if the attack continues by
trying another prefixes and their number again exceeds the threshold, so it is
detected as an attack, it is recognized that it is only a continuation of the attack
reported earlier. The new detection is thus reported only as an update of the
previous one.

Besides the suffix tree, some other information is stored per IP address,
mostly for the purpose of reporting. This information includes the time of the
last seen SIP message, the time of the last detected attack or the value of the
User-Agent header.

The detector is designed for continuous processing of potentially infinite
stream of data from the network. Some of the incoming data are stored in mem-
ory, but because the capacity of available memory is always limited, old data
must be periodically removed. Most of the data removals are based on a simple
timeout. If no SIP communication from an IP address has been detected for a

given time period, all information about that address is removed. The default
timeout in our implementation is 14 days. Also, if a suffix tree of some address
grows into a huge size (we use a threshold of 100,000 nodes), the whole tree is
removed. Because such a big tree is often the result of a large attack, the detec-
tion algorithm is applied to the tree before removal. Finally, nodes representing
prefixes in an attack are removed after the attack is reported, as was described
earlier.

5 Evaluation

In order to evaluate the detection method, we prepared a SIP server simulat-
ing a PBX with a gateway to PSTN. The server was configured to not require
authentication and to allow calls to PSTN using a three-digit prefix. A modi-
fied SIPVicious tool [6] (svwar.py script) was used to generate attacks to the
server from several sources. The simulated attackers tried to call to a number
with randomly changing prefixes until they guessed the correct one. The traffic
between the attacking machines and the server was monitored by the detector.
Both parameters of the detection algorithm, that is the maximal length of a
prefix (lmax) and the minimal number of call attempts that is considered as a
guessing (T), were set to 10.

At first, the tests were performed in a virtual environment with no other
traffic than the generated attacks. As expected, all attacks were successfully
detected and reported, except a few cases in which the correct prefix was guessed
in less than 10 tries (such attacks could be detected as well by decreasing the
threshold T , but too low threshold might cause false alerts when deployed on
real network).

We continued by tests in the real environment – in the CESNET2 network.
CESNET2 is the academic network of the Czech Republic, connecting Czech
universities and many other organizations to the Internet (around 1 million IP
addresses in total). Its perimeter – 10 peering links, all with wire speed of 10 Gbps
– is monitored using FlowMon probes. The total traffic on these links ranges from
5 Gb/s at night to 25 Gb/s during the day (50k to 150k flow records per second).
The average amount of SIP traffic is around 50 flows per second, with occasional
peaks up to several hundreds.

The probes were running the plugin for extending flow records with values
of SIP headers. The detector was deployed into an operational instance of the
Nemea system which receives and analyzes flow records from all the probes. The
SIP server and the machine simulating attacks were placed so that the traffic
between them is observed by one of the monitoring probes. Configuration of the
server, attacks and the detector was the same as before.

Despite the generated attacks were hidden in a lot of real traffic now, all the
attacks consisting of at least 10 attempts were successfully detected again, no
matter how slow or fast they were. A lot of real attacks were detected, too.

In a measurement period of two weeks, the detector received and analyzed
10.5 million flow records corresponding to SIP INVITE messages. There were

Tab. 1: Top-20 prefixes observed in the backbone network traffic.
Prefix Count Succ. calls Prefix Count Succ. calls

00 3800 22 9 1946 2

000 3412 9 810 1706 6

900 3273 12 9000 1608 8

+ 3072 13 9900 1599 4

(none) 2498 8 9011 1582 7

0000 2464 14 99900 1462 10

011 2286 3 9009 1330 2

800 2248 5 9810 1323 9

0011 2092 4 005 1303 2

009 1982 5 001 1297 8

15,992 prefix guessing attacks reported consisting of 201,438 INVITE messages.
That means that on average 12.6 prefixes are tried by a single attacker at a single
gateway. Around 1.9 % of all INVITE messages were marked as part of this kind
of attacks (although we expect that many of the others are malicious as well, since
authentication attacks generate a lot of INVITE messages, too). Approximately
1.1 % of attacks seemed to be successful5, i.e. a call was successfully established.

During its operation, the detection module consumed about 200 MB of mem-
ory and took only about 5 % of CPU on average (Intel(R) Xeon(R) CPU E5-2630
@ 2.30 GHz).

During our testing of the detection module, we gathered a lot of information
and statistics about the SIP attacks as well as the SIP traffic in general. The
interesting results are summarized in the rest of this section.

Table 1 shows a list of the 20 most often observed prefixes that were tested
by attackers. The data for the table was taken from a two week period. The
“Count” column represents the number of times the prefix was used and the
“Succ. calls” represents the number of successful calls that were observed with
the prefix.

Figure 5a shows the histogram of lengths of all prefixes that were used in
attacks reported within a two week period. Figure 5b shows the histogram of
the longest prefixes that were used in the reported attacks. That means it shows
the maximal length of prefixes used in individual attacks. It can be observed
that while most prefixes have 3 or 4 digits, attacks almost always contain some
longer prefixes as well.

Table 2 shows the most frequent values of the User-Agent header that were
observed on the backbone network. The data for the table was taken from a
one week interval. There were 384 distinct values of the header. As can be seen,
the most often used user agents (sipcli, friendly-scanner6) are scripts that allow
users/attackers to craft SIP messages with any values of headers. They can be

5 Not every successful attempt necessarily means a breach of a real gateway. Some of
the gateways may in fact be honeypots.

6 friendly-scanner is the default User-Agent value used by SIPVicious tool.

(a) (b)

Fig. 5: Histogram of the lengths of a) all prefixes tried in attacks, b) the longest
prefixes tried in attacks.

Tab. 2: The most frequent values of the User-Agent header.
User-Agent Count

sipcli/v1.8 643,312

friendly-scanner 424,178

Cisco-SIPGateway/IOS-12.x 6,304

FPBX-2.10.1(1.8.7.1 1,153

Asterisk PBX 11.11.0 570

None or empty 2,440

Other values 7,220

used to generate e.g. phone numbers of the callee in the case of prefix guessing.
Of course, the User-Agent header cannot be a reliable source of information since
a client can fill in any string. However, a legitimate client usually does not have
any reason to present itself by the name of another tool and malicious clients
apparently do not do that often.

6 Conclusion

This paper presented a possible usage of the emerging technology of application-
aware flow monitoring in the area of security threat detection. In particular, a
method for detection of VoIP-based toll fraud – a network attack that can lead
to a significant financial losses – has been proposed. The detection is enabled
by special flow monitoring probes which are able to extend flow records by
information from application-layer protocols.

Using exported headers of Session Initiation Protocol (SIP), the proposed
detection module is able to analyze SIP transactions and detect attempts to
guess a prefix configured on a PBX to allow calls to PSTN. It is also able to

detect whether any of the attempts was successful. A successful call after a
previous guessing indicates that the attacker found a way to make unauthorized
calls via the PBX. In such a case it is necessary to alert an operator of the PBX
immediately.

An implementation of the method was deployed and evaluated on a real
backbone network. Some interesting results of the SIP analysis in real network
traffic were presented in Sec. 5. The information from the extended flow records
allows us to observe statistics about User-Agent headers and called phone num-
bers, for example. The detection capabilities of the proposed method are very
good according to our experiments – all simulated attacks were successfully de-
tected, as well as many real attacks. In fact, any attack consisting of at least 10
INVITE requests in a time window of 14 days is detected in default configura-
tion. Of course, these thresholds can be tuned to fit requirements of the network
operators.

