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Abstract

We introduce a new efficient minimization methodr flunctions described by many
(up to millions) product terms. The algorithm issbd on processing a newly proposed efficient
representation of a set of product terms — a tgrimae. The minimization procedure is based on a
fast application of basic Boolean operations upentéinary tree, combined with algorithms used
in the Espresso minimizer. Minimization of incomtelg specified functions is supported as well.
The minimization method was tested on randomly gerd large sums-of-products and collapsed
ISCAS benchmark circuits. The performance of theppsed algorithm was compared with
Espresso.

1 Introduction

Logic functions described by a sum-of-products (B@@Pm frequently appear in the logic synthesis
process. Even though “more efficient” function reg@ntations, like binary decision diagrams (BDDs)
[1] or and-invert-graphs (AIGs) [2] were proposetiare widely used in logic synthesis tools, SOP
forms still remain an ultimate solution to repres®nlogic functions, mainly due to the fact thabsh

of logic synthesis algorithms are based on prongsSOPs. SOPs are usually a starting point for
decomposition and technology mapping algorithms|[fg]

The need for minimization of the number of termshaf SOP form is apparent. Starting with the
basis of minimization algorithms stated in 1950% Quine and McCluskey [5], many different
minimizers have been developed [6][7][8][9][10]. | Ahese methods suffer from their specific
drawbacks when solving problems of different kinBsr example, Espresso [7] lacks in quality and
runtime for functions with a large number of inputs100). BOOM [10] solves this problem
efficiently, but, on the other hand, it needs twéhthe function’s off-set specified explicitly, veihi
limits its usability in cases of functions spedifiey their on-sets only.

In many logic synthesis processes, there often apfnctions described by SOPs with an
extremely large number of product terms (up to ionk). For example, it is often advantageous
to collapse a multi-level circuit network into a dvevel representation, to obscure the original
circuit’s structure to the subsequent synthesisgss [11], in hope of obtaining better resultsoriaer
to accomplish such a process, large SOPs ofterotaenavoided. As a second example, there is often
a need to compute a complement of a logic funatiescribed by a SOP [7]. The resulting SOP size
grows exponentially with the number of input valesh

For these reasons, there is a crucial need forraomeefficient compact representation of SOPs
with many terms, as well as for a fast and efficiemnimization algorithm for such function
representation. As for the efficient representatafrS8OPs, zero-suppressed BDDs (ZDDs) were
proposed [12]. However, no efficient minimizatidgaithms built upon ZDDs are known.

We propose a SOP representation based daradty treé. The ternary tree concept was firstly
proposed in [13], as an efficient storage of tetmSOP. Compared to BDDs where the size can grow
exponentially with the number of input variablezesof ternary tree grows only linearly with the
number of inputs in the worst case. The first samprnary tree minimization algorithms were
proposed in [16], [17]. Ternary trees most closelgemble SOP ternary decision diagrams (TDDs),
briefly described in [14] and term trees [15]. Wasigally extend the SOP TDDs notion by introducing
new operations and their new application areas.

In this paper we propose a ternary tree based nzatian algorithm for incompletely specified
functions described by SOPs. We show that the tgrtrae representation of SOPs having many



product terms benefits from a lower computatiormhplexity, compared to the standard tabular SOP
representation.

2 Preliminaries & Problem Statement

Let us have a single-output Boolean functiomafiput variables. The input variables will be destbt
as x, 0<i <n. Output values of the on-set terms (both mintemnsl product terms of higher
dimensions may be used) are defined by a trutte tatlle function may be incompletely specified, i.e.
some terms may be assigned to the don't-care set.

Thus, we have anvariable Boolean function defined by a sum-of-pratd SOP) form as an input.
The number of product terms will be denotedpadhe cover of a function is a set of on-set terms
implicating the whole function, possibly combinedtiwsome terms of the DC-set. Our aim is
to minimize the size of the cover, i.e., the numbkon-set terms in the result. The secondary aim
could be the reduction of the number of literalsthe terms, thus increasing the dimension of the
terms.

