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A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics

Prague, August 2016



Supervisor:
doc. Ing. Jan Schmidt, Ph.D.
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Co-Supervisor:
doc. Ing. Petr Fǐser, Ph.D.
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Abstract and contributions

This doctoral thesis deals with application of implicit representations of vector sets in the
field of digital circuits testing and dependability evaluation. Here, an algorithm perform-
ance and output quality significantly depend on the representation of vector sets. Explicit
representations of vector sets (e.g. enumeration of vectors) have been thoroughly studied
in the past, but they are not suitable for large industrial circuits with huge sets of vectors.
Thus, late research aims on more scalable representations of vector sets. In this field, the
most promising way is to describe a vector set by its characteristic function, which can be
implicitly represented by Boolean networks (or their special cases like And-Inverter Graph),
Boolean cubes, SATisfiability (SAT) instances in Conjunctive Normal Form (CNF) or Bin-
ary Decision Diagrams (BDDs) and their modifications, etc. This thesis summarizes the
most common implicit representations of a vector set and shows some breakthroughs or
suggests interesting ways for further proceeding in different fields of digital system design,
testing and verification.

The implicit representation of a vector set as a SAT instance in a CNF seems to be most
promising and scalable in the field of digital circuit testing and dependability evaluation.
Thus, this representation of a vector set is examined in detail. An extensive research on
properties of SAT instances in a CNF confirms some previous observations and introduces
new ones. The application of this implicit representation is experimentally evaluated on
two pilot examples:

1. The SAT-Compress algorithm shows an application of the SAT-based approach in
the field of serial compression of test vectors. Even a simple greedy algorithm is
able to reach the compression ratio comparable with the state-of-the-art tools (86-
90% on average). The influence of initial conditions, simple heuristics and speedup
techniques on the test compression performance is discussed, as well as the suitability
of the implicit representation of the vector set for similar problems.

2. The fault classification algorithm shows an application of the SAT-based approach
in the in the field of dependability evaluation, where faults must be quickly and
precisely classified into four groups by their observability on the circuits outputs.
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This algorithm utilizes an implicit representation of vectors for proving arbitrary
predicates quantified over an input vector. This method combines features from
SAT-based Automatic Test Pattern Generation (ATPG) and SAT-based property
checking.

Moreover, a novel and original method to convert a conceptual hardware (miter) to
a Pseudo Boolean Optimization (PBO) problem instance was proposed. This technique
allows to produce test patterns with a high number of don’t care (unspecified) bits. Our
extensive research on don’t care bits in serial compression disapproved an old thesis, which
claims that more don’t care bits in test vectors grants a compression algorithm much more
freedom in overlapping and grants a better compression.

Keywords: implicit representations, testing, test compression, dependability
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Chapter 1

Introduction

Testing of digital circuits and their dependability are of a great concern in circuit design.
Testing significantly influences the time to market and yield, while the dependability is
crucial in safety-critical systems.

The complexity of digital circuits and systems increases and the ability of computing
devices to solve problems like test generation and dependability evaluation in a reasonable
time significantly depends on a chosen algorithm and search space representation. Universal
solutions become inefficient, thus solutions customized for a specific task are preferred.
Researchers all around the world are forced to optimize algorithms for circuit synthesis,
test generation, dependability evaluation and other tools globally used in EDA (Electronic
Design Automation).

In this context, the search space representation is crucial for further processing and it
directly influences the time and memory consumption. Algorithms for test generation for
digital circuits, as well as algorithms for computing of dependability parameters must usu-
ally deal with huge sets of choices to be processed. The sets express either the possibilities
of choice (at least one vector from the set is needed), or summary (the whole set of vectors
is needed). Such sets can be expressed explicitly, as an enumeration of possible choices, or
implicitly, by describing the required characteristic properties of the set.

In EDA tools processing logic circuits, an explicit representation (enumeration) of the
vectors set is usually infeasible (memory, CPU computation time, etc.), because the number
of vectors often grows exponentially with the circuit size (the number of gates) or the
number of primary inputs (PIs). Hence, using implicit representations is necessary.

Implicit representations of a vector set allow EDA tools to solve huge problems. How-
ever, generation of characteristic properties of the set and operations over them can be also
very time or memory consuming in general. Hence, the ability to solve a problem depends
on properties of each instance, the chosen representation, and the algorithm applied. An
appropriate choice can prevent a time or memory explosion, e.g., as in satisfiability (SAT)
based Automatic Test Pattern Generation (ATPG) tools. Here, the set of test patterns
is represented as a SAT problem instance in a Conjunctive Normal Form (CNF) [1],[2].
Another example is a precise dependability evaluation. The algorithm must process all
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1. Introduction

possible configurations of the circuit primary inputs and their responses on primary out-
puts (POs) [3],[4]. This thesis also discusses the application of SAT ATPG principles in
the field of test patterns compression and dependability evaluation.

1.1 Motivation

The digital circuit design, testing and dependability evaluation are areas which have been
thoroughly studied for many decades and various techniques and algorithms were presented.
Most of these techniques are designed to directly process a table of vectors [5],[6],[7],[8],[9],
state set [10], or perform operations by traversing the circuit [11],[12],[13],[14],[15],[16].
These techniques were able to reach remarkable results, but lately, with the growing circuit
size, their performance can significantly decrease. This degradation is often caused by the
amount of information to be processed, which typically grows exponentially with the circuit
size. Recent techniques and algorithms try to overcome this performance degradation by
application of new structures or more sophisticated algorithms.

In this context, the application of implicit representations of the information caused a
great breakthrough for many painful problems like model checking [10], circuit verification
[17],[18], testing of hard-to-test faults [2],[19], path delay faults test generation [20],[21],
diagnosis of the circuit considering multiple faults [22],[23],[24], and many others (chapter 3,
the State-of-the-Art for details). In most cases, the processed information is the set of vec-
tors obtained by some transformation from a digital circuit. This set of vectors is typically
encoded as Binary Decision Diagrams (BDDs) [25],[26], their modifications [27],[28],[29],
or a SATisfiability (SAT) problem instance in a Conjunctive Normal Form (CNF).

Previous achievements reached by application of implicit representations of vector sets
encouraged us to make further research on the most popular implicit representations and to
show their possible applications. Digital circuit’s dependability and testability is of a great
concern of every engineer, and thus the case studies presented in this Thesis are focused
on this area. The application of implicit representations of vector sets in test vectors
generation proved to be very efficient mainly for hard-to-test-faults. Thus, we explore
further utilization in test vectors compression in this Thesis too. Moreover, achievements
in the field of model checking and circuit verification suggest that implicit representations
could be beneficial for dependability computation tasks where some predicate must be
evaluated for all vectors on circuits’ primary inputs (PIs).

1.2 Problem Statement

This Thesis aims at implicit representations of vector sets and their application in serial
compression [5],[6],[7],[30] and dependability evaluation [3],[4],[31]. The SAT or BDD based
ATPGs proved to be highly efficient in tasks where the set of test vectors is small (hard-to-
test faults) [2],[19] or the whole set or a suitable subset of test vectors is needed (constrained
vectors) [19],[32]. The main aim of this Thesis is to show interesting properties of widely
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1.2. Problem Statement

used implicit representations like SAT in CNF, BDD etc. and to try to show their strengths
and weaknesses on two case studies.

This thesis focuses on:

◦ Research on properties of implicitly represented vectors sets. These properties may
indicate how the representations can behave during their processing. These obser-
vations and properties can be utilized for miscellaneous design and optimization
algorithms.

◦ Case study on serial compression of the vectors set. Serial compression is typically
based on a greedy algorithm which tries to compress (find maximum overlapping)
test vectors pre-generated by an ATPG [5],[6],[7],[30]. The pre-generated set of test
vectors significantly influences the compression rate. It is impossible to enumerate
all possible test vectors for all faults and choose the best subset to maximize their
overlap and thus maximize their compression rate. This seems to be a suitable task for
application of implicit representations. The main idea is that the set of test vectors for
each fault can be represented implicitly and the best vector for overlap (maximizing
the overlapping) can be chosen on-the-fly by applying constraints. This research
is a direct extension of SAT-based ATPG techniques. The theoretical outcomes
can be partially used in tasks, where some constrained subset of test patterns is
generated, like path delay faults test generation [33],[20],[21], multiple fault diagnosis
[22],[23],[24], power aware test generation [32], and many others.

◦ Case study on application of implicit representations for dependability evaluation.
Dependability seems to be another suitable area to demonstrate the strengths and
weaknesses of implicit representations. Its precise evaluation frequently depends on
evaluation of some predicate over the whole set of input vectors. Application of
the whole vectors set on primary inputs is infeasible for larger circuits, because the
number of test vectors grows exponentially with the number of the circuit’s primary
inputs (PIs) [3],[4]. Thus, our research is focused on evaluation of general predic-
ates over the implicitly encoded set of input vectors. This research generalizes the
principles used in SAT ATPGs and demonstrates its advantages and disadvantages
in fault classification. The main aim is to speed up the precise evaluation of depend-
ability parameters. The theoretical outcomes can be partially used in tasks where a
general predicate must be evaluated over a set of vectors, like fault classification and
dependability evaluation [3],[4],[31], multiple fault diagnosis [22],[23],[24] and many
others.

Simply summarized, this thesis discusses the properties of implicit representations and
their application in pilot examples (serial compression/fault classification) and forms basic
rules for their application in similar tasks. The pertinence of test vector representations
and the way of processing for these problems is discussed as well.
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1.3 Contributions of the Thesis

The main aim of this thesis is to discuss the application of implicit representations of vector
sets in serial compression and dependability evaluation. This thesis sumarizes application
of implicit representations of the vectors set in different fields of digital system design,
testing and verification (chapter 3). Moreover, two pilot examples are introduced:

◦ SAT-Compress [A.10],[A.9],[A.17],[A.5] has been introduced as a pilot example for
serial compression. A simple and easy to implement SAT-based compression al-
gorithm which is able to reach the compression ratio comparable with state-of-the-art
algorithms (86-90% on average).

◦ A fault classification [A.6],[A.8],[A.12] tool was introduced as a pilot example for a fast
and precize fault classification. This tool utilizes an implicit representation of vectors
for proving arbitrary predicates quantified over an input vector of a combinational
circuit. This method combines features from SAT ATPG and SAT based property
checking.

Furthermore, an extensive research on SAT instances produced by Tseitin transform-
ation from combinational circuits has been performed [A.11]. These measurements show
that:

◦ SAT instances are similar to 2+p-SAT problems, where p = 2.37, which makes them
easy-to-solve (confirms [34]).

◦ SAT instances can be dramatically reduced, while the represented test vectors set is
preserved (60% variables and 65% terms can be removed on average).

◦ Satisfiability of these instances is 99% on average, while their random clones have
only 10% of satisfiable instances on average.

◦ SAT instances are highly constrained. On average 57% of variables are fixed to a
constant value for every SAT solution (backbone).

Moreover, research on serial compression disapproved an old thesis [6],[35],[36], which
claims that more don’t care bits in test vectors grants a compression algorithm much more
freedom in overlapping and grants a better compression [6],[35].

Research on pilot examples proved, that implicit representations of the vector set can
be very beneficial for problems where the vectors or their subset are required (fault classi-
fication), but to some extent it fails for problems where the output is a sequence of vectors
(serial compression).

Techniques to increase the efficiency of SAT-based serial compression have been pro-
posed and discussed [A.5],[A.1],[A.2],[A.7].

A novel and original method to convert a conceptual hardware (miter) to a Pseudo
Boolean Optimization (PBO) instance was proposed [A.1],[A.2].

Numerous experiments were performed to obtain precise and reliable data.
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1.4 Structure of the Thesis

This thesis is organized into eight chapters as follows:

1. Introduction: Discusses the current situation in the field of digital system design, test
and verification. Summarizes the motivation for our research and forms the problem
statement. Finally, a brief overview of contributions is introduced.

2. Theoretical Background : Defines and clarifies theoretical terms and definitions gen-
erally used in this thesis.

3. State-Of-The-Art : Here, the research on implicit representations of vectors sets is
summarized. Representative techniques from different fields of digital system design,
test and verification are briefly described. This chapter shows the importance of
implicit representations of vectors set in this field and breakthroughs given by their
application, or interesting techniques of vectors processing.

4. Properties of Implicitly Represented Vectors Set : Summarizes and discusses the re-
search on properties of implicit representation of the vectors set as a SAT instance
in CNF.

5. Serial Compression: Summarizes and discusses the research on serial compression. A
dedicated sub-chapter “state-of-the-art” summarizes current compression techniques
and addresses their strengths and weaknesses. The SAT-Compress algorithm is in-
troduced as a case study. New technique for conversion of conceptual hardware to
a PBO instance is introduced. Experimental results show properties of the serial
compression problem and demonstrate the behavior of the SAT-based algorithm.
Discusses effects which influence the compression ratio and scalability.

6. Dependability and Fault Classification: Summarizes and discusses application of SAT-
based techniques to fault classification. First, the target architecture is described.
The fault classification and techniques of dependability evaluation are introduced.
A dedicated sub-chapter “state-of-the-art” summarizes current techniques and ad-
dresses their strengths and weaknesses. A method for proving arbitrary predicates
quantified over an input vector of a combinational circuit is presented. Experimental
results are discussed to show strengths and weaknesses of the SAT-based approach.

7. Discussion: Discusses case studies introduced in chapter 5 and chapter 6. Targets
their suitability for application of implicit representations of the vectors set and forms
general recommendations for their manipulation.

8. Conclusions : Recapitulates contributions of this thesis, summarizes the results and
discusses a possible future work.

7





Chapter 2

Theoretical Background

This chapter defines terms and principles generally used in this thesis. Definitions specific
for case studies are described in dedicated chapters as preliminaries.

2.1 Preliminaries

First let’s define some basic terms used in this thesis.
A Boolean function f(x) = f(x1, . . . , xn), where n denotes the number of input

variables, describes a mapping Bn → B between input and output Boolean domain B =
{0, 1}, thus f : {0, 1}n → {0, 1}. In fact, a Boolean function determinates the output value
{0, 1} for a vector of Boolean variables (or constants) given as input.

A characteristic function χf of a Boolean function f(x) is a special case of Boolean
function, which denotes if the input vector of variables and the output value of f(x) respect
the mapping given by f(x) (consistency check), thus χf (x1, . . . , xn, f(x)) = 1 ⇔ f(x) =
f(x1, . . . , xn).

From our point of view, a Boolean function represents a set of Boolean vectors where
each vector consists of input variables and its characteristic function denotes if a given
Boolean vector belongs to this set.

Each Boolean function can be described by a Boolean network (see subsection 2.1.1),
a Boolean formula (general or in a conjuctive/disjunctive normal form), truth table (enu-
meration of vectors), Binary decision diagram, or many others (see section 2.3). Each
representation of such vector set (Boolean function) has specific properties like the size
and hardness of processing, which determinate their applicability in practical tasks. Our
research aims on these properties and studies the applicability of representations of the
vector set in serial compression and dependability evaluation.

2.1.1 Boolean Network

The most common input of EDA tools is a netlist of gates which represents a combinational
circuit to be processed. This netlist of gates can be modeled as a Boolean network. A
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Boolean network is a Directed Acyclic Graph (DAG) with vertrices (nodes) corresponding
to logic gates and edges corresponding to wires (signals) interconnecting particular gates.
An example is shown in Fig. 2.1. Inputs x1, x2, x3, x4 of the Boolean network are called
Primary Inputs (PIs) and outputs z1, z2 are called Primary Outputs (POs). A node fx is
called a fanin node of a node fy, if there is a directed edge from fx to fy and a fanout node
if there is a directed edge from fy to fx. A node fx is a transitive fanin node of a node fy
if there is a directed path from fx to fy and a transitive fanout node if there is a directed
path from fy to fx. Each node in a Boolean network has a logic function associated (e.g.
basic gate function AND, OR, NOT, XOR), which corresponds to the represented logic
gate.

Figure 2.1: Boolean network examples.

2.1.2 CNF Satisfiability Problem

Let us have a Boolean formula given in a Conjunctive Normal Form (CNF), i.e., written
as a conjunction of clauses, where each clause consists of a disjunction of literals. A literal
is a logic variable or its complement.

Definition 1. Deciding whether a formula in CNF is satisfiable is called a satisfiability
(SAT) problem. If the formula consists only of clauses having exactly k literals, we call
the problem k-SAT.

Example 1. Let us have a formula in CNF: ϕ = (a∨b∨¬c)∧(¬a)∧(a∨c). The formula is
called satisfiable, when there exists an assignment of variables a, b, c, so that the formula
is equal to 1. We can see that ϕ is equal to one for a combination (a, b, c) = (0, 0, 1),
thus it is satisfiable.

It is well known that the k-SAT problem is NP-complete for K ≥ 3 [37]. The 2-SAT
problem is solvable in a polynomial time [38].

Definition 2. Deciding on satisfiability of CNF formulae having a mixture of 2- and
3-literal clauses is called a 2+p-SAT problem [39]. Here p stands for a percentage of 3-
literal clauses. This model interpolates between 2-SAT (for p = 0 ) and 3-SAT (for p =
1 ) problems. For p >0 the 2+p-SAT problem is NP-complete as well.
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2.2 Implicit vs. Explicit Representations of Vector Sets

This chapter clarifies the definition of implicit and explicit representations of the vector
set and shows typical representatives of both.

In context of cognitive science, the information representation can be denoted as im-
plicit or explicit [40]. The information is explicitly represented (encoded), if it is expressed
literally and unambiguously and can be extracted quickly by a constant-time algorithm,
while information is implicitly encoded if it is not accessed directly and additional pro-
cessing is needed to recover it. It means that cognitive science considers only accessibility
of encoded information.

In context of digital circuits design, verification and testing, the implicit and explicit
representations of the vector set are expanded as follows:

◦ The vector set is represented explicitly, if particular vectors can be extracted directly
without additional processing and the size of the representation grows proportionally
with the number of vectors in the set. This is, e.g., an enumeration of vectors.

◦ The vector set is represented implicitly if it is described by some characteristic prop-
erties, thus a vector cannot be extracted without additional effort and the size of
the representation does not grow proportionally with the number of vectors in the
set. The set can be represented as, e.g., a satisfiability problem (SAT) instance in
a Conjunctive Normal Form (CNF) or a Reduced Ordered Binary Decision Diagram
(ROBDD).

In fact, the expanded definition of implicit and explicit representation of a vector set
introduces dependency on vector representation (encoding) size. More precisely, the rela-
tion between the size of the vector set and its encoded representation is considered, as well
as the vector accessibility.

It can be concluded that the expanded definition of implicit representation of the vector
set introduces a reduction of memory consumption, but it increases the complexity of
processing. The main aim of researchers is to find a balanced ratio between memory and
time consumption, while maintaining performance.

The most common representation of a vector set in the field of digital system design,
testing and verification is an enumeration of vectors. Such enumeration of vectors rep-
resents the vector set explicitly and it is not suitable for large sets, because memory re-
quirements or simple iteration of vectors are infeasible. Thus, current algorithms try to
describe a vector set by a characteristic function. Furthermore, the characteristic function
can be implicitly represented by Boolean networks (or their special cases like And-Inverter
Graphs (AIG) [41]), Boolean cubes, SAT instances in CNF or Binary Decision Diagrams
(BDDs) [27], [26] and their modifications. Comprehensive survey of particular implicit
representations of the vector set can be found in the next chapter.
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2.3 Implicit Representations of Vector Set

The previous chapter defines implicit and explicit representations of vectors sets. The
represented set of vectors can be implicitly described by a characteristic function. A very
suitable and straightforward way of characteristic function construction in the field of
digital design, testing and verification is by introduction of “conceptual hardware”. Con-
ceptual hardware (which is typically a logic circuit) is often created from the processed
digital circuit, which is extended by additional logic representing assertions about the cir-
cuit [1], [22], [23], [24], [31], [42]. Conceptual hardware is not intended for synthesis, but
describes the desired characteristic function of the vector set. Conceptual hardware itself
is in fact an implicit representation of the vector set, but it is often transformed to more
suitable implicit representations of the vector set, e.g., a SAT instance in CNF or a Binary
Decision Diagram (BDD). These are more suitable for formal verification methods, which
are very efficient for proving or disapproving of given assertions.

This chapter describes and compares the most common implicit representations of
vector sets (characteristic function, conceptual hardware), like a set of Boolean cubes, a
SAT problem instance in CNF, And-Inverter Graph (AIG) [41], Binary Decision Diagram
(BDD) [27], [26] and its modifications like Ordered Binary Decision Diagram (OBDD) [27]
or Reduced Ordered Binary Decision Diagram (ROBDD) [27].

Fig. 2.2.a shows a Boolean function (vector set) represented by a truth table. In this
case, the truth table explicitly represents a vector set. Each particular vector of the
vector set is represented directly by a row of this truth table. Each column of the truth
table represents a bit in the vector, which is labeled by a name given in the header row.
A Boolean function (or a set of vectors) can be described by its characteristic function
denoting whether a given assignment of inputs, outputs and internal signals is consistent
or inconsistent with a particular gate function. The characteristic function of the vector
set is shown in Fig. 2.2.b. This characteristic function χf (x1, x2, x3, f) = 1 if the vector v
= {x1, x2, x3, f} belongs to the set of vectors enumerated in table shown in Fig. 2.2.a.

Representation of a vector set by Boolean cubes (see. Fig. 2.3.a) can be considered as an
implicit representation of the vector set if a particular Boolean cube represents (encodes)
more than one vector. These Boolean cubes can be extracted from the truth table by
recursive application of Boolean adjacency rules. Two vectors are adjacent if they differ
in one bit only. For example, vectors [110] and [111] can be encoded to vector [11X]
where ’X’ represents don’t care value. The don’t care value can be replaced by logic value
’0’ or ’1’. Thus, introducing don’t care values produces a Boolean cube, which implicitly
represents a set of vectors.