While these attacks may be detected by other methods as well, for example
by analysing logs of SIP servers, the flow monitoring approach allows to monitor
all SIP servers in the network from one place, without necessity of access to the
servers (which are usually operated by other people than those responsible for
security). Moreover, if the detector is deployed on backbone links, like in our
test scenario, it allows to observe attacks from many different sources to many
different destinations, which is impossible with other methods (log parsing or
honeypots). It provides us with more complete view on attacks and attackers.
For example, by deep analysis of attack characteristics and their sources, it may
be possible to detect groups of IP addresses attacking collectively, which can
lead to revealing botnets.

Acknowledgments This work was partially supported by the “CESNET Large
Infrastructure” (LM2010005), CTU grant No. SGS15/122/OHK3/1T/18 funded
by the Ministry of Education, Youth and Sports of the Czech Republic, and
BUT grant FIT-S-14-2297. This work was also supported by the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European
Regional Development Fund and the national budget of the Czech Republic
via the Research and Development for Innovations Operational Programme, as
well as Czech Ministry of Education, Youth and Sports via the project Large
Research, Development and Innovations Infrastructures (LM2011033).

References

1. Bartos, V., Zadnik, M., Cejka, T.: Nemea: Framework for stream-wise analysis of
network traffic. Tech. rep., CESNET (2013)

2. CESNET: Nemea, https://www.liberouter.org/nemea/
3. Claise, B., et al.: Specification of the IP Flow Information Export (IPFIX) Protocol

for the Exchange of Flow Information. RFC 7011 (Sep 2013)
4. Communications Fraud Control Association: 2013 CFCA Global Fraud Loss

Survey. Press release (October 2013), http://www.cfca.org/pdf/survey/

CFCA2013GlobalFraudLossSurvey-pressrelease.pdf

5. El-Moussa, F., Mudhar, P., Jones, A.: Overview of sip attacks and countermea-
sures. In: Information Security and Digital Forensics, pp. 82–91. Springer (2010)

6. Gauci, S.: SIPVicious. Tools for auditing sip based voip systems (2012),
https://code.google.com/p/sipvicious/

7. Hellemons, L., Hendriks, L., Hofstede, R., Sperotto, A., Sadre, R., Pras, A.:
SSHCure: A Flow-Based SSH Intrusion Detection System. In: Dependable Net-
works and Services, LNCS, vol. 7279, pp. 86–97. Springer (2012)

8. Hoffstadt, D., Marold, A., Rathgeb, E.: Analysis of SIP-Based Threats Using a
VoIP Honeynet System. In: Proccedings of the 11th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom). pp.
541–548 (June 2012)

9. Hofstede, R., Celeda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A., Pras,
A.: Flow monitoring explained: From packet capture to data analysis with netflow
and ipfix. IEEE Communications Surveys Tutorials 16(4), 2037–2064 (2014)

10. INVEA-TECH a.s.: FlowMon Probe – High-performance NetFlow Probe
up to 10 Gbps, http://www.invea-tech.com/products-and-services/flowmon/
flowmon-probes

11. KaplanSoft: SipCLI, http://www.kaplansoft.com/sipcli/
12. Keromytis, A.D.: A comprehensive survey of voice over ip security research. IEEE

Communications Surveys & Tutorials 14(2), 514–537 (2012)
13. Ohlmeier, N.: SIP Swiss Army Knife (Sipsak), http://sourceforge.net/

projects/sipsak.berlios/

14. Velan, P., Celeda, P.: Next generation application-aware flow monitoring. In: Mon-
itoring and Securing Virtualized Networks and Services, LNCS, vol. 8508, pp. 173–
178. Springer (2014)

15. VoP Security: SiVuS (SiP Vulnerability Scanner) – User Guide v1.07, http://www.
voip-security.net/pdfs/SiVuS-User-Doc1.7.pdf

A.6. Analysis of Vertical Scans Discovered by Naive Detection

A.6 Analysis of Vertical Scans Discovered by Naive De-
tection

Ing. Tomáš Čejka (50%), Ing. Marek Švepeš (50%)
In Management and Security in the Age of Hyperconnectivity: Proceedings of the 10th
IFIP WG 6.6 International Conference on Autonomous Infrastructure, Management, and
Security, AIMS 2016.
Publisher: Springer International Publishing
Munich, Germany, 2016
ISBN: 978-3-319-39814-3, pp. 165–169
DOI: 10.1007/978-3-319-39814-3_19

Vertical scanning, sometimes called port scanning, is usually classified as a harmless
activity and can be used by administrators, operators or by automatic monitoring tools.
Vertical scanning aims to test what ports of transport protocols are open on the target
machine. A port is open when there is an application which listens on the port and answers
to the packets with that comes.

However, network scanning can be easily used by attackers to gather information.
Knowledge about open ports can be useful for various following scans or attacks. Ver-
tical scanning is a normal phase of reconnaissance before an attack.

The following paper ([P.6]) presents a straightforward algorithm for detection of the
vertical scans in a stream-wise detection algorithm. The paper also shows several statistics
about traffic of the Czech NREN and detected scans.

The paper was written in cooperation with Marek Švepeš. The algorithm was designed
by the author of this dissertation thesis, and it was developed and evaluated by Marek
Švepeš.

The algorithm and its possibility of parallel processing were described in Section 3.5.4,
which also mentions a minor modification of the algorithm to detect horizontal port scans
instead of vertical scans.

97

Analysis of Vertical Scans Discovered by Naive
Detection

Tomas Cejka1, Marek Svepes2

1 CESNET, a.l.e., Zikova 4, 160 00 Prague 6, Czech Republic
cejkat@cesnet.cz

2 CTU in Prague, FIT, Thakurova 9, 160 00 Prague 6, Czech Republic
svepemar@fit.cvut.cz

Abstract. Network scans are very common and frequent events that
appear in almost every network. Generally, the scans are quite harmless.
Scanning can be useful for network operators, who need to know state of
their infrastructures. Contrary, scans can be used also for gathering sen-
sitive information by attackers. This paper describes a simple detection
method that was used to detect vertical scans. Our aim is to show results
of long-term measurement on backbone network and to show that it is
possible to detect scans efficiently even with a simple method. The paper
presents several interesting statistics that characterize network behavior
and scanning frequency in a large high-speed national academic network.

1 Introduction

Network scanning is a common and frequent activity that can be observed in
almost every network infrastructure. It is a normal benign mechanism used by
network operators or automatic tools for monitoring and management. A net-
work scan is based on probing targets to recognize the active ones. That is a scan
referred as horizontal. Scans can also probe ports of one target. Such scans are
called vertical. A block scan is a combination of horizontal and vertical scans.

Scans are easily performed even by attackers. Attackers can use scanning to
search for publicly available services and vulnerable devices in the internet. Even
though network scanning is basically harmless, current researches show, that it
can be dangerous in some ways. Bartos et al. in [2] show correlation between
network scans and attacks (e.g. bruteforce guessing of passwords or DoS attacks)
that follow scans. Similarly in [11], Raftopoulos et al. discuss their observation
about high probability of malware infection of devices that had been scanned
previously. Therefore, it is important not to underestimate a danger of scans.

Unfortunately, there is no universal detection method, that would be suitable
for all sizes of networks. According to [13], large transit networks or National
Research and Education Network (NREN) infrastructures require a special de-
tection approach. The main issues related to such networks are: high speed,
wider diversity of IP addresses, lack of knowledge about end-hosts’ configura-
tion, asymmetric routing, coexistence with other monitoring and detection tasks
without interference. This paper presents observations from the perimeter of

CESNET2. It is Czech NREN, a backbone and a transit network. Based on
observations, we created a straightforward detection method.