3 Ternary Tree

The ternary tree, proposed in [13], is a structwsed for storing of product terms. This is in castr
to, e.g., BDDs, which describe the function, but i® representation. Like in the case of BDDs the
ordering of variables can have big impact on theaey tree size (if a variable that appears in many
terms is placed on the top of the tree, its sizkk lva smaller than if the variable is placed to the
bottom).

An example of a ternary tree for a 3-input functisishown in Figure 1. Three terms are contained
in the tree, particularly (001), (-1-) and (10-)adB non-terminal node may have three potential
children,lo(u), d(u), hi(u). In our examplelo(u) is the left child,dc(u) the middle one anti(u) the
right one.

When inserting a term into the tree, at b level of the tree a branch is chosen accortbnie
polarity (0, -, 1) of tha-th variable in the term. If the corresponding latais present, we follow it, if
not, the branch is newly created. The tree is traslually being constructed by appending product
terms. The maximum size of the ternary tree is alsly O(3), since there are"3lifferent terms for
ann-input function. However, the real ternary treeesg usually much less.

Complexities of operations performed using ternaegs are usually less than those performed
using tabular SOP representations (upnttmes speedup in the best case for most operations
For example, the term look-up speed time compleigtyOf), instead of Of.p) for the tabular
representation [16] (the time consumption of sorperations for the tabular representation could be
further reduced by factor of 32 or 64 (dependindghenplatform word size) using parallelism on tlite b
level, but the overall time complexity remainsigtie same).
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Figure 1: Ternary tree example



4 Ternary tree minimization

The basic ternary tree minimization algorithm wampoesed in [16] for the first time, later
improvements were published in [17]. In this pape,extend the algorithm so it is capable of tugnin
all implicants into primes and also capable of reimg some of the redundant terms.

The overall minimization algorithm comprises of tsteps: first, the SOP is processed by a fast
minimization algorithm, in order to quickly reduttee number of SOP terms by applying basic rules
of Boolean algebra. Then, the result is furtheinesf by applying Espresso-like minimization steps.

4.1 Overall Minimization Algorithm

The overall minimization algorithm can be descrilbydhe following pseudo code:

Mnimze (F,D R

{
on_set = Create_TernaryTree(F); // create ternary trees
if (D) dc_set = Create_TernaryTree(D);
if (R off _set = Create_TernaryTree(R);

for (i
{

O; i <n; i++) // performthe fast minimzation
/1 n is the nunber of inputs

on_set->Merge_Leaves();
on_set->Rotate();

dc_set->Merge_Leaves();
dc_set->Rotate();

of f _set->Merge_Leaves();
of f _set->Rotate();

}
on_set = on_set->Absorb_Terns();
dc_set = dc_set->Absorb_Terns();

of f_set = off_set->Absorb_Terns();

fd_set
fd_set

on_set->Absorb_Into(dc_set); // absorb additional variables
fd_set - >Redundancy_Check_1(); // perform basi c redundancy check

if ('R off_set = Get_Conpl enent (on_set,dc_set); // extract the off-set

fd_set = fd_set->Expand_Cover (off_set); // perform expansion

fd_set = fd_set->Redundancy_Check_2(); // perform deeper redundancy check
fd_set = fd_set->Reduce_Cover(); // performreduction

fd_set = fd_set->Expand_Cover(off_set); // performthe final expansion

FD mn = fd_set->Dunp_TernaryTree();
return FD_nmin;

Algorithm 1: The overall minimization algorithm

First, ternary trees representing the on-set, deer'e set and off-set (if defined) are constructed
from the PLA description of the source function.

Then, the fast minimization algorithm is appliedgsSubsection 4.2) to the on- and DC-set trees.
This procedure substantially reduces the sizeefriges, before they are processed further. Tls®nea
for processing the on-set and DC-set separatelly meventing of merging on- and DC-terms, that
could result in redundancy.