Fig. 2.3.b shows a representation of the vector set by a Boolean formula. In practical
tasks, a Boolean formula is often described in a Conjunctive Normal Form (CNF), see
Fig. 2.3.c. Each variable assignment, which satisfies conditions described by a Boolean
formula in CNF, represents one vector from a vector set. A set of all vectors can be
explicitly described as enumeration of vectors, which satisfy the Boolean formula in CNF.
The set of clauses defines constraints of the variables assignments. Thus, the CNF implicitly
represents a vector set satisfying constraints. The instance of CNF can be easily obtained
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Figure 2.2: Truth tables a) Boolean function (vector set) b) Characteristic function of
Boolean function.

Figure 2.3: Implicit representation of the vector set: a) Boolean cubes b) characteristic
function c) characteristic function in CNF.
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from a Boolean network [1], [43], [44], [45], [46] and its size grows linearly with the circuit
size.

Figure 2.4: Boolean network represented as And-Inverter Graph (AIG).

And-Inverter Graph (AIG) [41] is a special case of a Boolean network. It is represented
as a Directed Acyclic Graph (DAG), see Fig. 2.4. It consists of one primary output (for
the case of characteristic function), primary inputs, two-input AND gates and inverters.
Each AND gate is represented by a node with two inputs and the inversion is indicated by
a marker on the edge. Time consumption of the conversion from any Boolean network is
proportional to the size of the circuit. Thus, it is fast and scalable. This representation
of a characteristic function is very suitable for further conversion to CNF. AIG consists of
AND gates and inverters. Thus, the CNF instance produced from AIG is more homogenous
which is beneficial for further processing (e.g. solving by SAT solver, fault simulation, etc.)
[47], [48].

Binary Decision Diagrams (BDDs) [27], [26] are also a very popular representation of
the vector set. Here, the vector set (characteristic function) is represented as a rooted
Directed Acyclic Graph (DAG) with a root node G = (V, E), where V is a set of nodes,
while E is edge set. It consists of decision nodes (internal) and terminal nodes (0-terminal
and 1-terminal). Nodes are labeled by variable names and are connected by directed edges
which are labeled with a logical value representing the assignment of logical value (0 = low,
1 = high) to the node (variable). Terminal nodes have no child nodes and they are labeled
with a value 0 or 1. Each internal node in BDD has exactly two successors (e.g. node u
has low(u) and high(u)) and each path from the root to any terminal node consists of all
variables. Thus, BDD is in fact a binary decision tree, see Fig. 2.5.a. Such a binary decision
tree is not very efficient for representation of larger characteristic functions, because the
number of nodes always grows exponentially with the number of variables. Thus, additional
rules were introduced to increase the efficiency of BDDs. First, the order of variables on
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Figure 2.5: Implicit representation of the vector set a) BDD, b) ROBDD.

the path from the root to any terminal node is fixed. Such BDD is called Ordered Binary
Decision Diagram (OBDD) [27]. Furthermore, Fig. 2.5.a illustrates that in BDD there is
a great number of redundancies. Such redundancies can be eliminated by reduction rules:

1. Eliminate duplicate terminal nodes. Terminal nodes are compacted, thus only two
terminals remain.

2. Eliminate duplicate non-terminals. Merge two nodes u, v, in cases where low(u) =
low(v) and high(u) = high(v).

3. Eliminate redundant nodes, where low(u) = high(v).

OBDD which is reduced by application of the reduction rules is called Reduced Ordered
Binary Decision Diagram (ROBDD) [27] (see Fig. 2.5.b). ROBDDs are much more efficient
for representation of vector sets than BDDs and are widely used mainly in digital system
design and synthesis [49], [50], [51], [52], [53], [54], [55]. Reduction rules can reduce the size
of ROBDD significantly, but the number of nodes dramatically depends on the variable
order [27], [26]. However, searching for a good variable order is a NP-complete problem
[56].

2.4 Circuit-to-CNF Transformation

Transformation of a combinational circuit to a Boolean formula in a Conjunctive Normal
Form (CNF) is a foundation stone of many approaches in digital circuit design and verific-
ation. The circuit itself implicitly represents a characteristic function of a vector set, but
it is not a very suitable representation of vector sets for formal verification methods.

Fig. 2.6 shows a simple circuit, which will be used for demonstration of the circuit-to-
CNF transformation.
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Figure 2.6: Simple combinational circuit.

There are many techniques for circuit-to-CNF transformation [1], [43], [44], [45], [46],
which try to optimize the transformation process, but the most common one is the Tseitin
transformation [1], [45] which is also used in this thesis. Now, its basic principles will be
described.

The Tseitin transformation [1], [45] composes the circuits’ CNF from characteristic
functions of circuits’ gates. The characteristic functions are derived from logic functions of
the gates. For example, let us consider the AND gate D = A ∧ B. For any two functions
P and Q, P = Q is equivalent to (P ⇒ Q) ∧ (Q ⇒ P ). In this way the AND gate
characteristic function is constructed as (D ⇒ (A ∧ B)) ∧ ((A ∧ B) ⇒ D). Next this
expression is transformed to CNF using Boolean algebra rules, obtaining (A∨¬D)∧ (B ∨
¬D) ∧ (¬A ∨ ¬B ∨ D). The CNF for the whole circuit is constructed by conjunction of
characteristic functions (in CNF) of each gate, see Fig. 2.7.

Figure 2.7: Circuit characteristic function in CNF.

The main advantage of the Tseitin transformation is its easy application on a Boolean
network consisting of basic gates (AND, OR, NAND, NOR, NOT, BUFF). The character-
istic function in CNF for each basic gate can be generically added to the circuit’s CNF in
linear time. The equations for generic generation of characteristic functions in CNF are
shown in the last column of Table T1. Here, a Boolean variable xi denotes a gate input
and a Boolean variable y the gate output.
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Table 2.1: Basic gates and their characteristic functions

2.5 Automatic Test Patterns Generation (ATPG)

Despite of the fact, that the yield in digital circuit production increases, the number of
defects is still considerable. A defect in implemented hardware causes a fault in the function
of the digital circuit, which results as an error on primary outputs of the digital circuit.

The ATPGs are tools for generation of patterns detecting a fault (test patterns/test).
The most common input of the ATPG is a digital circuit described by a Boolean network
and the fault model. The output of the ATPG is a set of test patterns detecting faults
which can occur in the digital circuit.

The fault model describes the effect caused by a defect in hardware implementa-
tion of the digital circuit. Such abstraction reduces the dependency on technology and
the complexity of simulation (many defects can be modeled by the same fault). There
are many fault models, e.g., single/multiple stuck-at fault model, bridging fault model,
path/transition/gate delay fault models etc.

We can generate deterministic test patterns for all detectable faults. The core of most
common deterministic ATPG procedures consists of three steps which are processed for
each fault:

1. Fault activation: injects a fault to the Boolean network

2. Path sensitization: sensitize a path from the faulty signal to a primary output

3. Line justification: justify unassigned nets to fulfill the conditions given by assign-
ments performed in previous steps.
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2.6 SAT-Based Test Patterns Generation (TPG)

In SAT-based Test Patterns Generation, the TPG problem is reduced to the SAT problem.
The characteristic function of the test vectors set is described by a SAT problem instance in
CNF and is constructed by introduction of conceptual hardware. The conceptual hardware
of fault-free and faulty circuits is combined and transformed to CNF [1], [2], to obtain a
SAT problem instance. Satisfiable assignments of variables of this CNF are test vectors
detecting the respective fault.

Figure 2.8: SAT instance generation for an ATPG.

A Boolean variable is assigned to each signal in the circuit. Each gate in the sub-
circuit S1, which corresponds to the output cone of the fault to primary outputs (POs) of
the circuit is copied and forms the set of gates H (faulty part of the circuit). All gates
in the cone from the observable POs to the primary inputs (PIs) are included in the set
S ⊆ C(S = S1 ∪ S2), see Fig. 2.8.

For each gate, the CNF Φg is derived from its characteristic function. The CNF Φc

representing the fault-free part of the circuit is constructed as a conjunction of all CNFs
of gates gs1, . . . , gsn ∈ S:

Φc =
∧

Φgsi 1 ≤ i ≤ |S| (2.1)

To generate a test for a fault F, the characteristic function Φf of the faulty circuit is
generated as a conjunction of all CNFs of gates gh1, . . . , ghn ∈ H:

Φf =
∧

Φghi 1 ≤ i ≤ |H| (2.2)

Outputs of the fault-free and faulty circuit are coupled by XOR gates whose outputs
are further evaluated by an OR gate. The function ΦXOR is generated as a conjunction
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of characteristic functions of these gates. The SAT instance for a fault F is obtained as a
conjunction of Φc, Φf and ΦXOR:

Φtest F = Φc ∧ Φf ∧ ΦXOR (2.3)

Finally, 1-literal clauses are added to inject the faulty value in Φf , to set its image in
Φc as a complement of the faulty value, and to set the output of the OR gate in ΦXOR to
1 (the formula must result in 1 to detect the fault).

The Φtest F solutions represent the whole set of test patterns detecting the fault F. If
Φtest F is unsatisfiable, the fault F is undetectable. More information can be found in [1],
[2].

A conventional SAT-based ATPG algorithm [1], [2] can be described in four steps:

1. Generate a fault list for a given circuit.

2. Pick one fault from the fault list and generate its CNF.

3. Solve the SAT problem for this CNF. The solution represents a test pattern detecting
the respective fault. If the CNF is unsatisfiable, the fault is removed from the fault
list and marked as undetectable.

4. Simulate the test pattern obtained in step 3 and remove all detected faults from the
fault list (fault dropping).

5. Repeat steps 2-4 until the fault list is empty.

For details on the SAT-based ATPGs, see [1], [2], [57], [58], [59], [60], [61], [47], [62].
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Chapter 3

State-Of-The-Art

Applications of implicit representations have been thoroughly studied in past decades and
caused many breakthroughs (or suggested interesting ways for further proceeding) in differ-
ent fields of digital system design, testing and verification. This section briefly summarizes
some problems and solutions, where implicit representations of the vector set are utilized.

3.1 Verification and Model Checking

Significant breakthrough was made in the field of model checking for finite systems [10],
[48]. Previous approaches are based on decision heuristics which examine the state graph
describing the system behavior. The search space (state graph) is represented by a list or
a table whose size grows proportionally with the number of states. The number of states
in a state graph can grow exponentially with the number of components in the system.
Such a large search space cannot be explicitly stored in memory or processed in reasonable
time. Thus, it is not possible to check models for large industrial systems by this approach
[48].

In [10] a general method which represents the state space symbolically (implicitly)
instead of explicitly is presented. The Mu-Calculus [63] is used as primary specification
language and BDDs are used to represent relations and transitions. Even if the size of the
BDD can grow exponentially, empirical results show that the BDD size grows linearly, while
the number of states grows exponentially in most cases. This technique utilizing an implicit
representation of state space can handle models with more than 1020 states. In contrast,
techniques which process explicitly represented state space can handle systems with at
most 103 to 106 states. The only weaknes of this approach are systems (combinational
circuits like multipliers) which do not have efficient representations in BDD [27], [26]. In
such cases, the BDD size explodes and the algorithm is unable to find a solution.

Further performance improvement can be achieved by a hybrid approach, which com-
bines strengths of several implicit representations. Such a technique is described in [64] and
aims on equivalence checking, but it can also be used for logic synthesis, timing analysis
or formal property checking. This approach is unique, because it combines four different
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techniques: Boolean reasoning based on BDDs, structural transformations, SAT proced-
ure, and random simulation, which are mutually orthogonal [65], and thus their strengths
are combined. These techniques share the And-Inverter graph (AIG) as a Boolean net-
work representation. First, the structural hashing over AIG is performed to solve simple
problems. Then, random simulation can be efficiently used for problems with dense solu-
tion space. If structural hashing and random simulation fails to solve the problem, the
BDD and SAT are used complementary. The BDD incrementally sweeps the AIG, which
is simplified and thus it reduces the search space for the SAT procedure. All techniques
have set threshold limits (BDD size, number of backtracks, time), which cause an abort in
the current procedure and switching to another (more suitable) one. This solution seems
to be very robust even for industrial circuits.

Another hybrid technique, which tries to overcome orthogonality of SAT and BDD -
based approaches is introduced in [66]. The SAT-based approach is considered to be very
efficient and fast, but produces only one solution, while the BDD-based approach computes
all solutions in parallel, but requires a large amount of memory. Multiple solutions are
sometimes desirable [67], [68], thus a hybrid approach can be beneficial. A hybrid structure
based on a combination of BDD and SAT-based approach is presented. BDDs are extended
by expansion nodes which have two successors representing Boolean functions, and are
labeled by a Boolean operation to be performed. The algorithm starts with one expansion
node which is recursively expanded based on a decision heuristic. The manner of expansion
determines the appearance of the hybrid structure. For a strict Depth First Search (DFS),
the algorithm performs operations similar to SAT procedure, while for symbolically carried
operations it builds a BDD. The efficiency of the proposed algorithm evaluated for n-Queens
and EXOR-Sum-Of-Product (ESOP) problem is encouraging, but much more experiments
should be performed to prove robustness of this approach in hard instances.

The performance improvement of SAT-based techniques can also be achived by injection
of conflict clauses [69], which can guide the decision heuristic and significantly prune the
search space. In [69], the BDD is used to implicitly represent conflict clauses (see section 3.2
for more details).

3.2 Automatic Test Patterns Generation for Stuck-At Faults

Another interesting application is test vector generation for the single stuck-at fault model.
This fault model supposes the existence of one fault in the combinational circuit at most.
The test patterns for a fault are generated by an ATPG, see section 2.5 and section 2.6.

Previous approaches like single path sensitization [14], the D-algorithm [12], PODEM
(Path Oriented Decision Making) [13], FAN [15] and SOCRATES (Structure-Oriented
Cost-Reducing Automatic TESt pattern generation system) [16] are designed to traverse
the digital circuit and set logical values at each node of the circuit to sensitize fault propaga-
tion to primary outputs (POs). Logic values are set randomly or structural information
is used to make an assumption on value assignment. In case of a conflict assignment, the
procedure must perform the backtrack operation and try another assignment. These tra-
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versing algorithms are very efficient for easy faults, where the number of backtracks is low,
but usually fail for hard faults, where the number of backtracks often exceeds backtrack
limits and faults are inaccurately classified as untestable.

Now, let us briefly summarize some advanced techniques and algorithms, which try
to enchance the utilization of implicit representations of the vestor set for test patterns
generation.

CATAPULT (Concurrent Automatic Testing Allowing Parallelization and Using Lim-
ited Topology) [70] generates the whole set of test patterns for a fault by a partial compos-
ition of fan-out stem BDDs. First, controllability and observability BDDs are computed
by composition/decomposition of BDDs representing fan-out stems and primary inputs.
Then, the controllability and observability BDDs are ANDed together. Finally, all stem
nodes in the BDD are removed and then the BDDs consist of nodes, which represent
primary inputs (PIs) only. Fan-out stem nodes are removed by BDD composition. If a
BDD has a path which consists of variables representing PIs only, the fault is testable and
the path represents the test vector for a fault. If BDD compositions for all paths fail,
the fault is untestable. This approach seems to be promissing for small circuits and hard
faults, but its application to large circuits can be limited by a great number of composi-
tions/decompositions to be performed.

TSUNAMI [33] is another BDD-based ATPG for the stuck-at fault model. In contrast
to CATAPULT [70], TSUNAMI combines the path oriented search used in traditional
ATPGs with a BDD-based approach. The faulty and fault-free circuits are traversed to
POs and each gate on the path is added to BDD of the faulty and fault-free circuit.
Constructed BDDs consist of nodes, which represent PIs only. If the faulty and fault-free
BDDs differ, the fault will be propagated (otherwise the algorithm backtracks). Finally,
when the PO is reached, the BDD representing test patterns is created by XOR of the faulty
and fault-free BDDs. This technique is faster in comparison with CATAPULT, but the
final BDD represents only a subset of test vectors detecting a fault at one PO. Moreover,
the constructed BDD can explode as in the previous technique. On the other hand, the
size of the test set can be dramatically reduced (by up to 70% compared with SOCRATES
[16]) by a compaction, which can be performed by ANDing of BDDs representing the test
set for each fault (intersection of test sets for faults).

In [71], the time expensive building of BDD is targeted, as it is the main weakness
of BDD-based techniques, and algorithms are designed to make a compromise between
time and memory consumption. First, the Ordered Binary Decision Diagrams (OBDDs)
are generated only for hard and redundant faults. Test vectors for easy faults are gener-
ated by traditional path sensitization based test patterns generators (TPGs). Second, the
repetition of work for each fault is minimized. It means, that as much computation as
possible must be done once in the initialization procedure to simplify further processing.
The algorithm for OBDD generation is similar as in the previously mentioned TSUNAMI
[33] and suffers from the same problems as previous approaches. The OBDD size can ex-
plode and searching for optimal variable ordering (to reduce OBDD size) is a NP-complete
problem [56]. An interesting observation is made for variable ordering. The OBDD size
can be significantly reduced if the variable representing a fault is on the top (root) of the
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OBDD.
The SAT-Based ATPGs [1], [57], [58], [59], [60], [61], [47], [62] described in section 2.6

are another way of test vector generation. Here, the fault is described as an instance of
the SAT problem in the Conjunctive Normal Form (CNF). Despite the fact that the SAT
problem is NP-complete in general, the instances produced by transformation from the
circuit were proved to be easy to solve [34], [A.11]. There is a number of transformations
possible, like [1], [43], [44], [45], [46], but the most common one is the Tseitin transformation
[1], [45] which produces SAT instances in CNF with the size proportional to the size of
the circuit. Moreover, late research on industrial circuits proved that the time of CNF
generation often exceeds the solving time (mainly for easy faults) [2], [72], [73]. This
drawback has been eliminated by the incremental SAT solver which generates CNFs on-
the-fly driven by the SAT-solver decision heuristic [2], [72], [74], [75], thus only required
parts of CNFs are used (e.g. loaded from repository). Dedicated SAT solvers can benefit
from structural information and prune the search space, which makes SAT-based ATPGs
extremely efficient for large industrial circuits [59], [60], [61], [47], [62]. The SAT-Based
ATPGs can also accommodate multiple-valued logic [76], [77] or different fault models
like path delay fault model, transition fault model etc. On the other hand, the output
of the SAT solver is only one test vector, while the BDD-based approaches often produce
the whole set or a subset of test vectors. Moreover, the test vectors produced by SAT-
based ATPGs have a majority of bits specified, which makes the vector compaction very
difficult. This drawback was partially overcome by a post-processing strategy introduced in
[78], which reduced the number of specified bits by up to 97% (for industrial circuits) and
highly increased test vectors compactability. Comprehensive survey on SAT techniques
used in SAT-based ATPGs can be found in [2].

In [69], strengths of the BDD and SAT-based techniques are combined to improve the
efficiency of the TPG process (speed-up the SAT solver). The efficiency of SAT solvers
dramatically depends on the amount of structural information in SAT instances, which is
usually very low. This technique [69] introduces the BDD learning scheme which injects
conflict clauses into generated SAT instances and speeds up SAT solving. The algorithm
traverses the circuit and detects problematical structures like re-convergent fan-outs, and
generates their BDDs from characteristic functions of involved gates. Such BDDs represent
conflict clauses by paths to the ’0’ node. These conflict clauses are added to each CNF. The
declared run-time reduction is about 60% in comparison with a “basic ATPG”. However,
its applicability is limited by the BDD size, as in the previous cases. The size of the
problematical structure must be limited to keep generated BDDs as small as possible.

The SPIRIT algorithm (Satisfiability Problem Implementation for Redundancy Iden-
tification and Test generation) [79] is another extension of the SAT-based approach. It
preserves the advantages of the SAT-based ATPGs like the unified model, fast and pre-
cise implication process, and it minimizes the memory consumption because it reduces
duplicities in processed data. The single-cone processing [80] with single path propagation
[81], [82] grants a significant memory reduction. Implication graphs and techniques like
static [16], recursive [83] and dynamic (unique sensitization, structural dominators) [15],
[16], [84], [85] learning, backward justification [82], [86] and others, guarantee efficient and
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highly robust TPG. The results for benchmark sets ISCAS’85 [87], ISCAS’89 [88], and
ITC’99 [89] are comparable with another state-of-the-art SAT-based ATPGs (used in in-
dustry) even if techniques like single-cone processing, single path-oriented propagation and
backward justification are used very rarely.

3.3 Automatic Test Patterns Generation for Path-Delay
Faults

The next suitable application of implicit representations of vector set is in test generation
for path delay faults. The algorithm decides whether there exists a cumulative delay fault
on a combinational path, which causes the change on the primary outputs (POs) exceed
the system clock interval. It means that two successive test vectors are needed to test
one path delay fault. The first vector sets initial conditions in the circuit and the second
vector triggers transitions propagations along the path to POs. Previous approaches are
based on circuit traversing and path sensitization [11], [90], [91], [92] similarly to those
used for the stuck-at fault model. New algorithms are rather based on more suitable
implicit representations, which can be processed more efficiently (in terms of speed and
fault coverage).

The following techniques represent BDD-based and SAT-based approaches to Path
Delay Fault (PDF) generation with utilization of implicit representation of the vector set.

BiTeS [93] is a BDD-based ATPG for strong robust path delay faults. For each test
path, the algorithm starts from a primary input and adds all side inputs along the path
to a BDD. These side inputs are set to non-controlling values (e.g. 1 for AND and 0
for OR) to ensure path sensitization. This BDD represents the whole set of test vectors,
thus it is much easier to make the test compaction, like in TSUNAMI [33]. Experimental
results confirmed that even such a simple algorithm without preprocessing is faster than
traditional path sensitization approaches. However, the BDD can explode for some circuits
as in previous BDD-based approaches and in that case the algorithm fails.