2 Related Work

Bhuyan et al. presents a taxonomy of network scanning and a survey of some
existing detection approaches in [3]. Using the taxonomy, we can classify the
detection method presented in our paper as a threshold-based method.

One of the well-known methods is a Threshold Random Walk (TRW) pro-
posed for scan detection by Jung et al. in [7]. The detection method was imple-
mented as a part of Bro [10]. Sridharan et al. in [13] points out disadvantage of
TRW that needs knowledge about the configuration of end-hosts. In backbone
networks there are several issues that complicate scan detection. However, it is
still useful to perform detection even on backbone level. The paper investigates
effectiveness of existing methods and proposes a new method Time-based Ac-
cess Pattern Sequential hypothesis testing (TAPS). Lee et al. is one of the most
closely related works to this paper. Their paper presents a report about observed
port scans. The authors analyzed two weeks of traffic at University of Califor-
nia, San Diego (UCSD) using Snort [12]. The paper was written in 2003 and the
authors discovered 9,927 vertical scans. Whereas, we have been monitoring net-
work traffic from CESNET2 more recently (2015) for longer time (two months)
and average number of discovered vertical scans in two weeks was 203,000.

As it was shown, there are various approaches of scan detection. However,
we used a simple flow-based method with thresholds and filtering flow records.

3 Detection Algorithm

The detection algorithm uses information from basic flow records (source and
destination IP addresses and ports, protocol, #packets, #bytes). The princi-
ple of algorithm was inspired by characteristics of scans generated by nmap [8].
Analysis showed that scans are composed of plenty flow records with small num-
ber of packets (≤ 4) transferred between the source IP (potential attacker) and
a destination IP (victim).

We have focused on a default scanning technique supported by nmap. It uses
Transmission Control Protocol (TCP) packets with set SYN flag. This simulates
establishment of a new TCP session and the target should reply with SYN+ACK
if the probed port is opened. The detection results of SYN scans are verifiable
manually even in unknown network traffic of backbone since TCP normal traffic
from a host always contain not only SYN flag and should not imply plenty RST
responses. Detection of other scan types is more complicated due to verification
of false positives and missing ground truth in the real backbone traffic.

The detection algorithm is based on analysis of the number of destination
ports per source IP and uses threshold for number of ports. It is important to
remember all unique destination ports for each pair of addresses separately. The
source IP is a potential source of scan, meanwhile, the destination IP is a victim.

The algorithm was implemented as a module of the NEMEA system [1, 5]
and is described in more detail in [4].

4 Evaluation and Measurements

Our measurement started on 31. 10. 2015 and stopped on 31. 12. 2015. In total,
we observed over 388 billion flow records from all monitoring probes. That is on
average 76,283 flows per second with over 144,506 flows per second in peak.

In order to find a reasonable threshold for the number of destination ports,
we measured average number of destination ports used by a source IP. Moreover,
we were interested in maximal number of destination ports per source. These
observations were based only on TCP protocol without any consideration of TCP
flags. Values were computed in hour intervals. The results are shown in Fig. 1. It
is clear that intensive port scans probe a lot of destination ports. Therefore, the
maximal number of ports is over fifty thousand. Most of source addresses use
only a few destination ports and therefore total average number of destination
ports per source IP lies around ten. From this point of view, with respect to
memory consumption, the threshold was experimentally set to 50. Distribution
function in Fig. 2 shows, that over 99 % addresses use less then 50 destination
ports. Therefore, source IP address which has used 50 or more destination ports
is considered as a potential attacker.

On average, network scans take about 1.2 % of observed flows. Alerts are ag-
gregated in 10 minute time windows. Using the aggregation, the number of alerts
decreases by 94 %. Average length of the aggregated alerts is about 2 minutes
45 seconds and over 2,600 destination ports are being probed. On average, there
are over 580 aggregated alerts per hour.

During the analysis of scans targeted to a single target, we found distributed
scans as well. Scanning hosts were active for about 10 minutes and each scanner
probed about 2,000 ports. Altogether, scanners probed disjoint sets of ports.

Fig. 1: Average and maximal number
of destination ports per source IP.

Fig. 2: Distribution function of number
of destination ports per source IP.

According to the results, most of scans occur at 8:00 and 13:00 UTC. The
rest of scans are spread over all hours. We expect that the distribution is caused
by peaks of traffic that we normally see in these hours.

The deployed detector has discovered non-uniform intensity of some scans
that was changing in time. For example, 47,156 addresses of Czech university
of economics were scanned during 19 minutes by one block scan. The highest
intensity (over 10,000 alerts per minute) was in the middle of the scan. Over 50
ports were probed for each target.

Memory consumption of the module was analyzed by valgrind [9]. The mea-
surement was performed for almost two days and the module consumed 576 MiB
during the peak. The amount of required memory is decreased due to auto-
regulation based on removing inactive addresses. It is set by module’s threshold.

The used detection algorithm, from its nature, suffers from some limitation.
The algorithm skips repeating SYN flows with the same destination port. Such
traffic is assumed to be benign traffic. However, this fact can be easily exploited
by scanners to avoid the detection. Distributed scans are generally difficult to
detect. Large botnets can scan the whole internet using just a few packets gen-
erated by each bot [6]. A distributed scan can be detected by our algorithm if
and only if at least some of the scanners fulfill conditions to be detected (e.g.
number of destination ports threshold).

5 Conclusion

Vertical scans are frequent events that occur in almost every computer network.
In this paper, we have proven this fact by observation of the vertical scans in the
backbone network. The measurement showed that it is possible to detect scans
with a simple straightforward detection algorithm using commodity hardware.

The proposed algorithm is limited to detection of TCP scans, however, it can
be deployed in large network infrastructures and analyze huge volume of data.
On average, there are about 580 aggregated alerts per hour that are detected
by the implemented detection module. Some randomly selected alerts from the
two-month measurement were verified manually. This paper presented statistical
characteristics and results of scans detected at the perimeter of CESNET2.

Modern network attacks are mostly performed by botnets. Therefore, the
importance of detection of distributed attacks (scans in our case) increases. Ac-
cording to our observations, intensive distributed scans became usual. However,
the larger botnets are, the harder the detection is because each bot can probe
just a few ports and so it is difficult to recognize bot’s traffic from benign clients.

Acknowledgments This work was partially supported by the “CESNET E-
Infrastructure” (LM2015042) and CTU grant No. SGS16/124/OHK3/1T/18 both
funded by the Ministry of Education, Youth and Sports of the Czech Republic.

References

1. Bartoš, V., et. al.: Nemea: Framework for stream-wise analysis of network traffic.
Tech. rep., CESNET, a.l.e. (2013), http://www.cesnet.cz/wp-content/uploads/
2014/02/trapnemea.pdf

2. Bartos, V., Zadnik, M.: An analysis of correlations of intrusion alerts in an nren.
In: Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), 2014 IEEE 19th International Workshop on. pp. 305–309. IEEE (2014)

3. Bhuyan, M.H., et. al.: Surveying port scans and their detection methodologies. The
Computer Journal p. bxr035 (2011)

4. Cejka, T., Svepes, M.: Vertical Scan Detector README, https://github.com/
CESNET/Nemea-Detectors/tree/master/vportscan_detector

5. CESNET, a. l. e.: NEMEA: Network Measurements Analysis Framework, https:
//github.com/CESNET/Nemea

6. Dainotti, A., et. al.: Analysis of a /0 stealth scan from a botnet. In: Proceedings
of the 2012 ACM conference on Internet measurement conference. pp. 1–14. ACM
(2012)

7. Jung, J., et. al.: Fast portscan detection using sequential hypothesis testing. In:
Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on. pp. 211–225.
IEEE (2004)