In the next step, all terms of the on-set treatban be merged are merged with the DC-set (based
on the negation absorption and complement ruleghdr expanding the cover - for example if an on-
set term is adjacent to a DC-term and one of tihesraan be applied on the on-set term, then the
expansion is performed. The result of this openayields the fd-set. The fd-set is then composed of



all terms of the on-set and possibly some termthefDC-set (when a variable of an on-set term is
absorbed into a DC-term, then the resulting terntains minterms from both on-set and DC-set).

After these steps a basic redundancy check is eefib upon the fd-set to simplify it even more,
without having a significant impact on the time somption.

The following step lies in extraction of the offts@f the off-set is not known already)
by exploitation of the complementation algorithnechuse the knowledge of off-set is necessary
to perform the expansion step efficiently.

Once the off-set is known, an expansion can beopegd upon the fd-set, to obtain a prime cover.

After the expansion, another (deeper) redundaneglcis performed upon the fd-set, capable of
removing more redundant terms, but also taking rtiore than the basic redundancy check. The depth
of this redundancy check can be selected by the(tige parameter influences the quality of theules
and time complexity of the operation).

To move from the locally optimal solution in seafoha global optimum, next step — the reduction
follows.

The final step of the minimization is again an exgan, to find another local optimum and make
the result as sparse as possible.

The reason why the reduction-expansion step igpadbrmed iteratively (like in Espresso) is that
the reduction still isn’t that fast and efficienhcait would take too long without yielding much
improvement.

The individual minimization steps will be describietb detail in the following subsection.

4.2 Fast Minimization

The first part of the fast minimization algorithmbased on applying basic absorption and complement
property rules of Boolean algebra, targeting a cédo of the number of the ternary tree terminal
nodes (leaves). This is achieved by the leaf mgrgimd tree rotation. The method itself consists of
iterative cutting of the root node and moving ithe bottom of the tree, where the leaves can liieen
merged, reducing size of the tree. Details of thithod are further described in [17]. Example o th
algorithm is shown in Figure 2 and Figure 3.

The two rules mentioned above can be expresséaifollowing way:

The one-variable absorption ruke#+ ab = a (1)

The complement property rulab + ab’ = a (2)

The minimization process can be iterated severaégdi We have found experimentally, that
iterating n-times yields satisfactory results. Additional @tons usually do not bring a significant
improvement. The asymptotic worst case time conipleof this algorithm is Og%.p) (O(n.p) in the
best case scenario).
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Figure 2: Ternary tree before leaf merging Figure 3: Ternary tree after leaf merging

After that we apply general absorption and negadibsorption rules, to remove all the terms that
are subsets of other terms and to absorb variabtesms that differ in more than one variable.

The general absorption rule:+ abcd = a 3)

The general negation absorption rdet a’bcd = a + bed 4)

The worst case time complexity of this algorithmOig1.p?). However, for dense trees, it is much
less in practice (@f) in the best case, wherr 3"). It is also difficult to estimate the absorptitme



complexity as a function of the number of the teyrteee nodes, since it heavily depends on the tree
structure.

The overall worst case time complexity of these st&ps combined together is them®g + n.p?).
For details of this algorithm see [17].

4.3 Complementation

Knowledge of the off-set allows performing the exgian step in much shorter time. If the off-set is
not explicitly given in the source file, it is conmed as a complement of the union of the on-set and
DC-set.

Similarly like in Espresso [7], the Shannon expansiheorem was used for this purpose. The
complement is obtained by a recursive applicatiofbp until a trivial solution (complementation af
single variable) is reached. The worst case tinmeptexity of the complementation algorithm is20)(

T=x ()% (F,) (5)

j ]

The whole complementation process is carried othérfollowing way:

1. Perform the Fast minimization upon the cover (whscthe union of the on- and DC-set)

2. If the cover is tautology return empty complememhérges at 5. from the recursion)

3. If the cover is non-satisfiable (i.e. if the tiseempty) return a term containing only DCs
(emerges at 5. from the recursion)

4. Perform the recursive split with the variable thppears the most in the cover based on the
Shannon expansion theorem (creates two new reaussémches starting at 1.)