MONSOON [21] is a SAT-based ATPG for path delay faults using multiple-valued
logic. This ATPG integrates all techniques used in SAT-based ATPGs for stuck-at faults
like structural analysis, incremental SAT formulation, multiple-valued logic encoding, etc.
This ATPG proved to be more efficient than other state-of-the-art approaches. Moreover,
it can handle large hard-to-test industrial circuits with millions of gates.

3.4 Logic Synthesis

Logic synthesis is another field in digital system design which is very attractive for im-
plicit representations. Logic synthesis covers all operations performed between the first
logic/functionality description and the final acceptable design, which meets all constraints
(size, delay, testability, etc.). An interesting survey on application of BDDs in multi-level
logic synthesis can be found in [94]. Two mainstreams of logic synthesis are logic de-
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composition and logic minimization. The following text briefly describes some interesting
research in this area.

3.4.1 Two-Level Minimization

Two-level minimization algorithms have been mostly based on the Quine-McCluskey min-
imization procedure, which is used to compute minimal sum-of-products. The Quine-
McCluskey computation procedure based on BDDs was introduced in [95], but it is efficient
only for a small group of problems (solves only 2 out of 20 hard ESPRESSO problems [96]).
The base idea is to extract a minimized covering matrix from BDDs of dominance rela-
tions. However, BDDs of dominance relations are produced in each step of the computation
procedure, which is quite inefficient.

In [49], a new technique for logic minimization is proposed. It is based on BDDs,
but it does not require generation of BDDs of dominance relations. Thus it is much more
efficient than previous approaches. The two-level minimization problem is transformed into
the covering problem and the cyclic core is computed by application of transformations.
BDDs are used to represent meta-products of the computation procedure, which is able to
efficiently represent a huge number of minterms and prime implicants. This technique is
able to solve all ESPRESSO problems [96] as well as all MCNC benchmarks [96]. Moreover,
according to [97] it is 10 to more than 100 times faster than previous approaches like [95],
[8], [9] and it is able to solve much more complex problems.

SAT-Espresso [98] is two-level logic minimization tool based on improved version of
ESPRESSO [8], [9], [99]. This improved version called ESPRESSO-II implements a state-
of-the-art heuristic algorithm, which is able to find a nearly minimal cover in a reasonable
amount of time for circuits with less than 100 input variables. Minimization of larger
functions is possible, but it is very time-consuming because it processes explicitly repres-
ented set of prime implicants (cubes). The heuristic algorithm in ESPRESSO-II is based
on four functions, EXPAND, IRREDUNDANT, REDUCE, and ESSENTIALS, which are
performed in the loop to refine the solution. Runtime analysis of ESPRESSO-II on large
benchmarks shows, which functions cause the major performance degradation (particu-
larly, they are REDUCE, ESSENTIALS and IRREDUNDANT). The SAT-Espresso re-
places problematic functions by SAT-based checkers, which are able to perform computa-
tion much faster and speed up the overall process (mainly for large benchmarks). Yet, even
though the SAT-Espresso is faster than ESPRESSO-II, because it introduces SAT based
techniques, it is still much less efficient than the previous approach [49].

Previous techniques are often based on searching for prime implicants (all/subset). In
[100], searching for prime implicants is addressed by application of integer programming
[101], [102]. The problem of prime implicant searching is transformed to minimization
integer programming problem. The input Boolean function in CNF is encoded to a set of
equations. Then, minimization problem is solved by integer programming. However, the
proposed algorithm produces only one prime implicant per call. A set of prime implicants
can be produced by algorithm restarting with additional constraints. Unfortunately, the
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number of prime implicants can grow exponentially with the size of Boolean function.
Thus, this technique is not suitable for generation of all prime implicants.

Another technique for prime implicants computation was presented in [103]. The tech-
nique is based on integer programming as well as the previous technique [100], but it com-
putes the minimal set of prime implicants of propositional formulas. The search space of the
integer programming instance is reduced by an improved generation technique. Moreover,
the proposed algorithm benefits from SAT-based techniques like non-chronological back-
tracking, clause recording procedures and early identification of necessary assignments.
Even if the proposed algorithm is more efficient than the previous approach [100], it is
unable to handle industrial problems.

In [50], the minimization of Disjoint Sum-Of-Product (DSOP) is proposed. This al-
gorithm simply builds a BDD from the DSOP and uses variable ordering techniques like
sifting [104], [105] to keep the BDD size as low as possible. Each path from the root to the
1-terminal represents one DSOP cube. Thus, a reduction of BDD size implicitly causes
a reduction of the DSOP size (assuming that the number of paths is proportional to the
number of nodes). BDD is able to store a DSOP for large circuits and quickly perform re-
quired operations over a cube set. However, the time to build a BDD dramatically depends
on efficiency of the variable reordering heuristic, which can fail in some cases.

The previous approach [50] uses BDD reordering for DSOP minimization. A similar
technique is introduced in [51] for multi-level logic minimization. However, the author
concludes that current heuristics for variable reordering [106], [107] are insufficient and
further research is needed to overcome this bottleneck.

3.4.2 Boolean Network Decomposition

The next vital task in logic synthesis is the Boolean and algebraic decomposition. Previous
approaches such as Ashenhurst [108] and Curtis[109] process a Boolean function represented
by a Karnaugh map, which is very inefficient for larger functions (they explicitly store the
on-set, off-set and dc-set). In contrast, the Roth and Karp [110] decomposition uses only
on-set and off-set, which can be a little bit more efficient in comparison with Ashenhurst
and Curtis, but it still is not sufficient. The nature of decomposition problem suggests
that application of implicit representations can be very useful.

One of the first techniques for Boolean decomposition based on an implicit represent-
ation of a Boolean function was described in [52]. A Boolean function is represented by a
Reduced Ordered Binary Decision Diagram (ROBDD), which is extended to Edge-Value
Binary Decision Diagram (EVBDD). EVBDD is exactly the same as ROBDD, except of
the value for edge evaluation. The proposed algorithm evaluates edges in EVBDD and
computes the bound and free set, which form the cut line in BDD. Then, it is easy to make
decomposition on two BDDs (resp. EVBDD). This technique allows making a simple de-
composition over BDD, but the BDD size dramatically depends on variable ordering as in
previous cases.

BDDs are quite popular, as can be concluded from previous examples. However, they
have also disadvantages. They are very suitable for representing on- and off- set of a
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single output function, but cannot store the don’t care-set or handle multi-output logic
functions. In [55], the problem of BDD representation for incompletely specified multi-
output functions is specified and functional decomposition is addressed. A multi-output
Boolean function is represented by a BDD for a characteristic function (BDD for CF).
Such a BDD consists of nodes representing input and output variables of the combinational
circuit. In the case where the node representing a variable is not on the path from the root
to the 1-terminal, it is considered to be a Don’t Care (DC). The technique for reduction
of a Boolean network aims on reduction of the BDD width instead of a simple nodes
count reduction. The algorithm recursively performs collapsing of BDD partitions which
represent the same function. Furthermore, this reduction is extended by an algorithm,
which heuristically searches for minimal clique cover. Suitable parts of BDD are replaced
by computed minimal clique covers, which causes reduction in the BDD width. This
approach is not applicable for large circuits, because it represents a characteristic function
of the whole multi-output Boolean network and the reduction in BDD size introduced by
DCs is not sufficient.

The presented techniques are just few examples, which demonstrate possible utilization
of implicit representations. BDDs and their modifications are widely used in logic synthesis.
However, they are not applicable in cases where the BDD explodes. Techniques like local
BDD processing can be very useful for logic synthesis, but they are not applicable in
general. Moreover, the size of the local BDD depends significantly on circuit partitioning
algorithm.

3.5 Summary

There are a great number of similar tasks and algorithms showing how implicit repres-
entations of functions or vector sets can be advantageous. Unfortunately, their complete
enumeration is beyond the scope of this work. However, it can be concluded that the most
common implicit representations are BDDs (and their modifications), instance of the SAT
problem in CNF, or some hybrid approaches (discussed in previous paragraphs). From
the summary introduced in this section, a common engineer can conclude that SAT-based
approaches are much more efficient than the BDD-based ones. However, this conclusion is
not exactly true. It was proved [65] that BDDs and SAT are orthogonal, which means that
there are problems where SAT-based techniques are very efficient, while the BDD-based
technique fails, and vice versa. Despite of that the SAT-based techniques seem to be much
more resistant to failure.

All these examples show that a suitable application of an implicit representation for
a suitable problem can be advantageous and can produce optimal results in a reasonable
amount of time. In contrast to the previously mentioned, the application on unsuitable
problem can cause performance degradation or produce poor results. This dissertation
thesis shows two case studies and discusses possible ways of problem solving by using
implicit representations. Moreover, it discusses the suitability of similar problems for
application of implicit representations. The implicit representation of the vector set as a
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SAT instance in CNF is preferred, because previous research proved, that it is much easier
to handle and its application can yield in a great robustness and performance improvement.
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Chapter 4

Properties of Implicitly Represented
Vector Set

Previous chapters show that implicit representations of vector sets appearing in logic design
and testing have been thoroughly studied for decades. This research can be divided into 3
mainstreams:

1. Circuit-based approach, where the characteristic function of the vector set is de-
scribed by a combinational circuit and a desired vector is extracted by some circuit
traversing algorithm.

2. BDD-based approach, where the characteristic function of the vector set (or the
circuit function) is described by a BDD.

3. SAT-based approach, where the characteristic function of the vector set is described
by an instance of a SAT problem in CNF. Each assignment of variables, which satisfies
the Boolean formula, represents one vector from the set.

This thesis is mainly focused on the vector set representation described as a SAT
problem instance in CNF. It is the youngest and a very promising approach, which proved
to be suitable in many areas (see chapter 3). The SAT problem is NP-complete in general,
but SAT instances produced from combinational circuits are known to be easy to be solved
[34], [A.11]. The circuit-to-CNF transformation is fast and the CNF size grows linearly
with the circuit size. The circuit representation of the vector set seems to be inefficient for
further processing and the BDD representation of the vector set does not seem to be very
suitable for big circuits.

This chapter discusses hardness, satisfiability and possibilities of reduction of SAT
instances in CNF produced by the Tseitin transformation [1], [45] from a digital circuit.
More comprehensive survey can be found in [A.11], [A.5], [A.14], [A.16], [A.13], [A.15].

The difficulty of solving random SAT problem instances has been thoroughly studied in
the past years. In [111] Selman proposed a metric of difficulty of solving the SAT problem,
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in terms of the number of the Davis&Putnam [112] algorithm steps. This algorithm has
been established as a basis of most of the modern SAT solvers [1], [57], [58], [59], [60],
[61], [47], [62]. He has found that there exists a phase transition, where SAT instances
rapidly turn from satisfiable to unsatisfiable. At this transition (threshold), D&P-based
algorithms suffer from extremely long solving time. Such a threshold was observed at
the clauses/variables ratio near 4.3 for 3-SAT, independently of the number of variables.
At this threshold, approximately 50% of random instances are satisfiable. An interesting
phenomenon is observed for the 2-SAT problem: the SAT/UNSAT transition is continuous,
the 50% satisfiability threshold lies near the ratio of 1.0, whereas there is no apparent
solving time increase near this threshold. It was shown that 2+p-SAT problems behave
like 2-SATs for p <0.4 and like 3-SAT for p higher [39].

By processing approx. 60 circuits from the ISCAS [87], [88] and ITC’99 [89] benchmark
sets, we have generated more than 180,000 ATPG SAT instances produced by the Tseitin
transformation. By analyzing them we obtained some information on their properties.
First, we analyzed the ratios of clauses of a given number of literals. From the nature of the
circuit-to-SAT transformation it is expected that 2-literal and 3-literal clauses will prevail.
This fact was more or less confirmed. The following Tab. 4.1 shows the average measured
percentages of K-literal clauses. The first column shows the clause length, while the second
and third column show the average measured percentage of K-literals for SAT instances
produced by Tseitin transformation (“Original SATs”) and SAT instances reduced by
solution preserving reductions (“reduced SATs”) described at the end of this section.

Table 4.1: Average percentages of K-literal clauses

Clause length Original SATs Reduced SATs
[%] [%]

1-literal 3 0
2-literal 70 86
3-literal 24 11
4-literal 2 2

>4-literal 1 <1

The distribution of 2-literal and 3-literal clauses is illustrated in Fig. 4.1, where 1000
random ATPG SAT instances were tested and numbers of instances evaluated as satisfiable
were counted. Judging from this data we can say that SAT instances produced by Tseitin
transformation from the digital circuit are similar to 2+p-SATs, where p = 0.24 [39]. In
order to judge on hardness of these SATs we have computed the clauses/variables ratio, in
order to cope with the above-mentioned metrics. The results were surprising: the average
ratio was 2.37, ranging from 1.38 to 3.01.

Recall that the satisfiability threshold for 2-SAT or a similar 2+p-SAT is near the
ratio of 1.0. I.e., random instances having the above-mentioned clauses/variables ratio
should be mostly unsatisfiable, whereas the SATs produced by Tseitin transformation are
mostly satisfiable (99% in our measurements), since most of faults in the tested circuits
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Figure 4.1: Distribution of 2- and 3-literal clauses in ATPG SATs.

are detectable. To justify this surprising fact, we have generated random instances with
characteristics exactly like those described in this paragraph, with constantly 300 variables,
while we varied the number of clauses. Experimental results have confirmed the theory:
all instances having the ratio above 1.8 were unsatisfiable. Here numbers of satisfiable
formulas of 1000 random ones were measured. We have also generated random clones of
real instances, by exchanging real variables in SAT by random ones. Only 10% of them
were satisfiable. This brings us to the first conclusion: ATPG SAT instances produced
by the Tseitin transformation do differ from random instances; they are satisfiable, even
though they should not be. Up to now, we have no fully relevant clue to explain this
phenomenon. We have measured the connectivity of the SAT instances, when expressed
as graphs [113]. However, we haven’t found a significant difference between SAT instances
produced by the Tseitin transformation and random SAT instances of equal parameters.

The second part of our research on properties of SAT instances produced by the Tseitin
transformation deals with redundancies in the vector set description and also discusses
instance determination to be SAT/UNSAT given by internal constraints.

4.1 Solution Preserving CNF Reductions

Redundant information can be removed from a SAT instance by solution preserving re-
ductions. First, we reduce the number of variables. SAT instances often have 1-literal
clauses. Variables of these literals must be assigned to a constant value, for the SAT to
be satisfied. Repeated application of 1-literal clause elimination will identify most of con-
stantly set variables. The rest of them are detected by fixing the variable to a constant
value and solving the SAT problem, see [114]. Next, we reduce the number of clauses by
removing duplicities, absorbed clauses, and by creating resolution terms [112]. All these
transformations preserve the set of solutions.

Experimental results show that on average 60% of variables and 65% of clauses can
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be removed this way. After these reductions, the clauses/variables ratio sinks down to
1.67 (from 2.37), which in still in the unsatisfiability region of random SAT instances.
The percentage of 2-literal clauses grows up to 86% (from 70%), whereas the percentage
of 3-literal clauses sinks to 11% (from 24%), see Tab. 4.1. Notice that the reduced SAT
instances are theoretically even simpler to be solved than the unreduced ones, in terms of
both the clauses/variables ratio and the percentage of 3-literal clauses.

The next outcome of the reduction was determination of the backbone size [39]. The
backbone is a set of variables that are fixed to a constant value for every SAT solution.
We have evaluated SAT instance satisfiability using the backbone size [39]. The backbone
is removed by the reduction, while its average size was 57% of variables for SAT instances
produced by the Tseitin transformation from the combinational circuit. For the randomly
generated clones of the benchmarks, the backbone size was 77% of variables. This allows
us to state that SAT instances produced by the Tseitin transformation are much less
constrained than random ones, and therefore their satisfiability is higher [39].

4.2 Summary

We have made an exploration of the nature of ATPG SAT instances produced by the
Tseitin transformation from a digital circuit. We have experimentally evaluated parameters
of such SAT instances and found them similar to 2+p-SAT problems, where p = 2.37. This
makes these problems very easy to be solved by state-of-the-art SAT solvers. This fully
justifies already known facts. However, the easiness of ATPG SAT was formerly proven by
analyzing the circuits, instead of the actual SAT instances produced.

Next, we have found that SAT instances produced by the Tseitin transformation sig-
nificantly differ from randomly generated ones of equal parameters, particularly in terms
of their satisfiability. SAT instances produced by Tseitin transformation are mostly sat-
isfiable, even though random instances of the same parameters should not be. We have
proposed, and consequently disproved some theories on the reasons in this thesis. Further
research is needed to fully understand the satisfiability phenomenon.

Finally, we have found that SAT instances produced by the Tseitin transformation
involve a great number of redundancies. On average 60% of variables and 65% of clauses
can be removed by application of solution preserving reductions.
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Chapter 5

Test Compression

Testing of digital circuits is quite a difficult task, for a huge amount test data needed to
be delivered to the circuit under test (CUT). With the growing complexity of designs,
scan-based test techniques are becoming a standard. The test patterns are shifted into the
chain of scan registers (scan chain) through a serial interface and the circuit under test
response is shifted out to the response compactor, see Fig. 5.1.

Figure 5.1: Basic scan based test architecture.

The size of such test patterns set grows significantly with the size of the digital circuit
and memory consumption becomes unfeasible for large circuits. Thus, the compression of
test patterns is a vital task of test patterns generation process. Here, an implicit repres-
entation of the test pattern set can significantly reduce memory and time consumption
required for test patterns set processing.

Yet, the compression ratio is not the only indicator of test compression applicability. A
significant influence on its applicability has the decompression technique and the way of test
patterns application on primary inputs of the CUT (Circuit Under Test). In System-on-
Chip (SoC) designs compliant with the IEEE P1500 standard [115], [116], the data transfer
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is realized by a TAM (Test Access Mechanism), which creates an interface between ATE
(Automatic Test Equipment) and the on-chip test mechanism. Design requirements force
us to make the TAM as narrow as possible, but sending test patterns through a narrow
TAM may cause a considerable growth of the testing time. Thus, compressed test patterns
are often sent through TAM and the decompression is performed by dedicated hardware
on the chip. This approach grants a narrow TAM and keeps the test application time low.
However, the complexity of the decompression hardware must be considered.

There are several methods used for test patterns compression. Many of these methods
are based on using of some encoding, such as statistical codes [117], [118], [119], [120],
[121], run-length codes [118], [119], [120], [122], [123], and Golomb codes [124], others are
based on XOR networks [125], [126], hybrid patterns [127], EDT (Embedded Deterministic
Test) [128] and reuse of scan chains [5].

This chapter deals with the first pilot example which is focused on the test patterns
compression based on patterns overlapping [5], [6], [7], [30] (see subsection 5.1.2 for more
details). Previous compression techniques [5], [6], [7], [30], which are based on test patterns
overlapping try to compress test patterns pre-generated by an ATPG. Pre-generated test
patterns are produced blindly regardless of their suitability for pattern overlapping, which
can significantly influence the algorithm efficiency (the compression ratio). Moreover, the
size of pre-generated test patterns set grows significantly with the size of the circuit, and
their storing or direct processing can be unfeasible. Here, some implicit representation of
the test patterns becomes very handy. The set of all test patterns for each fault can be
represented implicitly and a suitable test pattern or their subset is produced by application
of additional constraints. These additional constraints reduce the set of test patterns in an
informed way, e.g., to grant maximal overlap of test patterns, reduce the switching activity
in the scan chain, etc. The basic principles of this Constraint Test Pattern Generation
(CTPG) are shown in Fig. 5.2.

Figure 5.2: Basic concept of the constrained test generation.

This thesis introduces a novel test patterns compression algorithm SAT-Compress
[A.10], [A.9], [A.17], [A.5] based on a design of a dedicated SAT-ATPG [1], [2] and CTPG
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principles. Unlike in previous approaches, the test patterns are generated on the fly to
reach the locally best overlap and maximize the compression. Test patterns compressed
this way can be easily decompressed by the RESPIN (REusing Scan chains for test Pattern
decompression) decompression architecture [30], which is intended to test system on chip
(SoC) cores by reusing scan chains.

Generally, this research is focused on a class of algorithms where the same set of SAT
instances is repeatedly processed with different constraints. Algorithms are forced to handle
repeated processing of the same SAT instances in CNF, which can cause a significant
time overhead [A.10]. It is expected, that the majority of constrained SAT instances are
classified as UNSAT (UNSATisfiable) [A.11], [A.10]. It means that they do not contribute
by any sub-solution and must be repeatedly solved with other constraints.
Our experiments on CNF processing show the differences (time/memory consumption)
between

◦ their repeated generation,

◦ storing, and

◦ storing of reduced CNFs.

Reduction of stored CNFs is made by solution set preserving SAT transformations
[A.11], e.g., by resolution or propagation of 1-literal clauses. These reductions do not
change the set of solutions.

Next, possibilities of detecting unsatisfiable constrained CNFs were explored. The
UNSAT instances are early detected by resolving conflicts between the demanded fixed
values of the signals in the circuit and their values obtained by CNF implications. The
SAT solving of these unsatisfiable instances can be skipped, which can significantly speed
up the algorithm. Such a process is in this thesis referred as static or dynamic UNSAT
filter based on the performed type of implications.

Another issue in test patterns compression based on patterns overlapping is the number
of bits specified (care)/unspecified (don’t care). Specified (care) bits in a test pattern
produce constraints for the subsequent test patterns, while unspecified (don’t care) bits
can be assigned any value. Thus, don’t care values introduce a kind of flexibility in pattern
overlapping. It is supposed, that the number of don’t cares should be as high as possible
to ensure high compression ratio [6], [35], [36].