8. Lyon, G.F.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning. Insecure (2009)

9. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM Sigplan notices. vol. 42, pp. 89–100. ACM (2007)

10. Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer
networks 31(23), 2435–2463 (1999)

11. Raftopoulos, E., et. al.: How dangerous is internet scanning? In: Traffic Monitoring
and Analysis, Lecture Notes in Computer Science, vol. 9053, pp. 158–172. Springer
International Publishing (2015)

12. Roesch, M., et. al.: Snort: Lightweight intrusion detection for networks. In: LISA.
vol. 99, pp. 229–238 (1999)

13. Sridharan, A., Ye, T., Bhattacharyya, S.: Connectionless port scan detection on the
backbone. In: Performance, Computing, and Communications Conference, 2006.
IPCCC 2006. 25th IEEE International. pp. 10–pp. IEEE (2006)

A.7. Making flow-based security detection parallel

A.7 Making flow-based security detection parallel
Ing.Marek Švepeš (50%), Ing. Tomáš Čejka (50%)
In Security of Networks and Services in an All-Connected World: Proceedings of the 11th
IFIP WG 6.6 International Conference on Autonomous Infrastructure, Management, and
Security, AIMS 2017., Zurich, Switzerland, 2017
Publisher: Springer International Publishing
ISBN: 978-3-319-60774-0, pp. 3–15
DOI: 10.1007/978-3-319-60774-0_14

The following paper ([P.3]) contains practical experiments about parallel flow data
processing. It is based on splitting a stream of flow data into subsets based on witnesses
(described in Section 3.4.2 and in Appendix A.8). The paper presents an infrastructure
composed of a Flow Scatter and independent computing nodes with single instances of a
detection system (NEMEA from Section 3.1 and Appendix A.1 was used for experiments).

The Flow Scatter was tested with different methods of flow data splitting, and the
results of the experiments are concluded in the paper. The paper shows the importance
of preserving semantic relations in the flow data. The flow data are split by the Flow
Scatter into subsets that can be processed/analyzed in parallel (described in Section 3.6
and further extended in Section 3.6.1).

The paper was written in cooperation with Marek Švepeš. The general design concept
was created by the author of this dissertation thesis, and it was successfully realized and
evaluated by Marek Švepeš in his diploma thesis [P.33] (that was supervised by the author
of this dissertation thesis). This diploma thesis was one of the nine finalists in ACM
ITSpy2017 contest (out of about 1700 diploma thesis).

103

Making flow-based security detection parallel

Marek Švepeš1 and Tomáš Čejka2

1 CTU in Prague, FIT
Thakurova 9, 160 00 Prague 6, Czech Republic

svepemar@fit.cvut.cz
2 CESNET, a.l.e.

Zikova 4, 160 00 Prague 6, Czech Republic
cejkat@cesnet.cz

Abstract. Flow based monitoring is currently a standard approach suit-
able for large networks of ISP size. The main advantage of flow processing
is a smaller amount of data due to aggregation. There are many reasons
(such as huge volume of transferred data, attacks represented by many
flow records) to develop scalable systems that can process flow data in
parallel. This paper deals with splitting a stream of flow data in order to
perform parallel anomaly detection on distributed computational nodes.
Flow data distribution is focused not only on uniformity but mainly on
successful detection. The results of an experimental analysis show that
the proposed approach does not break important semantic relations be-
tween individual flow records and therefore it preserves detection results.
All experiments were performed using real data traces from Czech Na-
tional Education and Research Network.

1 Introduction

Flow-based monitoring plays a key role in network management. Not only it
provides an overview of the traffic mix, it greatly helps with network security
issues such as malicious traffic detection.

There are many types of malicious traffic that should be detected in real
networks. As the speed and size of computer networks grow, it is necessary
for network operators to process more and more data to be informed about
the status of their network. However, with the increasing traffic volume, it is
difficult to run lots of detection algorithms at once using just a single machine.
The more data, the more computing resources are needed and the longer time
the processing takes.

In order to overcome resource limits of a single machine, parallelism plays
an important role. Various types of scalable architecture have been invented to
process data in parallel. Generally, to be able to process more data, analyzer
has to either run parts of its algorithms in parallel or split data for separate
processing units.

Since the parallelization of individual detection algorithms is very dependent
on the nature of the algorithm and, additionally, according to Amdahl’s law,

2 M. Švepeš, T. Čejka

there are parts of algorithms that can’t be run in parallel, we have decided to
focus on data distribution for independent processing units. Our aim is to split a
continuous stream of network data (more specifically flow records, i.e. aggregated
packet headers) into much smaller subsets that are being processed separately
in parallel. We also focus on evaluation of the impact of data splitting on the
security analysis results.

The contribution of this paper is to present our experiments with processing
data traces from the real backbone network. The aim is to use existing algorithms
from a single machine processing and deploy them in a distributed environment.
This paper shows, that data splitting for such purpose is complicated due to
semantic relations in data which should be preserved. Breaking the relations can
cause that the obtained detection results are significantly worse than using a
single processing machine. The paper also shows a feasible way how to split flow
data with respect to semantic relations. Proposed approach preserves detection
results and allows a scalable deployment.

This paper is organized as follows. Sec. 2 describes existing related work, i.e.
systems for anomaly detection, traffic sampling and network traffic processing
in parallel. Sec. 3 describes scattering methods that can be used to split flow
records into a separate groups for parallel processing by independent compu-
tational nodes. Sec. 4 describes our testing environment that was created for
our experiments. The section also presents results of measurement of described
scattering methods. Sec. 5 concludes the paper.

2 Related work

This section describes related approaches of parallel network traffic analysis
and anomaly detection usually done using Network Intrusion Detection System
(NIDS) or Network Intrusion Prevention System (NIPS).

There are many existing systems for network traffic analysis and anomaly
detection that are modular by design. For instance, TOPAS [1] and NEMEA [2]
are flow-based systems that consists of modules that process data. When there
is a big volume of flow data, running the systems on a single machine may reach
resource limits of the machine. The systems do not support data distribution
natively as it is available for various big data frameworks. However, NEMEA
modules can be easily run and connected in a distributed environment.

K. Xinidis et al. in [3] presented an architecture with Active Splitter for
distributed NIDS aiming for performance optimization of the detection sensors
running Snort [4] (packet-based system performing deep packet inspection). The
splitter uses hash functions for packet distribution and three techniques to op-
timize the performance of the sensors. Cumulative Acknowledgements reduce
redundant sending of packets between splitter and sensors, Early Filtering in
splitter applies Snort rule subset on packet headers (no payload inspection) and
finally Locality Buffering reorders packets in a way that improves the locality of
sensors memory accesses.

Scalable approach of detection 3

H. Sallay et al. in [5] made the network traffic analysis distributed using
switch/router. The architecture contains dedicated sensors for individual services
(e.g. FTP) and the incoming traffic is forwarded to them according to switching
table of the switch/router. Sensors are running Snort but only with needed rule
subset for their service. Since the volume of traffic of individual services can differ
significantly, the load of computational nodes wouldn’t be uniform. Therefore,
this approach is not suitable for us.

Nam-Uk Kim et al. in [6] compare static and dynamic hash-based load bal-
ancing schemes and propose dynamic (i.e. adaptive) load-balancing scheme for
NIDS. It uses a lookup table which is periodically reorganized according to his-
torical packet distribution and current load of individual nodes. If needed, flows
with the smallest volume are reorganized. Proposed method distributes packets
in a way that does not break the flow stream, however, they don’t take into
account relations between individual flow records and the impact of splitting on
detection results is not evaluated.