5. Merge the results obtained from both recursion ¢ines

6. Minimize the merged results using the Fast minitigrealgorithm

7. Return the merged and minimized results

4.4 Cover Expansion

The cover expansion is capable of turning all icgulits in the given set into primes and is therefore
one the most fundamental steps of the algorithm.

The expansion itself goes as follows - we travénsetree and heuristically choose and enter the
branches that have the highest number of DCs, becauch branches also most probably contain
terms with the highest number of DCs (the biggesns). We then try to expand each of these terms
by setting a selected variable to DC followed bgaking, whether the modified term intersects the
off-set. If not, the expanded term is a valid iropht and thus the expansion is committed. The whole
process is repeated until there is no further impneent.

Selection of the term to be expanded is done basdbe assumption that the biggest term has the
highest chance of covering other terms which trmhle removed from the set.

The strategy of selecting the expansion directien the variable that will be set to DC) is simple
we always set to DC the most binate variable (greggproach). The rationale of this choice is again
that the expanded term may cover other terms masiyeor at least we will be able to absorb some
variables in adjacent terms based on the negalisorption rule.

The worst case time complexity of this operatioroidy Of.p.p,) (wheren is the number of
variables, p; is the number of terms in the on-set @athe number of terms in the off-set ) because in
the worst case we have to compare each term frerorkset with the whole off-set . This estimation
seems to be however overpessimistic, because bwagt the worst case time complexity is the same
as for the tabular representation, it is much ile¢se average case.

4.5 Redundancy Check

The procedure of removing redundant terms consistemputing an intersection of each term with all
other terms and minimizing the result using thet Faimimization algorithm (see Subsection 4.2). If
the minimized result is identical to the originairn (which means that the original term is comjete

covered by other terms), then the term can beysedatoved from the cover.



The order in which the redundancy check is perfarioqgon the tree is guided by a heuristic which
first enters the branches that have the lowest eurab DCs, because such branches most probably
contain terms with the smallest dimension and sexhs contribute the most to the size of the cover.

The time complexity of this operation is in thisseagiven by two facts - we need to compute an
intersection of a term with other terms, which t@ndone in Q{.p%) and then continuously minimize
the result, which can be done ifi®.p?) (wherei is the number of minimization iterations,is the
number of variables arquthe number of terms).

To control the result quality and time complexifytlis operation, thé parameter can be indirectly
controlled by the user by choosing how deep shtliddredundancy check go in search for a term
cover (i.e. how big may the conjunction terms Oélere is however no guarantee that this method will
remove all the redundant terms from the cover, evban the depth of redundancy check is set to
maximum (the number of input variables).

The worst case time complexity (wher n) is then Of%p?), which is again the same as for the
tabular representation, but overall much lowenierage case.

46 Cover Reduction

This step is very similar the redundancy check begause it uses practically the same algorithrh wit
only slight differences.

Like during the redundancy check we compute thergaiction of the examined term with other
terms from the cover and minimize it. If the mine®d result contains a term that is half of the size
the examined term, we can reduce this term by heponly the uncovered part of it in the set while
still covering all the minterms covered previoudBy repeating the whole process over and over we
can then reduce each term in the cover to its mimnfeasible dimension. Once we have the reduced
cover, the expansion step can be applied agaiogsilpy obtain a better result.

Time complexity of this operation is the same agtlie redundancy check {ion.p?).

5 Experimental Results

The results of the minimization of collapsed benahurxircuits from [18], [19] and [20] are shown

in Table 1. All the functions are completely spiedif single-output functions are considered onlye T
benchmark name is given in the first table colufolipwed by the number of its inputs. The numbers
of terms and literals of the source PLAs are shawthe third column. The TT-Min and Espresso
minimization runtimes are given next. The resulhptexities are shown in the last two columns.

It is apparent that Espresso starts having problenmsmizing the circuits where the size reaches
50,000 terms and isn't able to deal with majorifytie listed benchmarks at all, while TT-min
manages to minimize significantly all of them. Tihetances where Espresso manages to deal with the
benchmarks are without exception cases where tbeits are easily minimized.