For this purpose we extend the SAT-Compress algorithm [A.10], [A.5] by injection of
“don’t cares” into test cubes. The SAT Compress ATPG algorithm generates the com-
pressed test stream by constraining a conventional SAT-based ATPG. Conventional SAT
solvers [129], [130], [131] used as the vital part of most of SAT-based ATPG tools produce
completely specified solutions (all variables are assigned a value in the satisfying solu-
tion). There are several ways of introducing don’t cares (unassigned variables) into the
SAT solution. First, there are SAT-solvers producing incompletely specified cubes directly
[103], [132], [133], [134]. Here satisfying solutions compromising minimum literals (minimal
models, prime implicants) are generated. However, the optimization criterion is computed
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over all variables, which is unsuitable for applications, where values of only some variables
(circuit primary inputs) are of interest.

Next, optimization version of SAT can be transformed to Integer Linear Programming
(ILP) [100]. Here the optimization criterion can be modified for our purposes, so that
only some variables are accounted in its computation. We introduce a similar method,
particularly the conversion of the SAT problem minimizing the number of assigned variables
in the satisfying solution to Pseudo-Boolean Optimization (PBO) [135].

Finally, don’t cares can be injected into a completely specified vector obtained from
a conventional SAT solver [129], [130], [131], while the coverage is checked by simulation.
When fault simulation is performed, we get additional information on the obtained test
cube - its fault coverage [A.7]. Then we can, e.g., inject don’t cares while respecting the
fault coverage. This is the informed way of obtaining test don’t cares proposed in this
thesis. We compare this simulation-based method with the uninformed ones and show its
benefits in test compression, in terms of both the compressed test stream size and test
compression time.

Advantages and disadvantages of these approaches are discussed over the results and
recommendations for further design of SAT-based constrained test patterns generation
algorithms are proposed.

5.1 State-Of-The-Art

This chapter briefly summarizes the state-of-the-art in the field of constrained test patterns
generation (CTPG) and its special case, a serial compression based on a test patterns
overlapping.

5.1.1 Constrained Test Patterns Generation

Generation of test patterns with some constraints imposed is a common process in digital
circuits testing. Test patterns can be constrained for various purposes:

◦ to be better compressed [5], [A.10],

◦ to limit the SAT solver search space,

◦ to exclude invalid input combinations, etc. [1], [32], [136], [137], [138].

One example application of a constrained ATPG is a broadside transition testing [137].
A conventional ATPG based on PODEM [13] algorithm produces a set of test patterns with
a significant number of patterns covering functionally untestable transition faults. These
functionally untestable transition faults need not be tested because they do not affect the
normal functionality of the chip (errors caused by these faults cannot occur). Nevertheless,
testing the chip for these faults may cause the test fail, and thus decrease the yield. Thus,
an ATPG is constrained by a set of forbidden variable assignments that enable detection of
the functionally untestable transition faults. These constraints are described by a Boolean

38



5.1. State-Of-The-Art

formula in CNF. The constrained ATPG fixes variables in the generated test pattern and at
the same time it fixes the corresponding variables in the CNF of constraints and checks the
CNF for conflicts in the variable assignment. When a conflict occurs, the ATPG backtracks
and searches for a different variable assignment in the test pattern. The test set generated
this way does not activate functionally untestable transitions, which increases the quality
of the test and reduces the yield loss caused by testing of the functionally untestable faults.

In [136], constraining of test patterns to generate them by cellular automata is presen-
ted. All test sequences for a fault are checked for conflicts with rule matrices of cellular
automata. The entire set of the test sequences for the circuit under test is implicitly rep-
resented by a BDD (Binary Decision Diagram) [25]. The BDD is used to select only those
sequences which can be reproduced by cellular automata.

An ATPG for industrial circuits with restrictors [138] represents another application of
constrained test patterns generation. Industrial circuits contain a great number of buses,
tri-state elements and other parts, where the set of permitted signal values is restricted.
This structural information is stored as a set of restrictions, which are used by an ATPG
to prune the search space and speed up the test patterns generation. This method was
implemented as a conventional FAN algorithm [15] extended by a concept of restrictors
(constraints).

Low power tests are mostly built from pre-generated test patterns [32] by their reorder-
ing, to decrease the dynamic power consumption (i.e., the switching activity) during the
test. However, constraints can also be formed to guide the test patterns generation process,
in order to generate low power tests directly [32].

The constrained test patterns generation principle may be efficiently employed to com-
press test patterns. In [5], test patterns are customized for testing the circuit using the
RESPIN (REusing Scan chains for test Pattern decompression) architecture [139], [140].
This architecture is targeted to systems on chip (SoCs). To update values stored in the
scan chain of the core under test, scan chains belonging to other cores are used. Test
patterns are compressed by overlapping [141]. Suitable test patterns are produced by a
conventional ATPG tool performing dynamic compaction [142]. Constraints to the circuit’s
primary inputs are applied, in order to reach a locally optimum overlap with the vector
already present in the scan chain from the previous test cycle.

The latest approach to transition delay faults (TDF) [143] test compression is based
on a constrained SAT solving, too [144]. TDF can be detected by a pair of test patterns
applied in two subsequent clock cycles. Test compression is performed by test patterns
overlapping as in the SAT-Compress algorithm, but pairs of test patterns are overlapped
instead.

The SAT-based CTPG algorithm can also be enhanced by techniques used in common
SAT-based ATPGs. These techniques can be divided into two groups. The first group of
techniques deals with SAT solver acceleration by, e.g., variable ordering for the SAT solver
heuristic [145], circuit-based dynamic learning [146] or different clause learning techniques
[69]. The second group of techniques deals with the reduction of the time overhead caused
by the CNF generation e.g. dynamic clause activation [146].
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5.1.2 Serial Test Patterns Compression

The serial test patterns compression technique is basically based on finding the best overlap
of test patterns, which are usually pre-generated by an ATPG. An illustrative example of
this overlapping-based compression is shown in Fig. 5.3. Here the non-compressed test
length equals to the number of patterns multiplied by the number of CUT scan-chain cells,
10x5 = 50 bits in the example case. When properly overlapped, the compressed test length
is 16 bits only.

Note that by shifting the pattern by one bit only, the overlap needs not be always
achieved. Then two or more clock cycles (shifts) must be applied. Such a case is in [140]
referred to as a presence of link patterns. They do not increase the fault coverage, but may
increase the defect coverage. In Fig. 5.3 there are link patterns in the 6th and 11th clock
cycle.

Figure 5.3: Patterns overlapping.

The serial compression technique was described in [141] for the first time. This al-
gorithm generally tries to find contiguous and consecutive test patterns having the max-
imum overlap. Deterministic test patterns are generated by an ATPG and compacted.
Patterns in the scan chain are checked whether they match with one or more test patterns
which were not employed in the sequence yet. In [7], the pattern overlapping problem is
converted into a Traveling Salesman Problem (TSP), for which different heuristics have
been proposed.

The COMPAS (Compressed Test Pattern Sequencer for Scan Based Circuits) [6] test
patterns compression tool is based on a similar approach, but it does not use compacted
test patterns. Test patterns that are to be compressed are pre-generated by an ATPG as
well. However, these test patterns should contain as many don’t care bits as possible. For
this purpose, one test pattern for each fault is generated. Greater number of don’t care
bits grants the algorithm much more possibilities to combine test patterns and reach better
compression. Other improvements are the simulation after every test pattern application
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and searching for best successors of a given starting pattern (usually an all-zero pattern).
These improvements make COMPAS very efficient in comparison with other compression
tools. One of the weakness of COMPAS is the need for don’t care bits. The number of
DCs and the fact that the algorithm fully relies on a pre-generated test set can also affect
the test compression ratio. When the test patterns are highly specified (they contain only
few don’t cares), it is much harder for COMPAS to find a good overlap of the test patterns
and the efficiency of the test patterns encoding decreases, which causes greater memory
consumption [35].

Another compression technique is presented in [5] (see next chapters for more details).
This technique is based on a tailoring of test patterns for a scan-chain. Suitable test
patterns are produced by a standard ATPG tool performing dynamic compaction, while
constraints to circuit inputs are applied.

The state-of-the-art compression/decompression architecture used in industry is the
Embedded Deterministic Test (EDT) [128]. Here a high test compression is achieved by
employing a dedicated but generic test decompressor. The compressed test patterns serve
as seeds for a pseudo-random pattern generator (“ring register”), where they are decom-
pressed and further distributed to scan-chains using a XOR-network structure (“phase-
shifter”). The compressed test patterns are obtained as a solution of a set of linear equa-
tions. Similarly to the previously mentioned test compression methods, the test patterns
to be compressed need to be pre-computed by an ATPG. Again, high amount of test don’t
cares is essential for achieving a good compression ratio [128].

5.1.3 The RESPIN Architecture

The SAT-Compress algorithm [A.10], [A.5] and also its enhancements proposed in this
thesis are based on the RESPIN (REusing Scan chains for test Pattern decompression)
architecture [140], which is targeted to System-on-Chip (SoC) designs compliant with the
IEEE P1500 standard [115], [116]. Only a very small modification of P1500 (addition of
one multiplexer) can accomplish the test decompression job.

The RESPIN decompression architecture is very suitable for compression techniques
based on test patterns overlapping like COMPAS. This architecture is based on full scan,
thus only combinational logic is tested. Therefore, the order of patterns in which they
are applied to the CUT is insignificant. The patterns may then be reordered, to reach
maximum compression (i.e., maximum overlap).

Further, as mentioned above, standard circuit-based ATPGs [14], [12], [13], [15], [16],
[147] are able to generate test cubes with a huge amount of don’t care values. Test don’t
cares are greatly beneficial for the compression, since they can be overlapped with any value
(see Fig. 5.3). Thus, don’t cares bring more freedom into the overlapping process. These
two principles are aimed to be fully exploited by RESPIN-based compression techniques
[5], [6], [A.10], [A.5], [140], [148], [149].

The basic idea of RESPIN is illustrated in Fig. 5.4. Multiple embedded cores are
considered here. To test one core (CUT - Core under Test), the test decmpression is
performed by another core (ETC - Embedded Tester Core).
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RESPIN uses two features of P1500 - the serial and parallel test access modes. The
compressed test bitstream serially enters the ETC, which is configured as a shift-register.
Then the decompressed data is applied to the CUT, which is tested in the parallel scan-
chain mode.

Figure 5.4: RESPIN architecture [140].

The ETC is provided with a multiplexer, enabling rotation of the pattern. Thereby, if
no data come from the ATE, no information on the stored pattern is lost. This opens a
simple way to compression: when the deterministic non compressed test patterns overlap
when rotated by k bits, each test pattern to be applied to the CUT involves only k (or less)
bits coming from the ATE. Actually, rotation needs not be used in practice. In practice,
one bit comes from ATE in each cycle, while the remaining bits of the pattern are formed
by shifting the previous pattern by one bit. This approach eliminates the need for any
control data provided by ATE. For details see [140].

5.1.4 The RESPIN Algorithm

In order to show the main differences between the original RESPIN compression algorithm
[140] and SAT-Compress [A.10], [A.5], which is proposed in this thesis, we will briefly
review the RESPIN algorithm. The SAT-Compress algorithm is described in section 5.2.

The RESPIN algorithm (see Fig. 5.5) starts with running a conventional ATPG to
produce a test T for the circuit (1). Then the constraints cube c is initialized with the
initial test vector (2). This can be the previous content of the ETC scan-chain, an all-
zero pattern, or it can be decided by the compression algorithm. For the latter case, c is
initialized to an all-DC cube.

Then all test cubes from T are tried for merging with c (5). If it is possible (there is
a non-empty intersection of the cubes), c is constrained by T (6) and T is removed from
the test set (7).
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When all test vectors have been tried for merging, a new bitstream bit is formed (10),
the constraint cube is shifted by one bit (11), and the released position is assigned a don’t
care (12). Here n represents the number of circuit primary inputs. The process repeats,
until the test set is not empty (3). Then the bitstream is completed by the remaining bits
in c (14).

Note that if the merging (4, 5) fails for all vectors from T, a new bitstream bit is formed
anyway; the link pattern is thus generated (see subsection 5.1.1).

Such an approach is apparently greedy, and is crucially influenced by the pre-generated
test T. Don’t care values in the test enable easier cube merging (5), thus higher compression.

Figure 5.5: The RESPIN algorithm.

5.2 The SAT-Compress Algorithm

In our SAT-Compress algorithm we try to eliminate weaknesses of previous approaches [5],
[6], [7]. Each fault has its set of test patterns by which it is detected. If we were able
to pick the right pattern for each fault in the right order, we could have reached the best
possible compressed bitstream for a given fault list. Since explicit computation and storing
of all these test patterns is inefficient (and mostly even infeasible), we were forced to find
another, more efficient way of test patterns set representation and processing - using an
implicit representation of test patterns.

First, we try to avoid limitations on test patterns compression given by pregenerated
test patterns (one test pattern for a fault) which are used in previous approaches [6], [7],
[128], [150], [151], [152], [140], [148], [149]. The SAT-Compress algorithm does not rely on
pre-generated test patterns. The most suitable test patterns are generated on the fly, to
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reach the (locally) best overlap. However, the locally best overlap of the test patterns does
not guarantee the shortest length of the generated bitstream.

Figure 5.6: The SAT-Compress algorithm.

Further, we have researched properties of implicit representations of test patterns. We
have found that we can take advantage of principles of SAT-based ATPGs and efficiently
represent all test patterns for each fault implicitly, by one SAT problem instance in a CNF.
The CNF test set representation is much less memory consuming than a standard tabular
test set representation.

The size of the SAT instance is linear with the circuit size, therefore such an approach
imposes no big computational and memory overhead. For details of the circuit to CNF
conversion, see [1], [2].

SAT-Compress uses an implicit representation of all test patterns for a given fault as
a SAT instance described in a conjunctive normal norm (CNF). Any satisfying solution of
the related CNF-SAT problem represents a test vector for the fault [1] and vice versa. If
the CNF is not satisfiable, the fault is undetectable (redundant).

The SAT-Compress algorithm is targeted to the RESPIN architecture. The compressed
test is produced by constraining SAT instances by patterns stored in the ETC (see subsec-
tion 5.1.3 and subsection 5.1.4). In the RESPIN algorithm, a conventional (commercial)
ATPG was constrained in a similar way. However, SAT based representation of test vectors
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offers much higher flexibility and possibilities of to reach much higher compression ratios
[A.5].

Similarly to RESPIN and COMPAS, SAT-Compress tries to find the best overlap of
test patterns by gradually building the compressed test bitstream, while each generated
test pattern imposes constraints on the subsequent test patterns. The basic algorithm is
shown in Fig. 5.6.

First, a fault list for the circuit is generated (1), from which redundant faults are
removed (2). The constraint cube is set to the initial test pattern, as in RESPIN (3). The
compressed bitstream is gradually constructed in the main loop of the algorithm (4-18),
fault by fault (5). A CNF is generated for the processed fault (6), constraints in form of
unit clauses are applied to this CNF (7), and SAT is solved (8). If the constrained formula
ϕ is satisfiable, constraints are refined by the assignment of primary inputs (PIs) in the
SAT solution (10). Then the loop is terminated (11). Note that the new constraint cube is
a subcube of the former one, since the original constraints are included in the SAT instance
(7).

Then a new bitstream bit is formed (14), faults detected by the pattern are removed
from the fault-list (15), and new constraints are formed by a shift left (16-17). The test
generation continues until the fault list is not empty (4). Finally, the bitstream is completed
by the bits remaining in c (19).

Note that compared to RESPIN and similar algorithms, there is no concept of test set
in SAT-Compress; the test is represented implicitly. On the other hand, RESPIN does not
operate with concepts as fault and circuit - these are treated in the ATPG phase run prior
to the compression algorithm.

5.2.1 Experimental results

This subsection summarizes experimental results of SAT-Compress (see Fig. 5.6) and makes
a comparison with other state-of-the-art compression techniques. A brief comparison of
data volume reduction for state-of-the-art compression techniques is shown in Tab. 5.1.
The first column “Circ.” represents the name of the benchmark circuit. A comparison
for only seven biggest ISCAS’89 circuits [88] is shown, since no more relevant data for the
other methods were available to us. The compressed test lengths in bits, for nine different
competitive methods, are shown next. The last column shows the compressed test data
size in bits for the SAT-Compress compression tool. An all-zero initial test pattern for
both COMPAS and SAT-Compress is used, thus the results are not influenced by different
initial states.

The measurement was performed on Intel Xenon CPU - 2GHz with 4GB RAM.
It can be concluded from Tab. 5.1, that the SAT-Compress algorithm can reach similar

and often even better compression of test patterns than most of the presented state-of-the-
art compression methods. SAT-Compress can theoretically reach better results, if a more
efficient fault-processing heuristic was used. Currently, the faults are processed in a greedy,
first-only way. Next chapters show simple extensions of the SAT-compress algorithm like
fault filtering or a more robust don’t care processing.
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The result quality of most EDA processes based on local heuristics depends on random
aspects coming from the input description [155], [A.3], [A.4]. To diminish the influence
of randomness on evaluation, most experiments were conducted repeatedly, with random
initial patterns and random faults ordering, and the results were averaged.

As stated above, there are many random aspects that influence the test generation
process. First of all, it is the selection of the initial test pattern (tp0 in Fig. 5.6). It defines
the initial constraints and therefore it influences the whole run of the greedy algorithm.
The same holds for the ordering of the fault list; the fault list is traversed sequentially until
a test vector detecting some fault is found (see Fig. 5.6, step 5). Different orderings of the
fault list will induce different runs of the test generation heuristic. Also the order in which
don’t cares are injected (see Fig. 5.15, line 3) influences the final bitstream length as well
as permutation of primary inputs.

The time consumed by the presented tools could not be compared because neither
their source codes, nor executables were available. Nevertheless, the time-consumption of
the SAT-Compress algorithm is shown in Tab. 5.2, which compares lengths of compressed
bitstreams for the SAT-Compress and COMPAS as representatives of serial test patterns
compression techniques.

The first column “Circ.” presents the name of the benchmark circuit. The compressed
test lengths generated by COMPAS and SAT-Compress, both starting with an all-zero
test pattern, are shown in the column “Bits”. Then we have repeatedly run the algorithms
starting with different initial test patterns. The average compressed test bitstream lengths
are shown in the columns “Avg.” and average variations of compressed test patterns
lengths are shown in the columns “Var.”. The time consumptions of test patterns com-
pression for SAT-Compress in seconds are shown in the “Time” column. The results of
this measurement show that the bitstream length for both tools significantly depends on
the initial test pattern and starting with an all-zero seed (which is the default setting for
COMPAS) can produce outstandingly poor results, out of the range of the variation (see,
e.g., s298 for COMPAS). In some cases, our tool reaches much better compression than
COMPAS, but it may also fail. For an unknown reason the efficiency of the proposed
algorithm is much better for ISCAS’85 benchmarks than for the ISCAS’89 ones. As can be
seen from Tab. 5.2, the time consumption may be considerable for larger circuits, but we
suppose, that scalability of the proposed algorithm may be improved by using more scan
chains and division of the circuit into smaller parts.

Then, we have evaluated random aspects which can affect the compressed bitstream
length. For greedy algorithms like the SAT-Compress and COMPAS, the compressed
bitrstream length can be most affected by initial conditions. In this context, the compres-
sion ratio can be influenced by the initial test pattern, which is loaded in the scan-chain
and the order of circuit’s primary inputs in the scan-chain (permutation of PIs). Both
these initial conditions are given by hardware design, thus their optimization is limited.

First, we have repeatedly run the algorithms starting with different initial test patterns.
Fig. 5.7, Fig. 5.8, and Fig. 5.9 show examples of distributions of bitstream lengths using
different starting patterns for COMPAS and SAT-Compress. In both cases we always start
with a test pattern covering one particular fault. The number of restarts is equal to the
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Table 5.2: COMPAS and SAT-Compress test lengths and run-times

Circ.
COMPAS SAT-Compress

Bits Avg. Var. Bits Avg. Var. Time [s]

c17 9 9 1.5 11 12.3 1 0

c432 195 218 30.6 189 198.2 21.8 3

c499 260 303.7 47.6 187 198.2 8.7 6

c880 540 412.7 44.3 410 561.5 60.99 10

c1355 1040 1126 68.6 349 - - 74

c1908 1009 989.8 49.6 624 - - 229

c2670 6553 5940 269.7 2223 - - 2305

c3540 747 743.7 32.9 1622 - - 3569

c5315 1255 1159.5 64.8 881 - - 156

c6288 82 95.2 36.6 97 - - 165

c7552 6005 6430.7 345.2 4840 - - 7406

s27 16 13.2 2.3 23 21.5 2.1 0

s208 130 124.1 9.1 202 209 15.9 0

s298 101 79.6 5.5 137 139.7 8.2 0

s344 85 80.9 6.7 116 114.7 10.2 0

s349 85 80.1 6.8 116 114.4 10 0

s382 123 111.3 6.6 191 179.2 12.8 0

s386 264 255 10.8 304 319 12.5 4

s400 121 109 7.2 173 170.9 9.7 0

s420 352 315.9 29.1 624 574.8 46.4 11

s444 116 107 7.5 160 150.6 10.5 0

s510 160 156 8.9 210 211.8 10.3 2

s526 344 349.8 18.4 521 482.8 22.7 4

s526n 344 350.2 18.1 493 - - 3

s641 397 393.3 24.2 710 670.7 28.4 15

s713 428 403.8 26.1 642 672 38.7 32

s820 460 504.6 21.9 697 697.7 26.3 28

s832 494 498.8 19.5 729 690.7 24.1 36

s838 920 762.3 79.6 1800 1638.3 103.5 136

s953 723 700.4 24.7 825 - - 51

s1196 740 738.5 23.5 1211 1202.2 41.9 173

s1238 741 769.2 24.3 1300 1268.7 41.7 365

s1423 596 621.5 38.6 794 827.6 43.9 72

s1488 488 461.5 15.1 546 - - 20

s1494 431 451.3 16.6 573 - - 25

s5378 2148 1995.6 73.8 2407 - - 631

s9234 11594 11309.6 310.7 9928 - - 68119

s13207 4163 - - 10457 - - 67751

s15850 8234 - - 12987 - - 114932

s38417 24198 24926.3 1717.7 19291 - - 91713

s38584 7291 - - 14271 - - 122143
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number of faults.