M. Valentin et al. in [7] presented a NIDS cluster for scalable intrusion detec-
tion. It consists of frontend nodes that distribute packets between backend nodes
running Bro [8] for intrusion detection. Moreover, there are proxy nodes prop-
agating state information of backend nodes and also one central manager node
for collecting and aggregating results. Each frontend node distributes data from
one monitored line and uses a hashing distribution scheme with a single hash
function. The architecture requires backend nodes and proxy nodes to exchange
data with detection subresults. In our approach, we are dealing with splitting
a stream of flow records instead of packets. Our hashing distribution scheme is
adjusted to provide all needed data to the detection methods for correct intru-
sion detection. Therefore, our computational nodes running intrusion detection
are independent and don’t communicate with each other. Finally, our proposed
hashing distribution scheme represents a general way, how to split flow data with
respect to detection results.

Big data frameworks such as Hadoop [9] or Spark [10] are distributed by
nature. They are based on storage of data onto some distributed file system. A
special designed parallel algorithm can be used to run on many distributed nodes
and process all data. A universal and the most popular approach of distributed
processing is MapReduce. However, the overall result of this kind of computation
usually depends on the Reduce phase that merges local results from all nodes.
Therefore, only low attention is paid to any relations or semantics during the
data distribution and storage. An improved data distribution in Hadoop was
presented as Hashdoop in [11]. Contrary, our approach is more general and it
is applicable even on stream-wise processing with multiple different algorithms.
Even though the main focus of ours is to make non-distributed system working
in parallel, the principle described in our paper can be used for improvement of
data distribution in big data frameworks as well.

Sampling has a common goal with parallel processing – capability to handle
more data at the same time. J. Mai in [12] shows impact of the packet sampling
on detection of portscanning and K. Bartos in [13] deals with flow sampling

4 M. Švepeš, T. Čejka

Fig. 1: A high level view of the infrastructure of scalable and distributed network
flows analysis using NIDS.

techniques for anomaly detection. However none of these approaches can be
applied on data splitting.

3 Flow distribution scheme

When designing a distribution scheme, several aspects have to be taken into
account: i) the data should be distributed uniformly between all computational
nodes, ii) the distribution algorithm should be as fast as possible in order to
process as much data as possible, iii) the impact of splitting the data on detection
results should be minimized.

In general, there are two ways how to distribute the data, statically or dy-
namically (also called static and dynamic load-balancing) and both have some
pros and cons when applied in parallel NIDS. Static distribution has immutable
rules for splitting the data e.g. a packet with source IP address 1.2.3.4 goes to
node 1 and a packet with source IP address 5.6.7.8 goes to node 2. This preserves
the data stream with possible security incident. However, it cannot affect the
load of individual computational nodes when the distribution is not uniform.
On the other hand dynamic distribution can perform some actions in order to
make the load uniform (e.g. redirect some packets to less loaded computational
nodes). Unfortunately, this behaviour can make the security incident invisible.
Therefore, we have decided to use static distribution and focus on uniformity.

Fig. 1 shows high level view of the infrastructure of scalable and distributed
network flows analysis using NIDS. The following subsections describe several
splitting mechanisms used in the flow scatter.

3.1 Random scattering

Lets assume the detection results are not dependent on any semantic relations
between flow data, i.e. scattering mechanism can distribute the data regardless

Scalable approach of detection 5

Fig. 2: Topology of Czech national research and education network (NREN) CES-
NET2, network traffic on the perimeter is analyzed.

of the information from flow records. In that case, the flow scatter can distribute
the flow records between nodes using statistical uniform distribution, which is
optimal for load-balancing. Received records by flow scatter are forwarded to
computational nodes according to random number generator. It is clear that
every random distribution splits the flow records into different subsets. However,
as we discuss in Evaluation (Sec. 4), breaking semantic relations in flow data
using random distribution affects the detection results.

3.2 Scattering based on network topology

Scattering based on network topology is another logical way of distributing the
flow data. Since the computer networks are designed using hierarchical model
that usually respects geographical and logical division into subnets and network
lines.

Fig. 2 shows a high level topology of CESNET2 National Research and Ed-
ucation Network (NREN), which is a backbone academic network and it is also
used as a transit network. It is inter-connected with other networks via several
lines that are being monitored. The data taken from the monitoring probes con-
tain a line identification — the line number. Flow scatter can easily distribute
the data using these line numbers.

Standard monitoring infrastructure collects flow records from monitoring
probes onto one central collector. In case of scattering based on network topol-
ogy, this concept can be changed and it would be more efficient to send exported
flow records directly to computational nodes.

6 M. Švepeš, T. Čejka

3.3 Hash-based scattering

Hash functions are used to transform an input data into an output form with
a fixed length. Cryptography expects that the output of an ideal hash function
meets requirements such as uniform distribution and missing relation between
output and input. In our case, the hash function can be used in the flow scatter to
select an appropriate computational node number uniformly. Information from
the incoming flow records can be used as an input for the hash function.

The dependency of selected node number on the input data of the hash func-
tion leads to divison of flow records into subsets with the same characteristics.
The subsets with the same characteristics are then processed together on the
same computational node and this can be used to preserve the detection results.
For instance, if we use only the source IP address for hashing, all flow records
having the same source IP address ends up on the same node. Meanwhile, flow
records with different source IP addresses have a high probability to be processed
with different nodes.

Let some set of flow records contain a security incident that can be detected
using some detection method. Then, there exists a minimal subset of flow records
with semantic relations that must be processed by this detection method together
to get a correct result. In order to find the semantic relations in flow data, a set
of detection methods was studied. The aim is to find a suitable set of information
that is used as an input for hash function.

Studied detection methods

– Vertical SYN scanning can be detected using a threshold-based method pub-
lished in [14]. To successfully detect this type of scanning, the method needs
to receive all flow records of the same source IP address which is a possible
attacker (scanner). Similar method can be used to detect horizontal SYN
scanning. Source IP address is used for hashing.

– Brute-force password guessing against remote management services (SSH,
TELNET, RDP etc.) can be detected using a method which needs to inspect
all flow records between two IP addresses in both directions. An ordered pair
of source and destination IP addresses (i.e. bi-flow) is used for hashing.

– There are many public lists of malicious addresses (black-lists). These ad-
dresses were abused due to various reasons like sharing malware, controlling
botnets or acting in some anomalous evil way. Communication with a black-
listed IP address can indicate some malware infection and thus it should be
reported. The detection is quite easy — every time any blacklisted address
appears in a flow record, an alert can be sent. This type of detection is very
efficient with a scattered data, because just a single flow record is needed to
trigger an alert. Source IP address is used for hashing.

– More complex method based on statistics about IP addresses and matching
the rules describing malicious traffic is able to detect DoS, DNS amplifica-
tion, SSH brute-force password guessing and horizontal scanning. It needs to
receive all flow records with the same IP address regardless of whether it is a

Scalable approach of detection 7

Fig. 3: Flow scatter contains three hash functions, each uses a specific informa-
tion from flow records. The result of a hash function determines the computa-
tional node that processes the flow record with corresponding group of detection
methods.

source or a destination IP. Therefore, hashing both source and destination IP
addresses separately is needed in this case, which can result in duplication.
The flow record can be forwarded to two different computational nodes. The
duplication effect will be discussed later in this section.

– One of the detection methods based on application layer can detect brute-
force attacks and scanning of user accounts on a Session Initiation Protocol
(SIP) device. The detection method analyzes SIP responses from the server
so all flows with the same source IP address must be delivered to the same
node. Source IP address is used for hashing.