Table 1: Minimization results of selected benchreark

Benchmark Time [s] Terms / Literals
Name Input$ Terms / Literals TT-min Espressa TT-min Espresso
tautl 25 5,000/50,015 8.24 3.76 1/0 1/0
taut2 25 50,000 /686,138] 212.32 251.88 20/ 20 | 22D
taut3 25 | 100,000/1,623,140 2525|4%885.34 65,567 / 886,180 -
g25 15 25 79,056/1,311,48D 27.36 - 18,720 / 285,4 -
g25 19 25 58,968 / 950,004 26.71 - 16,785/261,618 -
leku-cd_15 25 79,056/1,311,480 36.48 - 12,114 /189,717 -
leku-cd 19 25 58,968 / 950,004 32.96 - 12,096 /188,172 -
s420 12 35 113,280/ 2,577,5p25.82 107.86 17 /170 17 /170
c432 2 36 | 786,562 /19,910,68%928.99 14842.04 109,192 /1,211,341 -
c432_4 36 | 866,664 /21,865,36Z736.39| 832.82 7,128 /60,512 7,128 /60,p12

Results of minimization of randomly generated inptately specified functions are shown in Table 2.
The meaning of the columns is the same as in tqus case, except for the second column, which
denotes the number of input/output DCs in the beragh. It is apparent that Espresso gives better



results, but again fails to solve one of the berafiand it’s time consumption rises much fasten wi
the number of terms than for TT-min.

Table 2: Minimization of randomly generated benchisa

Benchmark Time [s] Terms / Literals

Inputs|idc / odc| Terms / Literals| TT-minEspressq TT-min Espresso

20 | 35/35| 1,000/12,964 32.88 2.51 658 /8474 /684

20 | 35/35| 2,000/26,083 50.37 9.48 1277 /164073 / 1636

20 | 35/35| 5,000/65,069 52.03 41.27 3039 /374821 /3617]

20 | 35/35| 10,000/ 129,81309.26| 162.06 | 5400 /582143310 / 35474

20 | 35/35| 20,000 /259,9%352.63 - 1794 /1172p -

20 | 35/35| 50,000/649,332%2.57| 10.07 1/0 1/0

Analysis of the TT-min algorithm steps for benchna®32_4 (the % output function of the
benchmark c432) is shown in the Table 3. Theseltseeshow that the first two steps reduce the
function size most significantly in this case. Tahigve the same result as Espresso it was necdssary
perform the expansion step however. The depth efréduction/redundancy check was set to 3
(default value) in this case.

Table 3: Analysis of the TT-min algorithm steps
Benchmark: c432 4

Step Time [s] Terms/ Literals
Rotation 15.88| 384,173/9,106,(0473
Absorption 224.93] 291,036 /4,095,394

Redundancy check|1116.78 | 203,393 / 2,894,997
Complementation| 290.2% -

Expansion 1 6.26 7,128 /60,512
Redundancy check|2 49.01 7,128 /60,512
Reduction 23.20 7,128 /60,512
Expansion 2 1.94 7,128 /60,512
Other 8.75 -

6 Conclusions

An algorithm for an efficient minimization of logifunctions described by a sum-of-products form
with many terms was proposed. The minimization metis based on processing a ternary tree, which
has been found to be a very efficient represematb a set of product terms. Espresso-like
minimization algorithms have been developed upenténnary tree structure. As a result, the average
case complexity of many algorithms is reduced, witspect to the standard tabular SOP
representation (even though the worst case contplesxthe same as for the tabular representation fo
most operations).

It was experimentally shown that for benchmarkswéns of thousands of terms Espresso usually
yields the result in longer time than this methadfails to produce any result whatsoever.

Another advantageous thing is that this method mbe®ed to know the off-set to perform the
basic operations and it could therefore find itple@tion in cases where the complementation takes
prohibitively long.

As the future work, we expect implementation of enefficient redundancy checks and reduction
steps, which could possibly make this minimizerrallesuperior to Espresso even for small circuits,
where Espresso still yields much better resultsabse it is capable of removing all the redundant
terms from the cover.
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