Figure 5.7: Frequency of bitstream length distribution for different initial test patterns
(c499).

Figure 5.8: Frequency of bitstream length distribution for different initial test patterns
(c432).

As can be seen, the compressed bitstream length seems to have Gaussian-like distribu-
tion and the only difference between SAT-Compress and COMPAS characteristics is their
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Figure 5.9: Frequency of bitstream length distribution for different initial test patterns
(s400).

displacement. This Gaussian distribution of the compressed bitstream lengths for different
starting seeds is a common characteristic of these two tools for all tested benchmarks. It
can be seen that the selection of the initial test pattern has a crucial impact on the resulting
compressed test length, for both algorithms.

Then, we have evaluated the influence of permutation of PIs in scan-chains on the
length of the compressed bitstream. This measurement has been performed for the SAT-
Compress only (we were unable to perform measuerement for COMPAS) and the influence
of PIs permutation on bitstream length is compared with the influence of initial test pattern
on the bitstream length. Results are shown in Fig. 5.10, Fig. 5.11 and Fig. 5.12. As can
be seen, the compressed bitstream length seems to have a Gaussian-like distribution and
their displacement indicates that the permutation of PIs in the scan-chain influences the
compression ratio more than the initial pattern.

This chapter shows that the efficiency of a simple algorithm such as the SAT-Compress
can be very high. In section 5.3, we mentioned that the main weakness of previous ap-
proaches is the pre-generated set of test patterns and the number of don’t care bits in
these test patterns. However, Tab. 5.2 as well as Fig. 5.7, Fig. 5.8 and Fig. 5.9 show that
the compression ratio significantly depends on the initial test pattern. Thus, following
chapters study other influences on serial compression performed by the SAT-Compress
algorithm in more detail. Experimental results are discussed to show effects which influ-
ence the compression ratio and performance most significantly. Finally, the benefits given
by application of implicit representation is discussed as well as its applicability to similar
problems.

50



5.3. Obtaining Test Don’t Cares

Figure 5.10: The influence of different initial test pattern and PIs permutation on bitstream
length distribution for the SAT-Compress algorithm (c432).

Figure 5.11: The influence of different initial test pattern and PIs permutation on bitstream
length distribution for the SAT-Compress algorithm (c499).

5.3 Obtaining Test Don’t Cares

If a conventional SAT solver ([129], [130], [131]) is used in step (8) of the algorithm in
Fig. 5.6, a completely specified satisfying solution is returned. As a result, the produced
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Figure 5.12: The influence of different initial test pattern and PIs permutation on bitstream
length distribution for the SAT-Compress algorithm (c1355).

test pattern (which also imposes constraints on the subsequent patterns) is completely
specified too. Then don’t care values appear only in “link patterns” and they are obtained
by the pattern shifting (17), thus they occur at the “tail” of the constraints cube only.

However, a less specified SAT solution can be obtained, yielding fewer constraints.
Possibilities of doing so will be discussed in this section.

5.3.1 Special SAT-Solvers

There is a group of special optimization SAT solvers that minimize the number of assigned
variables in the solution. So called “minimal models” [132], [133], [134] or “prime implic-
ants” [103] are computed here. There are also techniques converting the optimization SAT
problem to Integer Linear Programming (ILP) [100].

These SAT solvers return a satisfying assignment of variables as a solution, while the
total number of variables assigned a value is minimized.

The SAT instances used in SAT-Compress (and all SAT-based ATPGs) contain vari-
ables representing the circuit primary inputs (n in Fig. 5.6), but also incomparably many
more other variables describing the circuit structure, fault propagation, etc. [1], [2]. How-
ever, the constraints are derived from values of primary inputs only (line 10 in Fig. 5.6);
values of the other variables are of no interest in the overall algorithm. Therefore, min-
imizing the number of assigned primary input variables only makes sense. All the above
mentioned techniques minimize the number of all assigned variables. This renders those
techniques almost useless for our purpose, since there is no guarantee (or at least a prom-
ise) that the number of assigned input variables, which form a very small subset, will be
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5.3. Obtaining Test Don’t Cares

minimal. For this reason, these techniques will not be studied in this thesis, and more
suitable techniques will be devised instead.

5.3.2 Pseudo-Boolean Optimization

Similarly to [100], the optimization SAT problem can be converted to Pseudo-Boolean
optimization (PBO) and solved by available efficient PBO solvers, like MiniSAT+ [156].
The principles of the conversion will be described in this subsection.

For our purposes, it is convenient to obtain a maximally unspecified test vector that is
a solution with maximum of unspecified values at primary inputs. This criterion is often
phrased as maximum don’t cares. As we show here, such a use collides with don’t cares
(DC) in function description. To avoid confusion, we use the term unspecified value in this
section, and use the symbol U for such value.

For better understanding, we will start with a conversion of a MIN-SAT problem, where
the number of variables assigned to “1” is minimized, to PBO:

1. Let x1, . . . , xm be variables of the original MIN-SAT problem.

2. For each clause (l1 + l2 + · · ·+ lj), where li are individual literals (variables or their
negations) construct an inequality l1 + l2 + · · ·+ lj ≥ 1.

3. If a literal li = xk (variable in its direct form), substitute li = xk in the inequality.

4. If a literal li = xk (variable in its negated form), substitute li = (1− xk).

5. Form the optimization criterion as x1 + x2 + · · ·+ xm = min.

Example:
Let us have a CNF formula of 3 variables:

(x1 + x2)(x2 + x3)(x2 + x3) (5.1)

It will be transformed into the following PBO formulation:

x1 + x2 ≥ 1

x2 + x3 ≥ 1

(1− x2) + (1− x2) ≥ 1⇒ −x2 − x3 ≥ −1

x1 + x2 + x3 = min

(5.2)

There are three satisfying solutions of the SAT instance:

x1 = 0, x2 = 1, x3 = 0

x1 = 1, x2 = 1, x3 = 0

x1 = 1, x2 = 0, x3 = 1

(5.3)
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When solved as PBO, a single solution minimizing the number of variables assigned to
“1” will be returned:

x1 = 0, x2 = 1, x3 = 0 (5.4)

Still, all the variables are in the Boolean domain, while we need to encode unspecified
values. For this purpose, we must use two Boolean variables to encode each literal, for
example, as shown in Tab. 5.3.

Table 5.3: Literals transcription

xi xVi xAi
0 0 1
1 1 1

unassigned any 0

In this encoding, xAi value indicates whether the particular variable is assigned a value,
xVi is then the value.

The optimization criterion can be then formed as:

xA1 + xA2 + · · ·+ xAn−1 = min (5.5)

where x1, . . . , xn−1 are primary inputs.

Detecting a fault means to control specified values in the circuit, and to observe specified
values at outputs. Hence, the propagation of unspecified values must be observed, and
every original CNF variable must be doubled in PBO.

The CNF is then rewritten into a PBO instance in a straightforward way, as shown in
the Example above. The solution of the PBO instance maximizes the number of unspecified
PI values, i.e., a maximum of test don’t cares is obtained.

During the circuit-to-CNF conversion, characteristic functions of all gates in the circuit
in the CNF form are added to the SAT instance. For a gate with inputs x1, . . . , xm and
output y, the signature of the characteristic function F is

F : {0, 1}m+1 → {0, 1} (5.6)

For our problem, we need to take undefined value U into account, and the function F
becomes

F : {0, 1, U}m+1 → {0, 1} (5.7)

The strategy is to calculate F in some form, then to encode it by Tab. 5.3 into

F : {0, 1}2m+2 → {0, 1} (5.8)
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or, alternatively, into two functions

F V : {0, 1}2m+1 → {0, 1}
FA : {0, 1}2m+1 → {0, 1}

(5.9)

which have yV resp. yA as the last argument, and to convert them to CNF form.

The main task is to find a concise and complete representation of F. By completeness
we mean that all possible combinations at input and output are covered, so that the origin,
propagation, and termination of undefined values can be calculated. For this purpose, we
adapted D-intersection [12]. Because we represent F as a set of terms in a tabular form,
Tab. 5.4 includes also the ’-’ symbol. Notice that incompatibility cannot occur here.

Table 5.4: Symbol intersection

0 1 - U

0 0 U 0 U
1 U 1 1 U
- 0 1 - U
U U U U U

The complete algorithm for generation of a CNF for a given gate is shown in Fig. 5.13.
Let us assume that gate is a table describing the on-set of a completely specified Boolean
function with one output, and that the columns of the table are labeled x1, . . . , xm−1, y.
Furthermore, if t is a term, let t[j] be the symbol of t in the column labelled j.

The algorithm has four main phases. The first one (lines 1 to 5) derives the character-
istic function. Lines 6 to 16 are the main phase, which adds terms describing the behavior
of undefined values to the function. Finally, the third phase (line 18) encodes the table
and phase four (19-27) outputs the resulting CNF, using CNF and DNF duality. Before
phase four, F can be split into F V and FA. In many cases, the resulting functions are
smaller and easier to complement.

For simplification of the truth table and, more importantly, off-set computation (com-
plementation), the Espresso minimizer is used [8].

The algorithm is as feasible as Espresso minimization [8] and off-set generation are.
Large XOR gates are difficult and have large characteristic functions, but are manageable
to 10 inputs. Specialized algorithms can be devised for even larger gates, this one, however,
has the advantage of being universal.

A complete example of a 2-NAND gate to CNF conversion is shown in Fig. 5.14.

For purposes of the test compression algorithm, a library of CNF descriptions for every
supported gate is created using the procedure from Fig. 5.13. Thus, the conversion is run
only once.
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Figure 5.13: An algorithm generating the CNF characteristic function of a library gate for
gate-to-CNF transformation with encoded undefined values.

5.3.3 Injection Techniques

Don’t cares can also be obtained by “injection” into a completely specified vector (com-
pletely specified SAT solution). The most straightforward injection method will be to try
to inject don’t cares (“unassign” variable values) into a completely specified SAT solution,
while checking whether the incompletely specified solution is still a satisfying one, under
all assignments of don’t cares. However, this would require the number of SAT-solver calls
exponential with the number of injected don’t cares. This makes this approach impractical.

In SAT-Compress, we can benefit from the nature of the problem. Indeed, we primarily
require a cube that covers a particular fault as a solution. Hence, the above exponential-
time satisfiability checking job can be accomplished by symbolic fault simulation [157],
which can be conducted in polynomial time. This idea can be extended further more -
we even need not insist on covering the fault the CNF was constructed for; a test cube
covering any other (not yet covered) fault is a no less valuable solution.

56



5.3. Obtaining Test Don’t Cares

Figure 5.14: Example of a) NAND2 function b) its characteristic function, c) with un-
defined values propagation, d) encoded FA, e) FA in CNF.

Naturally, the more specified the test cube is, the more faults it covers. On the other
hand, unspecified bits (don’t cares) alleviate the constraints and thus maximize the possible
overlap of subsequent patterns. Thus, there are two extreme cases here: either we can try to
inject as many don’t cares as possible, sacrificing the fault coverage of the pattern (which
can drop to covering one fault only), or we can try to inject only don’t cares retaining
the original coverage. Even in the latter case, some don’t cares can be injected. Any
compromise between these two extremes can be used, by driving the injection by some
factor. This will be denoted as CL in this thesis, the Coverage Loss.

The don’t cares injection algorithm is shown in Fig. 5.15. It is supposed to be run after
a completely specified SAT solution in Algorithm from Fig. 5.6 is obtained (step 8). The
SAT solution (s), the constraint cube (c), the fault-list (FL) and the CL parameter are
the inputs to this procedure.

First, the number of faults detected by s is determined by symbolic fault simulation (1)
[157]. Then the test cube (s) is tried for don’t care injection in a greedy way (5). Don’t
cares can be injected into positions allowed by the constraint cube only (4). If the number
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of faults covered by the resulting cube does not sink below the CL factor, the injection is
made permanent (7). The procedure returns a test cube with don’t cares injected, while
its fault coverage is no more than by the CL factor less than the coverage of the original
one.

This procedure is greedy and its complexity is polynomial with the circuit size (de-
pending on the fault simulation subroutine used). Therefore, it imposes no big run-time
overhead.

Note the two extremes: for CL = 0, no fault coverage drop is allowed. This technique
will be referred to as Coverage Preserving Don’t Care Injection (CPDCI) [A.7]. For CL
approaching 1, maximum don’t cares are injected, while the fault coverage may drop to
one fault only.

Summarized, low values of CL represent cases, where the coverage is not lost by the
pattern, however less don’t cares are injected. High CL values induce injecting more don’t
cares, at expense of losing fault coverage of the pattern. The issue of CL choice will be
further discussed in the following section.

Note that the CL values in the experimental section will be represented in percents
(0-100%).

Figure 5.15: The don’t cares injection algorithm.

5.3.4 Experimental Evaluation of Don’t Care Processing

5.3.4.1 Choice of the CL parameter in the simulation-based don’t care injection

It is difficult to say intuitively, what CL values will produce best results. Low values
preserve the fault coverage of test patterns, which may theoretically speed up the whole
compression process. Since patterns covering more faults are generated, less patterns (and
therefore SAT instances) will be needed to achieve complete fault coverage, and thus the
main loop will be shorter. However, these patterns will be rather constrained (low number
of don’t cares), and thus the chances of a successful overlap decrease.
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Conversely, high CL values induce many don’t cares, the patterns will more likely
overlap, however, more patterns would be probably needed to achieve the complete fault
coverage.

While the influence of CL on the number of generated SAT instances and injected don’t
cares is quite clear, it is discussable what effects will these two aspects have on the final
bitstream length and the compression run-time. Therefore, we have evaluated the influence
of the CL value on the algorithm execution experimentally.

Table 5.5: Influence of losing fault coverage

CL [%] DCs injected SAT Bits Time [s]

0 3410.7 772.0 822.0 269.3

5 3436.7 771.8 821.8 262.1

10 3555.6 775.5 825.5 261.0

15 3563.1 773.5 823.5 247.2

20 3774.9 798.2 848.2 252.0

25 3913.4 810.0 860.0 251.6

30 3985.1 815.4 865.4 252.1

35 4303.1 848.6 898.6 260.9

40 4406.7 848.7 898.7 261.8

45 4512.9 857.9 907.9 261.6

50 5145.0 937.4 987.4 255.3

55 5210.8 943.4 993.4 254.6

60 5497.9 970.5 1020.5 267.9

65 5604.0 977.7 1027.7 266.7

70 6061.7 1028.8 1078.8 275.1

75 6493.1 1079.3 1129.3 291.0

80 6701.7 1101.3 1151.3 282.0

85 7108.0 1132.6 1182.6 302.8

90 7768.5 1187.1 1237.1 323.7

95 8598.3 1241.0 1291.0 338.3

→ 100 9743.6 1297.6 1347.6 364.5

The results for one representative ISCAS’85 [87] benchmark circuit c3540 are shown
in Tab. 5.5. Here the SAT Compress algorithm was run with different values of the CL
parameter and the absolute numbers of injected don’t cares (“DC injected”), the abso-
lute numbers of SAT instances solved (“SATs”), the final bitstream length (“Bits”), and
the compression run-time (“Time [s]”) were measured. The values were obtained from
averaging values of 30 runs with random initial patterns, to diminish the influence of
randomness and obtain more precise results (see previous chapter).
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Figure 5.16: Influence of CL on the total number of injected don’t cares.

Figure 5.17: Influence of CL on the total number of SAT instances solved.

These results are also visualized in Fig. 5.16 - Fig. 5.19, more precisely. Here the
minimum, maximum, and average values from the 30 runs are shown.
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Figure 5.18: Influence of CL on the generated bitstream length.

Figure 5.19: Influence of CL on the compression run-time.

We can see that the initial assumptions were confirmed: the number of injected don’t
cares monotonously grows with increasing CL, while the number of solved SAT instances

61



5. Test Compression

increases too.

The most important observation concerns the final bitstream length: the average bit-
stream length monotonously increases with CL (see Fig. 5.18), with best results obtained
for CL = 0, i.e., the CPDCI technique. Also the run-time decreases for low values of CL
(Fig. 5.19).

Similar experiments were performed on many other benchmark circuits and exactly the
same behavior was observed in all cases. Results for some other ISCAS benchmarks are
shown in Tab. 5.6. The final bitstream length only was measured. The data was obtained
by averaging 30 runs with random initial patterns, the values are rounded to integer values.

This experiment has shown that no fault coverage of every single pattern should be
sacrificed, even though more don’t cares would be injected otherwise. Therefore, the usage
of the CPDCI technique from [A.7] is fully justified; there is no need for looking for a
compromise between the number of injected don’t cares and the fault coverage.

Note that the extreme two cases, CL = 0 and CL → 100% represent the completely
informed and completely uninformed don’t care injection techniques, respectively.

The comparison of the original SAT-Compress algorithm and the SAT-Compress al-
gorithm with CPDCI for two illustrative benchmark circuits (c432 and c880) is shown in
Fig. 5.20 and Fig. 5.21. Algorithms were executed 5,000-times, each time with a randomly
generated initial pattern. The frequencies of occurrence of the resulting bitstreams of dif-
ferent lengths (the x-axis) are shown, both for the basic SAT-Compress (Fig. 5.6) and the
SAT Compress augmented with CPDCI.

Figure 5.20: Frequency of bitstream lengths distribution (c432).
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5. Test Compression

Figure 5.21: Frequency of bitstream lengths distribution (c880).

We can see that the histograms follow the Gaussian distribution, which is expectable.
More importantly, the two distributions have different mean values, advantageously to the
CPDCI. CPDCI also has smaller standard deviation, thus randomness plays a smaller role
here, making CPDCI more robust than the standard SAT-Compress [155]. Nevertheless,
the influence of randomness is still crucial (even though reduced in the CPDCI case), and
worse results can be obtained by CPDCI accidentally, see Fig. 5.20, where the histograms
overlap. Similar frequency distributions were observed for different orderings of faults and
don’t care injections.

5.3.4.2 Comparison of CPDCI and PBO

As a consequence of the previous experiments, uninformed SAT solvers producing don’t
care values, including the PBO based technique from subsection 5.3.2 seem to be com-
promised. Don’t cares must be injected with care (in our case, the fault coverage is of
the major concern), and definitely not only their number in the SAT solution must be the
optimization criterion.

To confirm this, we have made a comparison with the PBO-based technique. The PBO
technique produces test patterns with the real maximum of don’t cares, however in an
uninformed way, too. The results for some benchmark circuits [89], [158] and the three
processes (uninformed don’t care injection, CPDCI, and PBO) are shown in Tab. 5.7. The
final bitstream lengths and the average percentages of test don’t cares (out of the number of
PIs) are shown. The values were obtained from 1,000 randomized measurements (random
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initial pattern) and averaged (see subsubsection 5.3.4.1). The average values over all the
circuits are computed in the last table row.

We can see that even though maximum of don’t cares is obtained by PBO, the resulting
bitstreams are typically longer than those obtained by CPDCI.

5.3.4.3 Comparison of SAT-Compress variants

In this subsection we present a more thorough comparison of the original SAT-Compress
algorithm (Fig. 5.6) and SAT Compress extended by don’t care injection. The experiments
were conducted using a subset of the ISCAS benchmark circuits [87], [88].

The results are shown in Tab. 5.8. After the circuit name, the number of its faults is
given, as the measure of the circuit complexity. Then results of three variants of SAT-
Compress are shown: the original SAT-Compress, i.e., without don’t care injection, the
uninformed don’t care injection (CL → 100% ), and the informed one (CL = 0, CPDCI).
The absolute numbers of injected don’t cares (where applicable), the lengths of the final
bitstreams, relative bitstream length improvements w.r.t. the original SAT Compress, and
the compression times are shown. Average values are shown in the last table row.

We can see that the don’t care injection helps to reduce both the final bitstream length
and the test compression time. Even the uninformed don’t care injection significantly
reduces both in some cases. On the other hand, in some cases the injected don’t cares
make the solution worse. This indicates that the uninformed injection can sometimes do
more bad than good. The average bitstream size reduction is positive, by 15%.

Finally, the CPDCI technique reduces the bitstream length by 31% on average and the
deteriorating cases are only rare and not significant. This experiment justifies the CPDCI
one last time.

5.3.4.4 Summary comparison results

A comparison of the basic SAT-Compress algorithm and its extension by the Coverage
Preserving Don’t Care Injection technique (CPDCI) will be presented in this subsection.
The results for some selected circuits are shown in Tab. 5.9.

The first column of the table (“Circuit”) represents the name of the benchmark cir-
cuit. The second column “Faults” gives the number of faults in the circuit, which reflects
its size. The next two columns “Bits” and “Time” represent the number of bits of the
compressed bitstream and the time spent by compression by the basic SAT-Compress al-
gorithm. The next columns show results for the SAT-Compress algorithm with the CPDCI
technique employed. The lengths of the compressed bitstreams and the compression times
are shown there too. The percentage test length and time improvements w.r.t. the basic
SAT Compress algorithm are shown in the “Bits impr.” and “Time impr.” columns.

Furthermore, the column “DCs tried” shows the absolute numbers of care bits tried for
DCs injection and the “DCs inj.” column the number of successfully injected bits. The
percentage of successfully injected don’t cares is then shown in the “Success” column.
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5. Test Compression

Finally, results of the test compression tool COMPAS [6], [148], [149] are shown, because
it represents the current state-of-the-art and it is based on the same principles (the RESPIN
architecture).

The compressed bitstream lengths are given in the “Bits” column, the bitstream length
differences w.r.t. the proposed CPDCI technique is shown in the last column. COMPAS
runtimes are not present, since the experiments were conducted on different platforms,
thus they are hardly comparable.