In general, we have recognized three groups of detection algorithms, whereas
each group has to process all flow data with the same characteristic (e.g. same
source IP address) on a single computation node. Therefore, we have a group of
detection algorithms expecting all flow records with the same source address,
a group expecting flow records with the same destination address and a group
expecting flow records with the same ordered pair of source and destina-
tion addresses. Fig. 3 shows all three hash functions of the flow scatter where
each hash function has the same color as the corresponding group of detection
algorithms.

Since we want to run all detection algorithms in parallel, all three hash
functions must be computed for every flow record. Naturally, results of the three
hash functions can be different. Therefore, one flow record can be sent to at least
one and, in the worst case, up to three computational nodes. This duplication

8 M. Švepeš, T. Čejka

is caused by the number of different groups of algorithms and it is needed to
provide all flow records that should be processed together to the algorithms (to
preserve correct detection results).

In fact, the number of duplicates does not affect overall scaling of the paral-
lel processing i.e. higher number of computational nodes does not increase the
duplicates. Moreover, each hashing function determines a computational node,
which processes the flow record with corresponding group of detection meth-
ods. Therefore, each group processes the flow record only on one computational
node and every flow record is processed by all groups of detection methods.
For example, if the selected nodes are 2 (for the SRC IP red hash) and 5 (for
the DST IP yellow hash and for the IP pair green hash), it is processed by red
group on node 2, yellow and green group on node 5. It means, that flow record
may be duplicated, but only on a communication level between flow scatter and
computational nodes.

To compare our approach with a single hashing function e.g. NIDS cluster [7]
uses hash = md5(srcIP + dstIP), we can show, that it would not work for us.
Let’s take methods for detection of horizontal port scanning and brute-force
password guessing discussed in Sec. 3.3. The method for brute-force password
guessing needs to see all flow records between source and destination IP addresses
in both directions, so this hash function would work (md5(A + B) is equal md5(B
+ A)). On the other hand, horizontal scanning has the same source IP address
but different destination addresses, so it is possible that two flow records with
the same source IP but different destination IP could end up on a different
computational node.

Our approach with multiple hash functions can be applied on arbitrary de-
tection method. To do so, it is necessary to determine characteristics of needed
flow data for correct detection result, as it was done in Sec. 3.3.

4 Experiments and Evaluation

In order to evaluate all important aspects of the scattering methods (uniformity,
speed, impact on detection), the NEMEA system was chosen as a platform for
our experiments and evaluation. The system itself has already implemented de-
tection methods, which were studied and discussed in Sec. 3.3 and its efficient
libraries allow us to process traffic from high speed backbone network. Overall,
we have processed over 5 billions of flow records of real data traces in 10 dif-
ferent (pseudonymised) data sets captured in CESNET2 NREN during August
and September 2016 with on average of 60,000 flows/s.

4.1 Testing environment

For our experiments we used a virtual machine with 64b Scientific Linux 7 OS,
with the following hardware specification: 16 CPU cores, 24 GB RAM, 2 TB free
disk capacity.

Scalable approach of detection 9

Fig. 4: Testing environment for experiments and evaluation of various methods
of flow data distribution between computational nodes running flow-based NIDS
NEMEA.

Fig. 4 shows the configuration of our testing environment. IPFIXsend and
IPFIXcol [15] were used for replaying the IPFIX data in real-time. The flow
data were received by the flow scatter and also directly by the node 0 which
was used as a reference single instance (it processes all flow data without any
splitting). The node 0 was a ground truth for us to evaluate an impact of data
splitting on detection results. The flow scatter distributes flow data between
nodes 1–8 as it was described earlier. All nodes contain exactly the same set
of detection methods. During the experiments, we have collected data from 8
exporting probes that monitor different lines.

4.2 Results

The detection results from all nodes were stored and the analysis is described in
this section.

Fig. 5 shows a comparison of an average distribution of flow records based on
various scattering methods. The optimal value (red dashed line) is 12.5 % for 8
nodes. Random scattering achieves optimal results because of the used statistical
uniform distribution. However, hash-based scattering is not significantly worse
than the random (i.e. optimal) one. On the other hand, link-wise scattering is
unbalanced because of different speeds of the monitored lines and the volume
of traffic3. Node 1 even processed no data because there were no data exported

3 We expect that such unbalanced distribution based on observation points can be
observed in every network with lines of different bandwidth.

10 M. Švepeš, T. Čejka

from the first line. For hash-based scattering, we have compared data distribu-
tion using two different hashing algorithms — CRC32 and Jenkins. On average,
CRC32 had better results and therefore it was chosen as a final solution.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Computational nodes

0

5

10

15

20

25

30

A
m

o
u
n
t

o
f

p
ro

ce
ss

e
d
 t

ra
ff

ic
 [

%
]

12
.5

0%

12
.5

0%

12
.5

0%

12
.5

0%

12
.5

0%

12
.5

0%

12
.5

0%

12
.5

0%

0.
00

%

15
.8

1%

29
.1

3%

17
.4

7%

8.
21

% 9.
79

%

16
.2

5%

3.
33

%

13
.2

3%

12
.4

1%

12
.6

8%

12
.4

0%

12
.2

7%
12

.8
2%

11
.4

7% 12
.7

2%

12.50%

Comparison of flow records distributions

Random distribution

Topology-based distribution

Hash-based distribution

Optimal uniform distribution

Fig. 5: Comparison of average flow records distributions using various scattering
methods.

To analyze the reported alerts, we needed to compare the set of unique events
from the reference node 0 with the set of unique events from all distributed
nodes. To achieve this, the reported events of each detection method and each
node were analyzed separately at first. Subsequently, the unique events were
merged together. For example, in the case of horizontal scanning, if an attacker
probes 50 or more computers in two different subnets, where 50 is a threshold
of the detection algorithm, 2 events should be reported. Hash-based scattering
delivers all flow records representing this traffic to the same node due to the
source IP address hashing. Using link-wise scattering, the flow records could end
up on different nodes because the traffic can go through different lines. Random
scattering will split the flow records randomly.

Fig. 6 shows a comparison of the detection results after applying various
scattering methods. Note, that Hoststatsnemea in the figure legend stands for
the method based on statistics about IP addresses, which was discussed in sec-
tion 3.3. The first column represents the reference instance with 100 % reported
events, whereas each type of events has a different color and it is normalized so
that the number of different event types are represented equally. Random distri-
bution (the second column) has a huge impact on the detection results because
of breaking the semantic relations between flow records. This was an expected
result, however, the random distribution is a reference of optimal flow data dis-
tribution. Scattering based on the network topology (the third column) caused

Scalable approach of detection 11

Reference
(no scattering)

Random
scattering

Topology-based
scattering

Hash-based
scattering

Scattering method

0%

50%

100%

A
m

o
u
n
t

o
f

re
p
o
rt

e
d
 e

v
e
n
ts

 [
%

]
100.00%

35.14%

89.80%

98.41%

12.50%

Comparison of detection results

Horizontal Scan Detector

Vertical Scan Detector

Hoststatsnemea

IP Blacklist Filter

Brute Force Detector

Sip BF Detector

Fig. 6: Comparison of the detection results after applying various scattering
methods. Each part of column with different color stands for normalized number
of unique events reported by different detection method.

that some of distributed attacks and, in general, N:1 or 1:N attacks (DDoS,
horizontal scanning etc.) were not detected. The last column shows that scat-
tering based on hashing specific information from flow data has the best results.
The reason of undetected events is probably a periodic clean-up of structures
containing information and timing of stream-wise detection algorithms.

After the evaluation of the uniformity and the impact on the detection, we
tested a maximal throughput of the hash-based flow scatter as the best method
for distribution. A simple NEMEA module was created to generate and send
100 million flow records at full speed to the flow scatter. Measured computation
time was focused on the main cycle receiving the flow record, hashing, making
decision about number of computational nodes the flow belongs to according to
the computed hashes and sending the flow record. The maximal throughput was
on average 1.8 million flow records per second.

5 Conclusion

This paper presented the results of practical experiments with different ap-
proaches of splitting a stream of network flow data for the purposes of parallel
anomaly detection. The aim of our work was to compare not only a uniformity
of distribution but also an impact of data splitting on the detection results.
Our experiments were performed using real traffic traces from Czech national
research and education network (NREN). For simulation of parallel processing,
we used an open source detection system NEMEA, however, the analysis results

12 M. Švepeš, T. Čejka

are general enough and we believe that the proposed distribution approach can
be used with any other detection system.

We have recognized three groups of detection algorithms with different re-
quirements on data. Therefore, we have designed a flow scatter that uses three
different hashing specific information from flow records (source address, desti-
nation address, ordered pair of source and destination address) to provide all
needed data to independent computational nodes. The results of our experiment
show that our approach preserves semantic relations in flow data that are im-
portant for different groups of detection algorithms and therefore the results of
parallel detection are similar to reference results without splitting the data.

With the proposed approach of flow data distribution, it is possible to use
detection methods that are deployed on a single machine and run them in parallel
without changes. As a future work, we want to make more experiments with
scaling beyond the measured throughput of the flow scatter by using multiple
flow scatters in parallel and distribute incoming flow records between the flow
scatters with e.g. round robin.

Acknowledgment

This work was supported by the Technology Agency of the Czech Republic
under No. TA04010062 Technology for processing and analysis of network data in
big data concept, grant No. SGS17/212/OHK3/3T/18 funded by MEYS and the
project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the MEYS
and ERDF.

References

1. Munz, G., Carle, G.: Real-time analysis of flow data for network attack detec-
tion. In: 2007 10th IFIP/IEEE International Symposium on Integrated Network
Management. (May 2007) 100–108

2. Cejka, T., Bartos, V., Svepes, M., Rosa, Z., Kubatova, H.: Nemea: A framework
for network traffic analysis. In: 2016 12th International Conference on Network
and Service Management (CNSM). (October 2016) 195–201

3. Xinidis, K., Charitakis, I., Antonatos, S., Anagnostakis, K.G., Markatos, E.P.: An
active splitter architecture for intrusion detection and prevention. IEEE Transac-
tions on Dependable and Secure Computing 3(1) (January 2006) 31–44

4. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings
of the 13th USENIX Conference on System Administration. LISA ’99, Berkeley,
CA, USA, USENIX Association (1999) 229–238

5. Sallay, H., Alshalfan, K.A., Fred, O.B., Words, K.: A scalable distributed ids ar-
chitecture for high speed networks. In: IJCSNS International Journal of Computer
Science and Network Security, VOL.9 No.8, Citeseer (2009)

6. Kim, N., Jung, S., Chung, T.: An efficient hash-based load balancing scheme to
support parallel NIDS. In: Computational Science and Its Applications - ICCSA
2011 - International Conference, Santander, Spain, June 20-23, 2011. Proceedings,
Part I, Springer (January 2011) 537–549

Scalable approach of detection 13

7. Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS
cluster: Scalable, stateful network intrusion detection on commodity hardware.
In: Recent Advances in Intrusion Detection: 10th International Symposium, RAID
2007, Gold Goast, Australia, September 5-7, 2007. Proceedings, Berlin, Heidelberg,
Springer Berlin Heidelberg (2007) 107–126

8. Paxson, V.: Bro: A system for detecting network intruders in real-time. Comput.
Netw. 31(23-24) (December 1999) 2435–2463

9. Apache: Hadoop http://hadoop.apache.org.
10. Apache: Spark http://spark.apache.org.
11. Fontugne, R., Mazel, J., Fukuda, K.: Hashdoop: A MapReduce framework for

network anomaly detection. In: IEEE Conference on Computer Communications
Workshops (INFOCOM). (2014)

12. Mai, J., Sridharan, A., Chuah, C.N., Zang, H., Ye, T.: Impact of packet sampling
on portscan detection. IEEE Journal on Selected Areas in Communications 24(12)
(December 2006) 2285–2298

13. Bartos, K., Rehak, M.: Towards efficient flow sampling technique for anomaly de-
tection. In: Proceedings of the 4th International Conference on Traffic Monitoring
and Analysis. TMA’12, Berlin, Heidelberg, Springer-Verlag (2012) 93–106

14. Cejka, T., Svepes, M.: Analysis of vertical scans discovered by naive detection. In:
Management and Security in the Age of Hyperconnectivity: 10th IFIP WG 6.6 In-
ternational Conference on Autonomous Infrastructure, Management, and Security,
AIMS 2016, Munich, Germany, Springer International Publishing (2016) 165–169

15. Velan, P., Krejč́ı, R.: Flow information storage assessment using ipfixcol. In: Pro-
ceedings of the 6th IFIP WG 6.6 International Autonomous Infrastructure, Man-
agement, and Security Conference on Dependable Networks and Services. AIMS’12,
Berlin, Heidelberg, Springer-Verlag (2012) 155–158

A.8. Preserving relations in parallel flow data processing

A.8 Preserving relations in parallel flow data processing
Ing. Tomáš Čejka (50%), Ing. Martin Žádník, Ph.D. (50%)
In Security of Networks and Services in an All-Connected World: Proceedings of the 11th
IFIP WG 6.6 International Conference on Autonomous Infrastructure, Management, and
Security, AIMS 2017., Zurich, Switzerland, 2017
Publisher: Springer International Publishing
ISBN: 978-3-319-60774-0, pp. 153–156
DOI: 10.1007/978-3-319-60774-0_14

Network monitoring systems produce lots of data every hour that must be analyzed as
soon as possible because the delay is a critical parameter in the field of network security.
Analyzing in parallel is a difficult task since usually requires significant adaptation of the
existing algorithms for a parallel environment.

There are many existing Big Data frameworks, which can be used for parallel analysis.
However, real experiments show that such frameworks have a significant processing and
communication overhead. This paper describes a different approach to processing which is
based on splitting a stream of flow data into smaller substreams that are being processed
in parallel. Naturally, the splitting is the most important and crucial part of the approach
because it must prepare independent substreams. The paper explains a witness (a subset
of flow data that must remain together) that can be used for the better construction of a
flow splitter. The term witness was discussed in more detail in Section 3.4.2.

The paper was written in cooperation with Martin Žádník, who participated as a con-
sultant and a proofreader, and he significantly improved the quality of the text. The idea
of the methodology about witnesses and their definitions are the work of the author of this
dissertation thesis.

Section 3.4 contains the complete list of definitions and some examples that could not
be put into the paper due to the limited space.

117

Preserving relations in parallel flow data
processing

Tomas Cejka1, Martin Zadnik2

1 CTU in Prague, FIT, Czech Republic, cejkato2@fit.cvut.cz
2 CESNET, a.l.e., Czech Republic, zadnik@cesnet.cz

Abstract. Network monitoring produces high volume of data that must
be analyzed ideally in near real-time to support network security oper-
ations. It is possible to process the data using Big Data frameworks,
however, such approach requires adaptation or complete redesign of pro-
cessing tools to get the same results. This paper elaborates on a par-
allel processing based on splitting a stream of flow records. The goal
is to create subsets of traffic that contain enough information for par-
allel anomaly detection. The paper describes a methodology based on
so called witnesses that helps to scale up without any need to modify
existing algorithms.