The last row of the table shows average values obtained from all measured 170 bench-
mark circuits.

We can see that the CPDCI technique can significantly decrease the length of the
compressed bitstream and accelerate the algorithm. The bitstream length is reduced by
46.31% on average and the compression time is reduced to 35.18% in comparison with the
basic SAT-Compress algorithm. Even the success of the CPDCI technique in don’t care
injection is remarkable; more than 65% of bits tried were successfully assigned a don’t care.

The CPDCI technique increased the efficiency of the SAT-Compress algorithm, both in
the compressed test length and test generation run-time. However, there are cases where
the extended SAT-Compress algorithm produced worse results, e.g. for the c499 circuit.
We assume that this is caused by the random noise introduced by the algorithm, as shown
in subsubsection 5.3.4.1.

The scalability of the method is naturally given by the circuit size, particularly the
number of faults, but also by its efficiency - the more faults are detected in each algorithm
step, the faster is the overall algorithm. Therefore, the CPDCI technique maximizing the
number of covered faults in each step also significantly reduces the runtime.

In comparison with COMPAS we reach a 6% improvement on average. There are
benchmarks, for which SAT-Compress strikingly overcomes COMPASS (e.g., c1355, c2670).
For some benchmarks COMPAS wins, however, the differences are not so large (except of
some extreme cases, like s35932). This is probably due to a huge amount of randomness
introduced into the ATPG process, as shown in subsubsection 5.3.4.1. We can conclude
that these two techniques are competitive.

5.4 Processing of SAT instances in Serial Compression

The SAT-Compress algorithm deals with repeated processing of the same SAT instances
in CNF with different constraints. The processed CNFs are often unsatisfiable with given
constraints. As they are repeatedly generated and solved with different constraints, the
CTPG process becomes time-consuming [A.10], [144]. Thus, the CTPG process itself and
possible techniques of its acceleration have been analyzed. We discuss the CNFs manip-
ulation and their filtering based on satisfiability, analyze the efficiency of the proposed
techniques and evaluate their usability in SAT-based CTPG algorithms.

All measurements were performed on a CPU Intel Core 2 Duo - 1,8GHz with 1GB RAM.
MiniSat v1.14 [129] has been used as the SAT solver. Experiments have been performed
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5.4. Processing of SAT instances in Serial Compression

Table 5.9: Experimental results for the basic SAT-Compress algorithm and CPDCI

Circ.
name

Faults
SAT-Compress SAT-Compress with CPDCI COMPAS

Bits [-] Time [s] Bits [-]
Bits

Impr.
[%]

Time [s]
Time
impr.
[%]

DCs
tried

[-]

DCs
inj. [-]

Success
[%]

Bits [-]
Diff.
[%]

alu4 6435 3349 1994.97 3048 8.99 1773.53 11.10 3380 349 10.33 - -

b04 C 1666 5408 463.67 910 83.17 88.25 80.97 7659 6876 89.78 - -

b05 C 1928 1091 90.95 631 42.16 55.57 38.90 1593 1018 63.90 - -

b07 C 1084 997 9.89 706 29.19 7.88 20.32 1444 895 61.98 - -

b11 C 1675 863 41.90 562 34.88 32.00 23.63 1557 1084 69.62 - -

c1355 1566 330 13.40 334 -1.21 13.43 -0.22 312 19 6.09 1040 67.88

c1908 1869 607 44.66 495 18.45 36.71 17.80 542 82 15.13 1009 50.94

c2670 2629 3103 556.27 1806 41.80 387.30 30.38 11276 9791 86.83 6553 72.44

c3540 3291 3422 1618.65 833 75.66 323.90 79.99 4146 3415 82.37 747 -11.51

c432 520 209 1.39 156 25.36 1.28 7.91 368 256 69.5 195 20.00

c499 750 182 1.51 219 -20.33 1.67 -10.60 206 28 13.59 260 15.77

c5315 5291 1205 261.30 815 32.37 275.89 -5.58 2410 1812 75.19 1255 35.06

c7552 7419 6581 2739.73 3522 46.48 1902.73 30.55 9029 5998 66.43 6005 41.35

c880 942 1195 35.71 614 48.62 15.16 57.55 2250 1765 78.44 540 -13.70

duke2 1302 1486 56.80 986 33.65 35.13 38.15 1717 810 47.18 - -

ex5p 5430 276 38.72 276 0.00 42.12 -8.78 268 0 0.00 - -

intb 1893 2070 220.27 1653 20.14 171.01 22.36 2103 471 22.40 - -

jbp 1132 2174 41.42 843 61.22 16.69 59.71 2281 1563 68.52 - -

misex3 9251 3556 5240.01 3467 2.50 5220.65 0.37 3551 100 2.82 - -

s1196 1242 2487 109.33 876 64.78 36.36 66.74 4292 3474 80.94 740 -18.38

s1238 1286 2705 141.46 876 67.62 40.06 71.68 4926 4105 83.33 741 -18.22

s13207 9664 114390 285075.00 5498 95.19 22678.30 92.04 206673 202598 98.03 4163 -32.07

s1423 1501 1179 46.38 628 46.73 39.53 14.77 2346 1871 79.75 596 -5.37

s15850 11336 77582 147342.00 5734 92.61 22686.30 84.60 179148 174836 97.59 8234 30.36

s344 342 161 0.59 95 40.99 0.47 20.34 280 210 75.00 85 -11.76

s35932 35110 3686 308382.00 4998 -35.59 390677.00 -26.69 2971215 2969101 99.93 1860 -168.71

s382 399 255 0.61 131 48.63 0.39 36.07 258 161 62.40 123 -6.50

s420 430 526 2.81 370 29.66 1.62 42.35 748 463 61.90 352 -5.11

s526n 553 830 5.27 471 43.25 2.70 48.77 1197 785 65.58 344 -36.92

s5378 4511 19847 6765.48 1989 89.98 870.94 87.13 31022 29444 94.91 2148 7.40

s641 463 1335 13.35 469 64.87 5.62 57.90 2282 1919 84.09 397 -18.14

s713 543 1223 11.64 454 62.88 6.08 47.77 2199 1859 84.54 428 -6.07

s820 850 702 10.30 664 5.41 9.97 3.20 692 65 9.39 460 -44.35

s838 857 2078 32.20 955 54.04 19.27 40.16 2957 2242 75.82 920 -3.80

s9234 6475 24395 25844.19 5688 76.68 10238.03 60.39 53308 48599 91.17 11594 50.94

s953 1079 3131 95.99 771 75.38 20.23 78.92 4317 3693 85.55 723 -6.64

t481 2853 5541 1808.29 5147 7.11 1561.09 13.67 5433 304 5.60 - -

table3 2487 2025 382.11 2085 -2.96 413.89 -8.32 2134 69 3.23 - -

table5 2384 3191 703.46 2821 11.60 609.92 13.30 3301 547 16.57 - -

term1 1314 6221 405.79 1418 77.21 102.96 74.63 5443 4089 75.12 - -

vda 1970 680 31.95 594 12.65 27.24 14.74 652 103 15.80 - -

vg2 1122 2507 59.94 1403 44.04 32.53 45.73 2430 1093 44.98 - -

x1 2504 7583 886.07 2953 61.06 354.54 59.99 7689 5013 65.20 - -

Avg. 3396 7649 23209.59 1585 46.31 13907.19 35.18 86341 85018 65.54 1981 6.14
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on a subset of smaller ISCAS’85 [87], ’89 [88] and ITC’99 [89] benchmark circuits, because
the memory requirements for CNFs storing were unfeasible for bigger circuits.

5.4.1 On-The-Fly Generation vs. Storing in Memory

Generating SAT instances in CNF takes on average 80% of test generation time in SAT-
based ATPGs [1], [2], [47], [73] and can also cause a significant time overhead in the CTPG
process. When used repeatedly, SAT instances can be generated on-the-fly, or they can be
pre-generated and stored in memory. Either original CNFs are stored, or the CNFs are
simplified by solution set preserving reductions [A.11], to reduce memory requirements.

Under common fault models, a fault causes the value of a signal to differ between
the faulty and fault-free copy of the circuit in the SAT ATPG process. The values are
determined by the fault model. It suffices to inject them into the corresponding CNFs
using unit clauses, however, this opens up a way to simplify the CNFs. Specifically, values
of other variables common to all solutions can be discovered.

Repeated application of unit clause elimination identifies most of constant variables.
The rest of them are detected by fixing the variable to a constant value (both 0 and 1) and
solving the SAT problem to evaluate if both instances are satisfiable or unsatisfiable, see
[159]. The number of clauses can be reduced by removing duplicities, clause absorption,
and by creating resolution terms [A.11]. All these reductions preserve all SAT solutions.

Our experimental results show that on the average 60% of variables and 65% of clauses
can be removed by solution-set-preserving reductions [A.11], see chapter 4 for details. Thus
it can be possible to store all CNF instances or their subset in memory, decrease the number
of repeatedly generated CNF instances, and accelerate the CTPG process.

In the on-the-fly approach, the CNFs are repeatedly generated while they are differently
constrained in the test generation process. It is obvious that memory requirements are
negligible. On the other hand, such a repeated generation of CNFs can increase the test
generation time significantly [A.10].

The next technique is based on storing of all processed CNFs in memory. CNFs for each
fault are generated only once in the initial part of the algorithm and stored in memory.
The time overhead incurred by repeated CNF generation is reduced. However, constraints
change in the test generation process, thus original (unconstrained) CNFs must be re-
peatedly loaded into the SAT solver.

Loading of the CNFs into the SAT solver should cause much less time overhead, but
the number of literals stored in memory can be unfeasible for larger circuits. The number
of stored literals can be further reduced by the solution set preserving SAT reductions
described in chapter 4 [A.11], [114].

Experimental results and a comparison of the three techniques (generation on-the-fly,
processing of the original and reduced CNFs stored in memory) of CNFs processing is
presented in Tab. 5.10. The first column of the table “Circ. name” represents the name
of the benchmark circuit from ISCAS’85 [87] or ’89 [88]. Differences between processing
of the CNFs on-the-fly and storing of non-reduced/reduced CNFs are shown in the three
columns. The “CNF” columns indicate the time spent by a CNF generation or loading
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5.4. Processing of SAT instances in Serial Compression

of stored CNFs from the memory. The “SAT” columns represent the time spent by a
SAT solving of the processed CNFs. Columns “SIM” show the time spent by simulation
and columns “SUM” indicate the total time consumptions of the algorithm. For methods,
where storing of CNFs was employed, the stored CNF literals count (“Lit. count”) and
the time spent for the CNFs generation eventual reduction and storing is shown (“Store”).
The last row of the table (“Avg.”) represents average values of all columns.

First, let us focus on the time spent by CNFs generation. Experimental measurements
show that loading of the stored CNF instances is in all cases faster than their generation
on-the-fly. In the case of the benchmark circuit c3540, the time of CNFs generation is 2205
seconds, whereas loading of the previously generated CNFs stored in the memory is made
in 1112 seconds and for reduced CNFs it takes only 436.8 seconds.

The time consumption of CNFs storing seems to be negligible in comparison with CNFs
generation and SAT solving. Similar behavior is observed for storing of the reduced CNFs
on majority of processed benchmark circuits. However, in some cases, the CNFs reduction
increases the time consumption of CNFs storing, and as a result it takes comparable time
with the SAT solving. For example, the time of the reductions and storing of the CNFs
for the benchmark circuit s1494 is 26.14 seconds, while solving of these CNFs takes 35.54
seconds.

On the other hand, the number of stored literals grows linearly with the size of the
circuit (number of gates). For example, the benchmark circuit c3540 consists of 1648
gates and its fault list has 3428 faults. It means that 3428 CNFs must be stored, which
is 31,439,618 literals (after reduction). It is obvious that storing the CNFs is unfeasible
for large circuits, because of memory consumption. CNF reduction does not improve the
situation, because the reduction of the CNFs size was not as significant as we hoped for
[A.11].

The average values confirm the previous observations. The time consumption of the
CNFs processing can be dramatically decreased by storing the reduced CNFs in memory.
The average total time for the CNFs processing indicates, that processing of the stored
CNFs is on average 1.34-times faster than its processing on-the-fly. Thus it seems that
storing of the CNFs is better than processing of the CNFs on-the-fly, but the memory
consumption of the stored literals can be unfeasible. The storing of the reduced CNFs
does not decrease the processing time of the CNFs, because the solution set preserving
reductions are time consuming for bigger instances.

It can be concluded that for small circuits it is better to store CNFs or reduced CNFs,
but this is unfeasible for large circuits, because of high memory requirements. The SAT
solving times indicate that generation of the CNFs on-the-fly can be the best way to choose,
because it is not limited by the high memory consumption.

5.4.2 Fault Filtering

Constrained test patterns generation algorithms like SAT-Compress must usually solve a
great number of constrained SAT instances repeatedly. As mentioned above, it has been
observed, that the majority of these instances are unsatisfiable with given constraints (do
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not produce a test pattern). In SAT-Compress, 98% of generated CNFs are unsatisfiable
with given constraints on average [A.11]. Generation and solving of these CNFs can cause
a significant time overhead. That is why we focused on filtering of faults which lead to
such UNSAT instances, in order to accelerate the constrained test patterns generation.

To detect a fault, a set of signals must be set to required values. For a stuck-at fault,
it is a single value of a single signal. Given some constraints as a set of fixed values for
the primary inputs of the circuit, we can propagate these constant values to other signals
in the circuit. If the signal values required to detect a fault conflict with values implied by
the input constants, that fault cannot be excited and hence tested.

The advantage of such filtering technique is that constant propagation is done once
for a set of constraints, and used repeatedly for all faults. In the circuit domain, it is
equivalent to Boolean Constraint Propagation [160], [130], [131] in the SAT domain.

Two fault filtering algorithms are described and experimentally evaluated in the follow-
ing subsections. An implication filter using static implications to detect unsatisfiability is
used in the first approach, which is then extended by dynamic implications in the second.

5.4.2.1 Static Fault Filtering

Many techniques [1], [83], [161], [162] utilize implications in SAT instances to accelerate
searching for the satisfied solution. Our implication filters are not meant to accelerate
or solve the SAT problem. Their main aim is fast detection of conflicts produced by
application of constraints (variable assignments) on the instance of the SAT problem in
CNF. These conflicts indicate that the SAT problem is unsatisfiable with given constraints
(variable assignments) and their processing (generation and solving) can be skipped.

The static implication filter is based on the observation that ATPG CNFs consist of
70% of 2-literal clauses and 24% of 3-literal clauses [A.11] on average, see chapter 4 for
details. Each 2-literal clause can be substituted by two implication rules, e.g., the clause
c ∨ e corresponds to implications ¬c⇒ e and ¬e⇒ c (see example in Fig. 5.22). When a
constraint is applied, a 2-literal clause may become a unit clause, and then the implications
serve as an efficient way for constraint propagation [1], [114], [130], [131].

The static fault filter uses a data structure called implication table to store implications.
The key of the table is a signal identification and polarity; the value is a list of signals and
their polarities to be set.

The table is constructed once for a given fault-free circuit (hence the terms static
filtering and static implication). For each gate in the circuit (Fig. 5.22.a), any pair of
signals which would form a 2-literal clause in the description of the gate (Fig. 5.22.b) is
selected and the corresponding two implications are entered into the table (Fig. 5.22.c).

When any signal is fixed to a constant value, the implication table is used to fix implied
values of other signals (Fig. 5.22.d). This is done repeatedly until there are no more signal
values to fix.

Constants propagation in a fault-free circuit cannot produce conflicting values for any
signal, because initially only values of primary inputs are fixed.
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Figure 5.22: Example of the static implication filter.

The implied fixed signal values are used in the way outlined above. In Fig. 5.22, we
have constant primary inputs A=0 and C=0. To detect a stuck-at-0 on D, we need to set
D=1. As can be observed in Fig. 5.22.d, this conflicts with the implied value D=0, and
hence stuck-at-0 on D cannot be detected under current constraints and shall be filtered
out. On the other hand, stuck-at-1 on D is compatible and can be processed further.

The static implication filter is a simple method to check faults for excitability. Its effi-
ciency depends on the number of fixed input signal values and the structure of implications.
A high number of applicable implication rules gives us a solid ground for fixing internal
signal values and increases our chances to discard a fault before its CNF is generated and
proved unsatisfiable. Static fault filtering takes a negligible part of the overall running
time, so it can yield in a significant acceleration of the algorithm.

5.4.2.2 Dynamic Fault Filtering

Static filtering uses only implications produced by transformation of 2-literal clauses in the
corresponding CNF. Not only a 2-literal clause in a CNF may become a unit clause under
given constraints, but, with a sufficient number of constraints, a clause with any number
of literals may become. 4-literal clauses are relatively rare, but clauses with 3 literals do
occur during SAT ATPG [A.11], [144]. To reflect faults whose unexcitability follows from
3-literal clauses is the task of the dynamic filter.

Unlike the static filter, the dynamic filter cannot rely on a precomputed data structure
(hence the term dynamic). Instead, it scans the circuit for each set of fixed signal values.
Assuming that static filtering has been already done, it searches for triples of signals, which
would form a 3-literal clause in the CNF description of a gate. If the values of two signals
from the triple are already fixed, it propagates them and fixes the third. This is again done
repeatedly until there are no more signal values to fix.

Let us assume constants A=1, B=1 in the circuit in Fig. 5.22, Static implications do
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not bring any new fixed value (Fig. 5.23.a). The AND gate at the inputs A and B, which
would be described by the clause D ∨ ¬A ∨ ¬B, allows the dynamic filter to also set D=1
(Fig. 5.23.b).

It is obvious that further signal values can be fixed. A higher number of fixed values
increases the chances to find conflicts and to identify more unexcitable faults than the
static filter. However, the time consumption of the dynamic filter is much higher than of
the static filter, because the circuit must be searched for new implications for each constant
value applied.

Figure 5.23: Example of the dynamic implication filter.

The pseudocode of the SAT-Compress algorithm equipped with a static and a dynamic
filter is outlined in Fig. 5.24. The effort spent in constant propagation is not wasted even
in the case of excitable faults; the constants are used as additional constraints to the CNF.
Technically, the 2-literal clauses contained in the implication table are not even generated.

5.4.2.3 Experimental Evaluation of Fault Filters

A comparison of filtering techniques is presented in Tab. 5.11. The first column of the
table “Circuit” represents the name of the benchmark circuit from ISCAS’85 [87], ’89
[88] or ITC’99 [89]. Differences between the basic algorithm (SAT-Compress [6]) and its
modification with static and dynamic filtering are shown in the three respective columns.
The “Gen.” column represents the total number of generated CNFs and “Used” shows
the total number of satisfiable CNFs. For algorithms, where static and dynamic filter was
employed, the percentage reduction (“Red.”) of the number of processed CNFs referred
to the basic algorithm and the time spent by filtering (“Filter”) of the unexcitale faults is
shown. The last column “SUM” has the same meaning as in Tab. 5.10. The last row of
the table “Avg.” represents an average value of the column.

Experimental results show that fault filtering can accelerate the process of the con-
strained test patterns generation more than 2-times. For example, the total test patterns
compression time of the basic algorithm for the benchmark circuit c3540 is 5,784 seconds,
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Table 5.11: Experimental results for the UNSAT filtering

Circuit

Basic algorithm Basic algorithm + static filter Basic algorithm + static + dynamic filter

Gen. Used SUM Red Filter SUM Red Filter SUM

[-] [-] [s] [%] [s] [s] [%] [s] [s]

c432 3517 74 3.63 25 0 2.61 64.5 0.3 1.65

c499 3210 73 2.91 9.1 0.02 2.47 49.6 0.94 2.26

c880 70395 181 137.5 46 0.19 82.99 54.6 5.22 79.12

c1355 13236 95 30.54 32 0.02 20.29 70.4 3.22 12.35

c1908 35443 162 126 19 0.13 103.93 47.3 8.81 78.01

c2670 277808 355 1188.98 33 1.45 772.36 52 58.2 624.5

c3540 717888 347 5784 53 4.14 2793.14 62.9 254 2472

c5315 26978 289 198.9 15 0.17 171.17 55.4 88.2 180.2

s298 2782 93 0.93 47 0 0.53 47.8 0.03 0.62

s382 1959 59 1 46 0 0.55 49 0.08 0.61

s400 4088 69 2.06 54 0 0.96 54.9 0.14 1.11

s420 17210 93 12.8 39 0.08 8.08 45 0.58 7.95

s444 2359 59 1.24 58 0 0.53 62.8 0.09 0.6

s510 2899 76 2.08 58 0.02 0.95 59.1 0.16 1.13

s526 15563 134 8.56 49 0.02 4.41 49.8 0.42 5.15

s526n 13901 134 7.71 48 0.06 4.06 49.6 0.38 4.27

s641 20397 136 29.32 37 0.02 17.79 50.2 1.08 16.07

s713 17928 130 26.9 35 0.02 17.29 46.2 1.59 16.31

s820 51351 206 44.25 38 0.13 27.73 38.6 1.09 28.08

s832 56590 203 50.02 39 0.13 30.65 39.5 0.86 30.98

s838 114070 187 173.7 40 0.13 107.69 43.6 7.55 115.57

s953 63076 198 81.75 59 0.06 33.82 67.7 3.73 30.9

s1196 180005 249 339.9 48 0.41 178.41 59.5 18.3 156.3

s1238 213134 247 398.4 49 0.55 206.45 56.3 20.4 192.4

s1423 44892 149 113.05 52 0.17 56.91 59.8 9.41 56.4

s1488 19053 204 32.6 48 0.08 17.4 50.5 4.27 20.6

s1494 22878 201 39.03 51 0.08 19.39 54 4.31 22.79

s5378 378447 502 3216 50 4.25 1649.25 63.3 274 1495.9

s9234 4654444 749 82176.1 42 134 48336 52.6 4014.7 44311.4

s13207 10733919 1109 278511 60 228.4 110828.4 64.1 14130 115520.7

s15850 11160862 980 371963 52 315.1 188644.1 59.5 25019 184213

s35932 2000941 1419 137704 17 402.4 119823.4 20.7 10319 129133.5

s38584 11131264 2256 516020 62 591.2 201443.2 68.3 138870 307178

b03 C 604 48 0.27 42.2 0 0.2 42.5 0.063 0.234

b04 C 265730 198 667 22.6 1.2 519 39.7 25.16 435.5

b05 C 104484 171 319 24.5 0.64 253 41.7 24.39 214.7

b06 C 63 28 0.02 19 0 0.02 22.2 0 0.016

b07 C 36186 116 51.3 49.9 0.13 25.4 65.6 2.813 21.48

b08 C 19145 77 12.4 41.1 0.03 7.5 64.1 0.531 5.172

b09 C 3367 54 2.22 53.8 0.02 1.08 56 0.188 1.172

b10 C 3410 90 1.83 48.6 0.03 1.02 48.9 0.266 1.156

b11 C 56671 143 128 32.8 0.19 87.3 49.9 8.547 64.47

b12 C 157888 337 448 53.1 0.64 222 61.9 34.77 222

b13 C 3661 81 3.53 51.3 0 1.84 53.1 0.422 2.266

Avg. 928778 278.15 30436.12 42 36.65 14707.1 52.4 4200.37 17108.2
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5.4. Processing of SAT instances in Serial Compression

Figure 5.24: The SAT-Compress algorithm with filtering.

while with the static filer it takes 2,793 seconds and with the dynamic filter the total test
patterns compression time decreased to 2,472 seconds. The static filter, as a simple fast
technique of detecting of the unsatisfiable instances, is highly effective and saves 43% of
all the processed unsatisfiable instances on average. Moreover, the dynamic filter is able
to detect and save additional 10% of the unsatisfiable CNF instances on average, but it is
much more time-consuming than the static filter.