1 Introduction

Common architecture of monitoring large networks contains multiple observation
points measured by monitoring probes and a central collector with captured data.
This approach creates a global view of the network traffic. In addition, it allows
for analysis and detection of global events that are less visible from a local view.

This approach works well on small networks, however, since the network
traffic grows, processing all data on one place reaches limits of resources such as
memory capacity. In addition, various network events produce data that reach
maximal performance of a single machine. Altogether, network monitoring be-
comes a Big Data processing and some scalable approach must be considered.

As it is described later in Sec. 2, Big Data principles are being studied for last
years. However, a general methodology of splitting network data into subsets is
missing. The aim of this work is to describe a principle how to split data with
respect to internal relations and used processing algorithms in order to analyze
balanced data subsets while the needed information still remains together.

The goal is to allow processing huge amounts of flow data using analysis
tools that are not designed for a distributed environment. A correct selection of
data subsets can improve current mechanisms of data distribution or sampling
without loosing information needed by detection algorithms.

2 Related Work

MapReduce was used for network data processing e.g. in [6, 7], however, the
authors used a distributed database or a distributed filesystem to store data

files. Paper [4] analyzes IP, TCP and HTTP traffic stored in offline files using
Hadoop and MapReduce. Paper [1] analyzes campus network using several types
of MapReduce jobs (e.g. measuring volume of traffic per subnet).

Authors of [5] try to use Apache Spark framework with Netmap to extract
traffic features for a packet-based detection of different types of DDoS attacks
in real-time. The detection uses machine learning methods. The authors rely on
a distributed storage and an abstraction of objects called Resilient Distributed
Dataset, however, no efficient data splitting is discussed. The paper notes that
usage of sampled data produces many false-positives.

Semantic relations in data and possible negative effects of splitting data were
mentioned in [3]. The authors present experiments with Hashdoop, an improved
Hadoop, that splits data using CRC hashes of src and dst IPs. The authors chose
a simple packet counting and ASTUTE algorithm for parallel processing. The
splitting based just on IP addresses is a single case in our methodology.

3 Proposed approach

The main requirement is to identify which parts of data must stay together to
preserve data relations and which parts can be split into subsets.

A detection algorithm can be described as a function with data about
network traffic as its input and alerts (detected events) as its output. Generally,
the input data is a mixture of benign and malicious traffic. The goal of a detec-
tion algorithm is to identify the malicious traffic and to generate an alert that
describes the detected event. The algorithm is successful if it observes at least
a minimal subset of malicious traffic which triggers the alert. Lets call the
instance of a minimal subset a witness. If a witness gets divided, the malicious
traffic is not detectable with the same detection algorithm anymore because
there is not enough information for decision. As a result, data can be divided
for parallel processing in any way that does not break witnesses.

In practice, there are many different detection algorithms processing the same
data to detect various types of malicious traffic. As a result, multiple different
witnesses must be preserved at the same time which complicates data splitting.

Data can contain many witnesses that identify the same malicious traffic,
while any of them is sufficient for a successful detection. In order to design a
data splitter a particular type of witness should be characterized. This kind of
characterization describes what data an algorithm analyzes, how the malicious
traffic looks like and what is the configuration of an algorithm.

4 Evaluation

To evaluate the witness-based splitting, we analyze data distribution among
computation nodes and overall detection results. We need to compare results of
a single instance and results of a distributed environment. As the distributed
processing generates some alerts multiple times a deduplication based on times-
tamps, type of events and other information contained in the alerts is necessary.

For the evaluation, we use a NEMEA framework [2] which can be easily run
in a single instance as well as in a distributed configuration. There are several
detection modules in NEMEA and some of them were presented in our previous
work. However, the presented principle can be used with any system that allows
to modify an algorithm of data splitting.

The first experiments with splitting flow data with respect to potential wit-
ness showed that it is possible to distribute flow data almost uniformly and there
is no significant difference between detection results of a single instance and the
distributed environment. The measured difference was about 1 % which is caused
by inaccurate timing of stream-wise real-time analysis during our experiments.

5 Conclusion

This paper addressed a network traffic analysis in a distributed environment.
There are many papers focusing on existing Big Data frameworks but, to our best
knowledge, a general methodology of splitting a stream of flow data is missing.
This research aims to describe data relations that must be preserved for the
parallel analysis. The data relations, types of malicious traffic and used detection
algorithms with their parameters define so called witnesses. Since this research
is rather a work-in-progress, we have some preliminary results. However, the
experiments with real data show that respecting witnesses allow for distributed
processing without significant impact on detection results.

As a future work, we are going to explore the principle of witnesses in more
detail. Moreover, based on witnesses, an algorithm of real-time reconfiguration
of the splitter to scale up the distributed system would be useful.

Acknowledgments This work was supported by the Technology Agency of the
Czech Republic under No. TA04010062 Technology for processing and analysis
of network data in big data concept and grant No. SGS17/212/OHK3/3T/18
funded by Ministry of Education, Youth and Sports of the Czech Republic.

References

1. Bumgardner, V.K., el al.: Scalable Hybrid Stream and Hadoop Network Analysis
System. In: Proceedings of the 5th ACM/SPEC ICPE (2014)

2. Cejka, T., et al.: NEMEA: a framework for network traffic analysis. In: Proceedings
of CNSM (2016)

3. Fontugne, R., et al.: Hashdoop: A MapReduce framework for network anomaly
detection. In: Proceedings of INFOCOM (2014)

4. Ibrahim, L.T., et al.: A study on improvement of internet traffic measurement and
analysis using Hadoop system. In: Proceedings of ICEEI (2015)

5. Karimi, A.M., et al.: Distributed network traffic feature extraction for a real-time
IDS. In: Proceedings of EIT (2016)

6. Lee, Y., et al.: Toward scalable internet traffic measurement and analysis with
hadoop. ACM SIGCOMM Computer Communication Review (2013)

7. Zhang, J., et al.: A Spark-Based DDoS Attack Detection Model in Cloud Services.
In: Proceedings of ISPEC (2016)

	Abbreviations
	Introduction
	Motivation
	Problem Statement
	Goals and Contributions of the Dissertation Thesis
	Structure of the Dissertation Thesis

	State-of-the-Art
	Monitoring Approaches
	Detection Methods
	Big Data Processing
	Semantic Relations in Data

	Topics and Contributions in Details
	Network Measurements Analysis Framework (NEMEA)
	Stream-Wise Approach to Flow-Based Analysis (SW)
	Application-Aware Detection Methods (AA)
	Semantic Relations in Flow Data (WITNESS)
	General Terms
	Witness types and witnesses

	Selected Detection Algorithms in Details
	Detection of Known Features (KF)
	Detection of DNS Misusage — Covert Channel (DNS)
	Detection of Attacks Against VoIP Infrastructure (SIP)
	Vertical and Horizontal Port Scan (VS)
	Brute-Force Password Guessing (BF)
	Distributed Denial of Service (DDoS)

	Construction of Flow Data Scatter (PARINFRA)
	Scalable Infrastructure for Processing with Flow Scatters

	Recapitulation of the Main Contributions

	Conclusions
	Future Work

	Bibliography
	Publications of the Author
	Included Papers
	NEMEA: A Framework for Network Traffic Analysis
	Nemea: Searching for Botnet Footprints
	Stream-wise Detection of Surreptitious Traffic over DNS
	Hunting SIP Authentication Attacks Efficiently
	Using Application-Aware Flow Monitoring for SIP Fraud Detection
	Analysis of Vertical Scans Discovered by Naive Detection
	Making flow-based security detection parallel
	Preserving relations in parallel flow data processing