More detailed comparison of filtering techniques for five benchmark circuits is presented
in Tab. 5.12. The rows in the Tab. 5.12 have the same meaning as the corresponding
columns in Tab. 5.10 and Tab. 5.11. This table shows detailed distribution of the CTPG
time over all steps of the SAT-Compress algorithm. The results for presented circuits
except of s35932 show that the filters can decrease the time of CNFs generation and their
solving in half.

Next, properties of both static and dynamic fault filters have been analyzed for the
SAT-Compress algorithm. First, we have measured the number of constraints (fixed PI
values) set during the CTPG process. Fig. 5.25 shows an example of constant PIs for
the ISCAS’89 benchmark circuit s13207. This circuit has 700 PIs and our measurement
shows that on average 497 of them are fixed during the compression. Fig. 5.26 shows the
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Figure 5.25: Frequency of fixed PI values during CTPG (s13207).

Figure 5.26: The number of values fixed by constraints implications (s13207).

number of implied signal values for the same benchmark circuit (s13207). Each constant
PI produces on average 9.3 implied signal values. The dependence between the number of
constant PIs and the number implied signal values appears to be linear. Similar behavior
has been observed in all measured circuits.

Finally, we have compared the static and dynamic filters by the number of implied
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Figure 5.27: Frequency of values fixed by implications during CTPG (s13207).

signal values. The example for ISCAS’89 benchmark circuit s13027 is shown in Fig. 5.27.
It seems that the distribution of the number of implied values is similar for both the static
and dynamic filters. The only difference is their offset. The results from Tab. 5.11 show
that the dynamic filter detects on average 10% more UNSAT CNF instances in comparison
with the static filter. These observations confirm the assumption that more fixed signal
values can detect more conflicts and increase the efficiency of the filter. Similar behavior
has been observed in all measured circuits.

The implication filter seems to be a promising technique. The static filter can be used
for any circuit and grants a significant speedup of the constrained test generation process
by significantly decreasing the number of the unsatisfiable CNFs generated and solved.
The dynamic filter is better for small circuits, because searching for dynamic implications
is much more time-consuming.
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Chapter 6

Dependability and Fault Classification

The principal way to improve the dependability of a circuit is to introduce redundancy. One
possible strategy is to detect errors at output signals and take appropriate actions during
circuit operation. This technique is called Concurrent Error Detection (CED, [163]).

Redundancy must be introduced with care, as redundant blocks are also prone to faults,
and the point of diminishing return can be reached easily. Numerous schemes were devised
to balance redundancy and dependability. To evaluate variant designs, we need to know
how much dependability we get for a given investment into redundant circuits. Initially,
dependability meant roughly what is today called robustness. In this thesis, we adhered
to the original meaning from [164], where dependability parameters were introduced to
quantify dependability.

The standard design flow is to design the circuit first, to construct its redundancy
afterwards, and then to evaluate its dependability parameters. The underlying assumption
is that the actual design, the technology used, and its resulting fault models influence the
dependability parameters to a large degree. In many studies, the ubiquitous stuck-at
models were used.

Recent Automatic Test Pattern Generation (ATPG) tools [165] and procedures based
on solving the Satisfiability Problem (SAT) [22] permit analysis with a variety of fault
models suitable for a particular circuit implementation technology. This in turn enables us
to see the influence of technology on dependability. In other words, we ask whether there
are circuits hard to make dependable or technologies hard to make dependable.

To study this question, we needed a simple framework. Currently, two approaches to
robustness analysis and other tasks dealing with faults exist. The first one, represented by
[166] and [31], transforms the task instance to an ATPG task instance. The ATPG tool
then may or may not convert it internally to one or more SAT instances [1], [167]. The
other approach, most notably represented by [22] and [24], converts an instance of the task
to conceptual hardware (described in section 2.3) and then constructs SAT instances from
that hardware.

Both approaches can be seen as special cases of a more general method, which can
be summarized as follows. Firstly, transform the task instance into a piece of conceptual
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hardware together with assertions about the hardware. Secondly, use formal verification
methods to prove or disprove the assertions (e.g. [165], [17]). If required, transform the
assertions into conceptual hardware as well [2]. Thirdly, transform the answers back to the
answers to the original task instance.

This is a powerful framework, which can even produce answers about sequential beha-
vior in the presence of multiple faults [22], [23], [24]. For our study, combinational circuits
(or full-scan circuits) were sufficient. Furthermore, only fault classification was required,
without the need to analyze multiple fault impact.

Therefore, we present a simple framework for this limited situation, which constructs
conceptual hardware representing the circuit and the assertions directly. We borrowed the
term miter from ATPG [1], although the term monitor from [167] and other sources has a
similar meaning.

We present a method to determine the value of an arbitrary Boolean formula over input
vectors, error-free output vectors, and error-stricken output vectors of a combinational cir-
cuit. The formula can be quantified over all input vectors or their subset. We demonstrate
our method to be compatible with methods used for multiple fault and sequential circuit
modeling.

We present the method as an extension of SAT ATPG first in its general form. Then
we review the class of dependable circuits studied and present their fault classification. We
demonstrate application of the proposed method on this problem, and finally show and
discuss classification results for two different implementation technologies.

6.1 Predicate Evaluation

This chapter deals with a predicate evaluation technique which is used in SAT-based AT-
PGs and suggests an extension, which allows evaluation of general predicates.

First, some basic terms about the SAT-Based ATPGs (see section 2.4, section 2.5) are
repeated to remind some basic terms, which are important for further explanation.

6.1.1 Predicate Evaluation in The SAT-Based ATPGs

Let the circuit in question realize a Boolean function F(x) over inputx. The circuit has n
primary inputs and m primary outputs.

Denote Fflt(x) the Boolean function characterizing the circuit with a given fault. The
question whether the fault can be detected is answered by the predicate

∃x, F (x) 6= Fflt(x) (6.1)

In SAT-based ATPGs [1], [2], [167], this is understood as a circuit, see Fig. 6.1. The
fault-free and faulty circuits provide F(x) and Fflt(x), respectively. The predicate itself
is also expressed as a conceptual hardware (circuit) called a miter [1]. The characteristic
function of this conceptiual hardware (see section 2.4, section 2.5) is transformed to instance
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of the SAT problem (e.g. by Tseitin transformation, see section 2.4). If the SAT instance
is unsatisfiable, the fault cannot be tested.

Figure 6.1: Circuit description of the ATPG SAT instance.

6.1.2 General Predicate

Let x, F(x) and Fflt(x) have the same meaning as above. Let

∃x,G(x, F (x), Fflt(x)) (6.2)

be any Boolean predicate over x, F(x) and Fflt(x). Then G can also be understood as
a circuit, see Fig. 6.2. As it has the same role as in ATPG or model checking, we call it a
generalized miter. Its characteristic function can be constructed as in the ATPG case, and
the SAT instance is solved.

Figure 6.2: The generalized miter for predicate G.

A universally quantified predicate

∀x,H(x, F (x), Fflt(x)) (6.3)
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can simply be converted to

¬∃x,¬H(x, F (x), Fflt(x)) (6.4)

The construction of ¬H might seem dificult. When seen as a circuit, however, it suffices
to add an inverter. This involves one more variable and two clauses in the SAT instance
[45], which is tolerable. The predicate can be transformed to CNF by other methods as
well; the above case illustrates the advantage of seeing it as a circuit. The dependency of
the general predicate on x is useful in situations where not every input vector is admissible.
Let A be the set of admissible input vectors and a(x) the predicate characterizing the set.
Then

∃x ∈ A,G(F (x), Fflt(x)) (6.5)

becomes

∃x, a(x) ∧G(F (x), Fflt(x)) (6.6)

This feature achieves the same effect as the input encoder in [166]. In the case solved
there, code generator and detector for the codes in question are comparable in complexity.
For other problems, however, to produce a vector may be more dificult than to check that
vector.

The technique of generalized miters has a wider utilization than just single fault classi-
fication. For the sake of completeness, we demonstrate that it is compatible with procedures
used for multiple fault reasoning and analysis of sequential circuits.

6.2 The Analyzed Architecture

6.2.1 The Structure of the Dependable Block

The CED strategy proposed in [163], [168] is used in this paper to illustrate principles of
the proposed SAT-based predicate evaluation and for the experimental evaluation.

The digital circuit D to be secured by a CED code is supplemented with a predictor P
and a checker E, see Fig. 6.3. The predictor can be understood as a copy of the functional
circuit together with an encoder. The encoder transforms the vector at the primary outputs
of the circuit into the redundancy bits of a selected error detection code. The primary
outputs (POs) of the circuit to be secured and the predictor outputs form the codeword
whose validity is verified by the checker. The original primary outputs D(x) together with
the checker output form the global output F(x), which is m + 1 bits wide.

Any fault in the functional logic D either does not alter the output for a given input
vector, or should be detected by the checker. Faults in the predictor and checker either do
not affect the operation, or cause false alarms. This architecture can be apprehended as a
kind of modification of the well-known duplex scheme (MDS architecture) [169], [4].
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For the purpose of this study, single parity is used as the error detection code [4]. Thus,
the predictor is constructed as a copy of the original circuit supplemented with a XOR tree
at its outputs, k = 1 in Fig. 6.3.

The single parity code offers a low area overhead, however its error detection capabilities
are limited. Therefore, the fault coverage can also be lower than in the case of the duplex
system, and must be analyzed.

Figure 6.3: Basic concurrent error detection (CED) scheme.

6.2.2 Fault Classification and Dependability Parameters

There are three basic dependability parameters in the field of CED (Concurrent Error
Detection) [163], [164]:

Fault security (FS) - probability that the erroneous outputs produced for a modeled
fault do not belong to the output code-words.

Self-testing property (ST) - probability that an input vector occurring during normal
operation produces an output vector which does not belong to the code when a modeled
fault occurs.

Totally self-checking (TSC) - The FS and ST parameters of the circuit are equal to
100%. Totally Self-Checking property offers the highest level of protection.

The faults in the secured block cannot be classified only as detectable or undetectable,
as for a common circuit. Their detectability by the checker must also be evaluated [22].
To compute these parameters, an approach based on a fault classification was presented
in [22], [3], [4]. The faults are classified into four groups (A,B, C and D) based on their
observability on primary outputs of the circuit and detectability by the checker.

Class A - these faults do not affect the circuit POs for any allowed input vector. This is
the class of redundant (undetectable) faults. They have no impact to the FS property, but
circuits with these faults cannot be ST.

Class B - these faults are detectable by at least one input vector and do not produce an
incorrect code word (a valid code word, but incorrect) for other input vectors. They have

85



6. Dependability and Fault Classification

no negative impact on the FS and ST properties, since if such a fault occurs, it is detected
by the checker.

Class C - the faults that produce an incorrect codeword for at least one input vector
and cannot be detected by any input vector. This is the class of faults, that can never
be detected by the checker and that produce an erroneous output. The circuit with these
faults is neither FS nor ST.

Class D - these faults cause at least one detectable and one undetectable error on the POs.
They are detectable, but also may produce an incorrect output, which is not detected by
the checker. They do not satisfy the FS property.

The FS property can be computed from the number of faults in these classes as:

FS =
A+B

A+B + C +D
· 100 [%] (6.7)

The ST property is computed in similar way as:

ST =
B +D

A+B + C +D
· 100 [%] (6.8)

where A, B, C, and D are the numbers of faults in the respective classes.

6.3 The SAT-Based Fault Classification Technique

To apply the SAT-based classification on the above outlined architecture, we must charac-
terize the classes by binary predicates and apply the general scheme from Fig. 6.2.

6.3.1 Predicates

To compute the dependability parameters of the given architecture, each fault must be
classified into one of the classes A, B, C, and D. Four classes need at least two binary
predicates to distinguish. In this case, they are easy to derive from the specifications.
In principle, the classes are defined by the ability of the fault to cause a detected or an
undetected error, which can be formalized as follows:

◦ J(x) is true iff the input vector x gives an erroneous output D(x) of the faulty circuit
and the error is detected (E(x) is true).

◦ K(x) is true iff the input vector x gives an erroneous output D(x) of the faulty circuit
and the error is not detected (E(x) is false).

Then the given fault belongs to
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◦ the class A, iff ¬∃x, J(x) ∧ ¬∃x,K(x)

◦ the class B, iff ∃x, J(x) ∧ ¬∃x,K(x)

◦ the class C, iff ¬∃x, J(x) ∧ ∃x,K(x)

◦ the class D, iff ∃x, J(x) ∧ ∃x,K(x)

Hence, two SAT instances must be solved to classify a fault.

6.3.2 Generalized Miters

To construct a miter for the J and K predicates, we have to apply the general process
leading from the circuit in Fig. 6.1 to the circuit in Fig. 6.2 on the discussed architecture.
The output F(x) is in our case decomposed into D(x) and E(x), giving the circuit in Fig. 6.4.

Figure 6.4: The general circuit J and K evaluation.

Bringing in the internal structure of F and Fflt from Fig. 6.3, we obtain the circuit
in Fig. 6.5. The actual predicates apply to all input vectors x, therefore x does not enter
into the miter circuits. Furthermore, we are interested in faults in the secured circuit D
only, not in the predictor or checker. Therefore, we can omit Eflt(x) from the miters and,
therefore, Dflt and Eflt from the circuit. The final optimized circuit is in Fig. 6.6.

Using D(x), Dflt(x) and E(x), we can implement the miters as

J(x) ≡ D(x)⊕Dflt(x) ∧ E(x) (6.9)

K(x) ≡ D(x)⊕Dflt(x) ∧ ¬E(x) (6.10)
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Figure 6.5: The unoptimized circuit for J and K.

Figure 6.6: The optimized circuit for J and K.

6.4 Experimental Results

Experimental results can be divided into two parts.

The first part evaluates the efficiency and precision of our approach which is compared
with exhaustive simulation of all patterns [170] on PIs of the evaluated circuit. This
technique is practical for circuits having a small number of inputs only. Furthermore, Monte
Carlo simulation is put in test as a representative of much faster dependability estimation.
Here, the computed reliability parameters cannot provide reliable final evaluation.

The second part shows the robustnes of our framework for a set of benchmarks, im-
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plemented either as a network of gates with stuck-at faults, or implemented as a set of
Look Up Tables (LUTs), considering Single Event Upset (SEU) in the LUT configuration
memory as the primary fault mechanism.

All measurements were performed on a CPU Intel i5-2400 - 3,1GHz with 8GB RAM.
The experiments have been performed on ISCAS’85 [87], ISCAS’89 [88], ITC’99 [89] and
LGSynth [158] benchmark circuits.

6.4.1 Efficiency and Precision of Dependability Evaluation

The principal result presented in this section is the comparison of the proposed method
with exhaustive simulation. Before that, however, we would like to present results that
support our claim that Monte Carlo methods are insufficient for final evaluation.

6.4.1.1 Simulation Method Used for Comaprison

The simulator used in the experimental evaluation has been written specifically for this
purpose. The signals in the circuit with an input vector applied were evaluated in topo-
logical order, in a serial fault simulation manner. The propagation of the examined fault
was monitored only to the extent if odd or even number of outputs was affected. This
method is limited to the case of the single-parity code, however, it is efficient and fast. On
the other hand, the proposed method has not been restricted in a similar manner.

Figure 6.7: Dependance of FS and ST parameters on the number of simulated vectors
(sao2).
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6.4.1.2 Monte Carlo Simulation

Fig. 6.7 shows the dependence of the FS and ST parameters on the number of simu-
lated vectors for sao2 benchmark circuit [158] with ten PIs (210 vectors for exhaustive
simulation). The FS and ST parameters have been computed by Monte Carlo simula-
tion for various numbers of random vectors. These measurements confirm the assumption
that the number of simulated test patterns crucially affects the precision of dependability
parameters computation mentioned in section 6.2.

6.4.1.3 Experimental Evaluation of the Proposed Method

A comparison of the SAT-based and exhaustive simulation for the fault classification is
shown in Tab. 6.1. The first column of the table, “Circ.”, represents the name of the
benchmark circuit. The characteristics of the circuit are given by the following three
columns. The number of primary inputs is shown in column “PIs”, the number of gates
and faults are shown in columns “Gat.” and “Flts.”. The next two columns “FS” and
“ST” present the computed fault security (FS ) and self-testing (ST ) property. The column
“Sim.” shows the time of the fault classification for simulation while the column “SAT”
shows the fault classification time for the SAT-based approach. Finally, the column “Acc.”
shows the acceleration of the fault classification which can be achieved by the SAT-based
approach.

The experimental results in Tab. 6.1. show that the SAT-based fault classification is
much faster than the simulation based approach for all measured benchmarks, e.g., the
fault classification time of the simulation-based algorithm for benchmark circuit alu4 is
287210 seconds, while with a SAT-based algorithm it takes only 193 seconds.

The graph in Fig. 6.8 shows the acceleration of the fault classification gained by SAT
algorithm as a function of the number of PIs. It seems that the acceleration grows expo-
nentially with the number of PIs of the circuit (in the measured interval of PI counts).
The feasibility of simulation time limited the experiments to circuits with up to 20 PIs.

The graph in Fig. 6.9 shows the time consumption of the SAT algorithm as a function
of the circuit size expressed in equivalent gates [171]. It seems that the time consumption
of the SAT algorithm grows almost linearly with the size of the circuit.

The number of simulated test vectors for the simulation based algorithm grows expo-
nentially with the number of circuits PIs. The exponential gap between simulation and
the SAT-based method suggests that the SAT solver runs in nearly polynomial time. This
behavior has been expected, as the instances are almost 2-SAT ones [34], [168]. It is also
confirmed for most of the circuits by experimental results in Fig. 6.9.

6.4.2 Experimental Technology Comparison

Following subsections discuss the influence of implementation technology on dependability
parameters of combinational circuit. Moreover, it presents robustness of solution proposed
in chapter 6 which is technology independent.
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Table 6.1: Comparison of fault classification techniques

Circ.
PIs Gat. Flts. FS ST Sim. SAT Acc.

[-] [-] [-] [%] [%] [s] [s] [-]

5xp1 7 161 422 84 98 6.8 0.5 12.5

dist 8 418 796 89 99 60.5 1.6 37.3

ex5p 8 1362 5506 51 73 2355.4 55.8 42.2

f51m 8 170 459 88 100 16.3 0.6 29.1

9sym 9 348 713 100 100 106.3 1.6 67.5

9symml 9 210 446 100 100 35.1 0.5 66.1

prom2 9 2322 5096 88 100 7010.2 56.2 124.8

sao2 10 669 549 71 92 94.94 0.9 104.9

x2 10 95 134 73 96 5.05 0.046 108

alu2 10 514 1132 44 89 438.8 3.9 113.0

newcond 11 119 149 93 100 17.05 0.109 156.14

cm85a 11 113 131 82 100 10.2 0.093 109

cm152a 11 69 56 100 100 1.88 0.032 60.5

alu1 12 82 109 83 100 15.1 0.1 121.2

br1 12 205 341 67 95 146 0.24 584.9

newpla 12 105 145 66 100 23.38 0.064 374.7

alu4 14 3540 7055 87 91 287210 193 1488.3

amd 14 435 842 75 97 4059.2 1.981 2048.8

cm162a 14 95 166 72 96 118.6 0.1 950.5

alcom 15 120 319 91 95 804.1 0.5 1718.1

b12 15 694 2109 93 47 51311.5 7.4 6924.6

gary 15 517 1059 80 98 13427.8 3.1 4369.3

in0 15 517 1059 80 98 13392.4 2.7 4905.6

intb 15 1261 1893 83 100 45669.5 24.4 1873.0

al2 16 141 400 85 98 2540.4 0.5 4789.5

ex7 16 206 297 77 100 1932.3 0.7 2880.6

prm1 16 160 176 73 94 626.2 0.124 5017.7

s298 17 200 287 66 98 3251 1.54 2105.4

s1196 32 863 1220 53 97 - 224.3 -

c1908 33 679 971 46 99 - 1261.8 -

jbp 36 771 1132 73 95 - 101.8 -

too large 38 5477 12376 91 99 - 616.2 -

seq 41 2285 8914 71 94 - 117.2 -

c1355 41 412 882 80 100 - 2525.5 -

s953 45 690 1028 51 96 - 25.3 -

x1 51 974 2543 89 98 - 432.9 -

91



6. Dependability and Fault Classification

Figure 6.8: Dependance of the acceleration on the number of PIs.

Figure 6.9: Dependance of the fault classification time on the size of the circuit.
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6.4.2.1 Technology Comparison

Using the above described framework, we compared robustness of a set of benchmarks,
implemented either as a network of gates with stuck-at faults, or implemented as a network
of Look Up Tables (LUTs), considering Single Event Upset (SEU) in the LUT configuration
memory as the primary fault mechanism.

The experiments have been performed on 67 ISCAS85 [87], ISCAS89 [88]], ITC99 [89]
and LGSynth [158] benchmark circuits.

For the stuck-at faults, the original structural description was used. The fault lists were
generated by Atalanta [147] and were free from dominated faults.

The LUT implementations were synthesized by ABC [172] using the command sequence
strash; dch; if; lutpack as recommended by the ABC authors. Note that this procedure
builds the implementation out of LUTs with 4 inputs or less.

The gate implementation was also produced by ABC with the command sequence
strash; dch; map. The target gate library was the MCNC library [96].

Both implementations of a circuit have obviously different numbers of possible faults.
To compare them in a practically relevant manner, we decided to count points of vul-
nerability, that is, the number of faults which can cause dysfunction of the circuit. The
coeficients FS and ST, which indicate the distance to the Totally Self Checking goal, are
of minor importance here. The metrics used were Not Fail Safe

NFS = C +D (6.11)

and Not Self-Testing (NST)

NST = C (6.12)

Tab. 6.2 shows the number of faults classified by the above described method.

The aggregate number of faults by category is given in Tab. 6.3, and the statistical
properties are summarized in Tab. 6.4, using standard correlation and least square linear
regression.

6.4.2.2 Total Number of Faults

The total numbers of faults in both technologies are tightly correlated. The circuit itself
has the strongest inuence. The technology contributes only a constant coeficient, as the
regression figure in Tab. 6.4 tells us that the LUT implementations has - almost uniformly
- twice the number of total faults. The trend is most apparent in large circuits with more
faults, as can be seen in Fig. 6.10.

This comparison, however, is influenced by the construction of the fault list for gates.
A single stuck-at fault there can represent more than one dominated fault and hence more
than one point of vulnerability, whereas dominance of SEU faults is unlikely and has not
been considered.
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Table 6.2: Detailed fault counts in two implementations

Circuit
Gates, S@ LUTs, SEU

Faults A B
NST
= C

D NFS Faults A B
NST
= C

D NFS

5xp1 422 0 353 7 62 69 538 83 431 4 20 24

9symml 446 0 446 0 0 0 1036 275 761 0 0 0

9sym 713 0 713 0 0 0 1440 409 1031 0 0 0

al2 400 0 338 8 54 62 736 0 692 0 44 44

alcom 319 0 291 16 12 28 560 0 556 0 4 4

alu1 109 0 91 0 18 18 120 0 120 0 0 0

alu2 1132 117 383 9 623 632 1864 680 555 9 620 629

amd 842 0 632 23 187 210 2084 371 1546 16 151 167

b1 37 6 25 0 6 6 16 0 16 0 0 0

b9 366 2 205 45 114 159 560 6 412 64 78 142

br1 341 0 230 17 94 111 792 120 558 57 57 114

br2 296 0 185 20 91 111 564 58 406 18 82 100

c1355 882 0 704 0 178 178 1088 2 944 14 128 142

c17 22 0 12 0 10 10 32 0 32 0 0 0

c1908 971 5 437 0 529 529 1252 118 614 6 514 520

c432 553 8 82 0 463 463 1088 128 222 17 721 738

c499 882 0 704 0 178 178 1088 2 944 14 128 142

c8 636 56 489 0 91 91 454 21 401 0 32 32

cc 219 13 172 4 30 34 328 24 296 0 8 8

chkn 918 0 806 0 112 112 1924 269 1607 0 48 48

cht 669 39 604 0 26 26 588 0 584 0 4 4

clip 1108 27 964 3 114 117 1068 205 793 8 62 70

clpl 38 0 14 0 24 24 84 0 52 0 32 32

cm138a 74 0 68 6 0 6 96 0 96 0 0 0

cm150a 245 23 222 0 0 0 160 8 152 0 0 0

cm152a 56 0 56 0 0 0 72 4 68 0 0 0

cm162a 166 6 113 0 47 47 172 18 130 0 24 24

cm163a 159 4 115 0 40 40 160 4 156 0 0 0

cm42a 76 0 68 2 6 8 160 0 160 0 0 0

cm82a 60 0 17 0 43 43 32 0 24 0 8 8

cm85a 131 0 107 0 24 24 148 0 148 0 0 0

cmb 141 6 92 0 43 43 228 22 182 0 24 24

con1 51 0 43 0 8 8 68 2 66 0 0 0

count 379 0 265 4 110 114 520 24 432 0 64 64

cu 164 6 100 27 31 58 208 11 159 28 10 38

dc1 120 0 85 7 28 35 112 0 112 0 0 0

dc2 255 0 201 3 51 54 422 49 361 4 8 12

decod 130 0 122 8 0 8 192 0 192 0 0 0

dist 796 0 712 4 80 84 2240 552 1686 0 2 2

duke2 1303 1 609 13 2561 693 2476 482 914 264 816 1080

ex5 940 0 697 29 214 243 2768 917 1662 18 171 189

ex7 297 0 229 0 68 68 412 26 362 0 24 24

f51m 459 0 402 0 57 57 570 100 466 0 4 4

frg1 1049 0 1041 0 8 8 1248 118 1130 0 0 0

gary 1059 0 850 17 192 209 2508 445 1936 43 84 127

i1 129 1 89 2 37 39 162 0 138 0 24 24

ibm 492 0 354 0 138 138 1080 36 933 0 111 111

in0 1059 0 850 17 192 209 2416 415 1813 59 129 188

in2 1002 0 757 56 189 245 2060 289 1512 109 150 259

in4 1013 0 696 22 295 317 1928 230 1431 20 247 267

in5 802 0 549 16 237 253 1972 221 1539 17 195 212

in6 767 0 548 26 193 219 1384 159 1077 20 128 148

in7 311 0 167 12 132 144 668 75 441 57 95 152

jbp 1132 0 833 55 244 299 2222 168 1826 74 154 228

lal 414 0 295 11 108 119 374 15 279 0 80 80

ldd 278 9 164 45 60 105 404 71 238 42 53 95

luc 621 0 430 55 136 191 1192 182 819 108 83 191

m1 195 0 144 8 43 51 302 23 274 2 3 5

m2 543 0 442 7 94 101 956 170 729 16 41 57

m3 630 0 534 9 87 96 1546 340 1176 4 26 30

m4 973 0 844 8 121 129 2752 647 2044 14 47 61

majority 39 0 39 0 0 0 20 0 20 0 0 0

max46 380 0 380 0 0 0 744 110 634 0 0 0

max512 891 0 792 0 99 99 2788 716 2042 4 26 30

misex1 161 0 105 13 43 56 248 21 205 13 9 22

misex2 294 0 237 0 57 57 496 28 448 0 20 20

mlp4 694 0 590 12 92 104 1816 366 1437 0 13 13
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Table 6.3: Total fault counts by category

Faults A B NST = C D NFS

gates 33251 329 24933 765 7224 7989

LUTs 61806 9835 45222 1143 5606 6749

Table 6.4: Statistical properties of fault numbers

Quantity Correlation Lin. Regression

Total faults 0.894 2.0

A 0.180 2.2

B 0.892 1.8

NST = C 0.934 1.77

D 0.947 1.15

NFS 0.949 0.73
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Figure 6.10: Total faults; x = y provided for reference.

6.4.2.3 A-Class Faults

A-class faults are caused by redundancy introduced during synthesis. From the depend-
ability point of view, this is a kind of noise in the implementation. From Fig. 6.11 it can
be seen that the values are indeed uncorrelated. 4.5% of the circuits have A faults only in
gate implementation, 57% only in LUT implementation, and 21% in both.

Note that A-class faults might also be introduced by not fully exploiting the 4-LUTs;
there are many LUTs having less than 4 actual inputs in the synthesized designs. However,
these faults are not considered in our computations, since they are not A-class faults,
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Figure 6.11: A faults.

indeed. If any number of SEUs in the unused parts of LUTs occurs, the dependability is
not affected at all.

6.4.2.4 Points of Vulnerability

The values NFS, NST, which give the number of points of vulnerability, are correlated
very tightly between the two implementations. Fig. 6.12 compares the numbers of Not
Self-Testing faults, and Fig. 6.13 compares the final vulnerability indicator, the Not Fault
Secure faults. Tab. 6.3 and Tab. 6.4 together with Fig. 6.12, Fig. 6.13, Fig. 6.14 and
Fig. 6.15 indicate that while the LUT technology has bigger numbers of faults, most of
them are in the B category, and that the number of faults in the C and D categories move
in opposite directions, so that the number of vulnerable points - the NFS faults - remains
almost constant.

It follows that the dependability, or, more precisely, the ability to become dependable
using the MDS architecture, does not depend on architecture and fault model. Rather, it
is a property of the circuit itself.

6.4.3 Extension to Multiple Faults

In [42] and [22], a technique to model multiple faults in a circuit is presented. The presence
or absence of each fault is modeled by an associated fault predicate. The actual value of
signals in question is modeled by additional primary inputs, which in turn are expressed
by free variables in the SAT instance.

The structure of the conceptual hardware including the generalized miter remains the
same as in Fig. 6.2, except the faulted copy of F is controlled by the fault predicates and
additional inputs.
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Figure 6.12: NST = C faults.
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Figure 6.13: NFS faults; x = y provided for reference.

6.4.4 Extension to Sequential Circuits

[22] uses time-frame unrolling to reason about sequential circuits. The circuit is divided into
a state register and combinational logic. For each time step, a stage is created comprising
a copy of the fault-free and faulty logic. The outputs of both copies in each stage are
compared by a miter. The value of state variables passes from stage to stage.

The miter can be replaced by an generalized miter, as in Fig. 6.16. The construction
of the generalized miter depends on the way it is specified. If the miter is combinational,
then each stage contains one copy of the miter, and all outputs of those stage miters are
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Figure 6.14: B-class.
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Figure 6.15: D-class.

combined by e.g. an AND gate. If the miter is described as a state machine, then it is
unrolled similarly to F and the state of the miter is passed from state to state.
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Figure 6.16: The generalized miter for predicate G in unrolled sequential circuit; xi, si and
fi are inputs, states, and fault predicates, respectively, in time ti.
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Chapter 7

Discussion

This thesis deals with application of implicit representations of vector sets in the field of
digital circuits testing and dependability evaluation. Implicit representations of a vector
set can represent a large amount of data with significantly lower memory requirements
than explicit representations. Moreover, chapter 3 shows that the application of impli-
cit representations of a vector set caused a significant breakthrough for many problems.
However, in some cases, their application can cause more harm then good.

Pilot examples introduced in previous chapters show examples of two problems which
seem to be very appropriate to application of implicit representations of the vector set.
Their application should cause significant improvement in both the processing time and
efficiency, but our experimental results show, that only the second pilot example (fault
classification) reaches significantly better results (precision and time-consumption). The
first pilot example (serial compression) reaches results comparable with state-of-the-art
tools, but its scalability is limited.

Generally, it can be concluded that algorithms, which accomodate the implicit repres-
entation of vector sets must deal with generation of the implicit representation and the way
of its processing. Summarization in chapter 3 suggests, that for implicit representations
of a vector set, the generation and processing are mutually orthogonal. It means that the
implicit representations, which are easy to generate, are much harder to process and vice
versa.

Our research was focused primarily on the implicit representation of the vector set in
CNF, which is widelly used in state-of-the-art EDA tools. It is highly scalable, because both
its size and generation time grows linearly with the circuit size. Moreover, its processing
(simplification, constraining, SAT solving) is very fast in most cases. Despite of that, there
are problems which cause troubles.

Now, let us discuss the two case studies:

1. The first Case study deals with a serial test compression performed by SAT-Compress,
which is a very simple greedy algorithm. This algorithm should quickly preform the
test patterns compression for any circuit, because both CNF generation and the SAT
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solving are performed in nearly polynomial time in most cases. The compression ratio
is high as expected, but our experimental results show that its scalabily is limited
and its application on large industrial circuits is impossible.

The performance overhead is caused by the huge number of unsatisfiable instances
(80% - 99% of solved CNFs in most cases) which are implicitly produced by con-
straints application. Furthermore, our measurement confirmed previous observations
[2] that CNF generation is much more time-consuming than its solving (80% of time
for the SAT-Compress). Thus, we tried to eliminate this weeknes by application of
UNSAT filters (see subsection 5.4.2) or another kind of CNF processing like CNF
storing in memory (see subsection 5.4.1). Our experimental results proved, that we
can easily eliminate about 50% of UNSAT instances and beside that SAT-Compress
with CNF storing in memory can perform the compression 1.34-times faster than
SAT-Compress with CNF generation on-the-fly. Unfortunately, scalability of CNF
storing is strictly limited by memory requirements. Moreover, the acceleration of the
algorithm is still insufficient for industrial circuits.

Another interesting part of our research explores the influence of DCs in test patterns
on compression ratio. Algorithms’ processing pregenerated test pattern set prefers
test patterns with as many DCs as possible [73], [149]. These patterns are easier to
overlap, which consequently produces shorter bitstream. However, our experimental
results show, that injection of DC bits in test patterns can cause degradation of the
compression ratio for an algorithm like SAT-Compress which utilizes implicit repres-
entation of the vector set and does not depend on pregenerated test (see section 5.2).
This behavior can be expected, because SAT-Compress can choose any test pattern
from the test set of each fault, while algorithms processing pregenerated test set
have at most one test pattern per fault. Our experimental results show that the
improvement of compression ratio implicitly caused reduction of the number of CNF
instances to be processed, which caused acceleration of the algorithm proportional
to the improvement of the compression ratio.

Our further research on “influences” in serial compression (see chapter 5) suggests
that the main problem is the generation of sequence of vectors which are closely
tied to each other. Here, compression results are highly influenced by many factors
like initial conditions (initial test pattern, order of PIs, ) or processing options (DCs
injection), which can significantly influence both the compression ratio and time.
Unfortunatelly, it is nearly impossible to find optimal combination of these initial
and processing conditions to get optimal results in reasonable time.

Explicit techniques like CNF filtering, CNF storing, etc., can reduce “consequences”
and significantly accelerate the compression algorithm, but they cannot overcome
troubles caused by the “problem itself” (sequence generation).

Implicit techniques like DC processing (injection) seems to be much more beneficial
for this kind of problems (sequence generation), but they represent just one small
piece of puzzle which cannot save the day.
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Finally, we can conclude that our first expectations about “suitability” of application
of implicit representation was not fulfilled. The best compression ratio cannot be
achieved by a “simple” selection of the best pattern in the best order, but it signi-
ficantly relies on combination of many other factors and selection of suitable pattern
has minor influence on the compression ratio and generation time. Such class of prob-
lems, where a sequence of vectors is generated, is not very suitable for application of
implicit representation.

2. The second case study deals with the fault classification which is crucial for precise
dependability evaluation. Here, the main goal is to decide if there exists any pattern
which fulfills some prediction. Similar decision problems should be very suitable for
application of implicit representation of a vector set. Current Boolean proof engines
are highly efficient and any decision problem can be easily described by conceptual
hardware.

This assumption was confirmed by our experimental results (see section 6.4). The
efficiency of the proposed algorithm is very high, while the precision of results is
preserved. Furthermore, these techniques for application of an implicit representation
can be easily extended to optimization problems and simply solved by any PBO
solver or applied to similar problems like those described in subsection 6.4.3 and
subsection 6.4.4.
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Chapter 8

Conclusions

8.1 Summary

The main aim of this thesis is to discuss the application of implicit representations of vector
sets in serial compression and dependability evaluation.

First, the application of implicit representations of the vectors set in different fields of
digital system design, testing and verification has been briefly summarized (see. chapter 3).
Here, the problems where application of implicit representation caused a significant break-
through where highlighted.

The implicit representation of the vector set as a SAT instance in CNF has been closely
studied (see chapter 4). It is easy to handle and its application can yield in a great
robustness and performance improvement.

An extensive research on properties of SAT instances produced by Tseitin transform-
ation from a digital circuit confirms that SAT instances produced this way are “easy to
be solved”. Moreover, we have found that these SAT instances significantly differ from
randomly generated ones of equal parameters, particularly in terms of their satisfiability.
ATPG SAT instances are mostly satisfiable, even though random instances of the same
parameters should not be. Further research shows, that SAT instances produced by the
Tseitin transformation involve a great number of redundancies. On average 60% of vari-
ables and 65% of clauses can be removed by application of solution preserving reductions.

The SAT-Compress algorithm for serial test patterns compression has been introduced
(see chapter 5). This simple greedy algorithm can reach high compression ratio (86% -
90% on average) comparable with similar state-of-the-art compression algorithms.

Extending techniques of speedup for SAT-Compress have been discussed and evalu-
ated by experimental results. The differences between the CNFs processing on-the-fly,
processing of stored CNFs or reduced CNFs have been discussed and shown on a set of
ISCAS’85 and ’89 benchmark circuits. It can be concluded that even if a generation of the
CNFs on-the-fly can be time-consuming, it is still the best technique of CNF processing in
a general case.

Techniques of filtering of unsatisfiable CNFs based on static and dynamic implications
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have been presented and their properties have been shown on the SAT-Compress algorithm.
Our experimental evaluation proved that it can be a powerfull technique for speedup of
SAT-based constrained test patterns generation.

Furthermore, the role of don’t cares in the compressed test generation was studied.
Several techniques for obtaining don’t cares in the test are proposed, both uninformed and
informed ones. We have shown that don’t cares obtained in an uninformed way cannot be
efficiently exploited in test compression and sometimes they even have disturbing effects.

The observations resulted in an efficient enhancement of the SAT Compress ATPG
algorithm, the Coverage Preserving Don’t Care Injection technique (CPDCI). Basically,
the SAT Compress algorithm gradually constructs compressed test patterns by repetitively
solving the SAT problem for instances constrained by patterns generated in previous steps.
The CPDCI technique significantly alleviates these constraints by substituting defined val-
ues by don’t cares, without any loss of the fault coverage in each step. This is accomplished
by a procedure based on a symbolic fault simulation. Less constrained SAT instances allow
reaching better results, both in test bitstream size (by 46% on average) and test generation
time (by 35% on average). We see that even though the fault simulation imposes some
computational overhead, the resulting run time is significantly reduced, because of shorter
bitstreams generated.

A method for proving arbitrary predicates quantified over input vector of a combin-
ational circuit has been presented (see chapter 6). The method combines elements from
SAT ATPG and SAT-based property checking. The Modified Duplex System architecture,
which requires classification into four classes, has been selected for demonstration of the
method. Experimental evaluation on a number of benchmarks proved that the method
runs in a time close to polynomial and is practical even for circuits with a large number of
inputs, where exhaustive simulation is bound to fail.

Furthermore, a set of benchmark circuits was constructed using the MDS redundancy
architecture. The circuits were implemented both in gates and LUTs. Their self-checking
characteristics were evaluated by the described method under the stuck-at and single event
upset fault models, respectively. The characteristics were found to be correlated, which
suggests that the ability to become dependable under the MDS scheme is an intrinsic
property of the circuit itself.

Finally, the application of implicit representations in the field of serial compression and
dependability evaluation has been discussed (see chapter 7).

8.2 Contributions

The contributions of this thesis are summarized in the following list:

◦ Application of implicit representations of the vectors set in different fields of digital
system design, testing, and verification has been summarized (see. chapter 3).

◦ An extensive research on properties of SAT instances produced by Tseitin transform-
ation from combinational circuits has been performed (see chapter 4).
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8.3. Future Work

◦ The SAT-Compress [A.10], [A.9], [A.17], [A.5] algorithm has been introduced as a
pilot example for serial compression (see chapter 5). A simple and easy to imple-
ment SAT-based compression algorithm, which is able to reach the compression ratio
comparable with state-of-the-art algorithms (86-90% on average) has been proposed.

◦ Techniques to increase the efficiency of SAT-based serial compression have been pro-
posed and discussed [A.5], [A.1], [A.2], [A.7] (see section 5.3 and section 5.4).

◦ A novel and original method to convert a conceptual hardware (miter) to a Pseudo
Boolean Optimization (PBO) instance was proposed [A.1], [A.2] (see section 5.3 and
subsection 5.3.2).

◦ The fault classification [A.6], [A.8], [A.12] tool was introduced as a pilot example for
a fast and precize fault classification (see chapter 6). This tool utilizes an implicit
representation of vectors for proving arbitrary predicates quantified over an input
vector. This method combines features from SAT ATPG and SAT based property
checking.

8.3 Future Work

The author of doctoral thesis suggests exploring the following:

◦ An advanced application of implicit representations of vector sets in fields like mul-
tiple fault testing and diagnosis for both combinational and sequential circuits (see
subsection 6.4.3 and subsection 6.4.4). Such problems seem to be suitable for applic-
ation of implicit representations.

◦ Further research on PBO encoding and transformation of decision problems to op-
timization problems. Here, for example, application of implicit representation in
power-aware testing to generate test set with custom properties would be interest-
ing.

◦ Explore other promising implicit representations of the vector set like Structurally
Synthetized Binnary Decision Diagrams (SSBDD) [173], [174] and their modifications
like Structurally Synthetized Multiple Input BDDs (SSMIBDD) [175], [176] etc.
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