
EFFICIENT MINIMIZATION METHOD FOR
INCOMPLETEL Y DEFINED BOOLEAN

FUNCTIONS

Petr Fišer, Jan +ODYLþND
Czech Technical University, Karlovo nám. 13, 121 35 Prague 2

e-mail: hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

Abstract

The paper presents a minimization algorithm for Boolean functions whose values are defined only
for a small part of their range. In contrast to other known minimization algorithms, it uses the
"start big" strategy gradually reducing the dimensionality of a term until an implicant is generated.
This approach leads to a very fast solution even for problems with several hundreds of input
variables and several hundreds of minterms with defined output values. Its programmed version
gave in these cases better results (in terms of runtime and minimality of the solution) than the
state-of-the-art ESPRESSO.

1 Introduction

Synthesis of combinational functions with large numbers of input variables is a problem that
appears in different contexts. It may be encountered e.g. in the design of control systems, where a large
number of sensors deliver their input data to be processed by an automaton, or in diagnostics of logic
circuits, where a sequence of code words is to be transformed into a sequence of test patterns.
A common feature of those problems is the disproportion between the total number of minterms
existing for the given number of input variables and the number of really used minterms, for which the
output value is defined (care minterms). An efficient synthesis method, whose time and memory
complexity is acceptable even for large problems with several hundreds of input variables and several
hundreds of care minterms, is needed for the solution of such problems.

When generating a prime implicant (PI) for a given function F, the usual approach is to start from a
1-minterm and combine it with other 1-minterms (neighbors) in order to create an implicant with
highest possible dimension. This was the principle of the original Quine's method [6] and of all
minimization methods proposed later, whose representative survey can be found e.g. in [4]. The
Quine-McCluskey minimization method, yielding all prime implicants and possibly a minimal form (if
we succeed in solving the covering table), is applicable to problems with the maximum of 10 input
variables. To solve also problems with higher number of variables, different heuristics have been
proposed, accelerating the prime implicant generation and/or selection. To the most frequently used
ones belongs the principle of consensus, starting the implicant generation from minterms having the
lowest number of neighbors. However, the increase of tractable problem size gained thanks to the use
of this method is rather modest, reaching e.g. 15 to 20 input variables – see e.g. [1].

One of the best known and probably the most successful of all programs for minimization of
switching functions, called ESPRESSO [2], [4], uses a heuristic procedure for local search. This means
that starting from some initial solution, the procedure tries to improve the quali ty of the solution
through successive modifications. These modifications are directed by some quali ty criterion
evaluating each newly reached situation. A similar approach was used also in other methods like e.g.
[3]. A kind of local search is used also in our case, although the heuristic is different.

Organization of the paper is the following. The principle of the minimization meethod is
formulated in section 3. Then an il lustrative example is solved using the proposed method in section 4.

Statistical data based on results of experimental evaluation of the method are listed and commented in
section 5. Some concluding remarks are offered in section 6.

2 Problem Statement

Let us have a Boolean function of n input variables F(x1, x2, … xn), whose output values are defined
by a truth table. Let the number of 1-minterms and 0-minterms be equal to u and z respectively, the rest
are don't care states. The function is highly undefined, i.e. only few of the 2n minterms have an output
value assigned (u+z<< 2n). Our task is to formulate a synthesis algorithm, which will produce a
two-level disjunctive form of F, whose complexity is close to the minimal disjunctive form. The
measure of minimali ty generally corresponds to the needs of the intended application. Thus e.g. for
PLAs, the number of product terms is what counts, whereas the total number of literals has no
importance. In some other cases, the total number of literals may be important, hence we will respect
both possibiliti es here.

3 Pr ime Implicant Generation

3.1 “Star t Big” Approach

Instead of increasing the dimension of an implicant starting from a 1-minterm, we will reduce the
size of a hypercube, which contains an implicant as its subset, by adding li terals to its term, until the
hypercube becomes an implicant. This happens at the moment, when no 0-minterm is covered by this
hypercube any more. Then we generate a PI by removing literals from the term, until we reach the
maximum dimension without covering any 0-minterm. These two principles will be used as a basis for
two phases of implicant generation. The first one, denoted as Coverage-directed search (or
CD-search), combines the implicant generation with solution of the covering problem. The second one
is denoted as Sequential search, because the literals that are candidates for rejection from a term are
selected one by one.

3.2 Coverage-Directed Search

First we describe the implicant generation method based on hypercube reduction. Let us have a
single-output Boolean function F defined by its on-set and off-set (set of 1-minterms and set of
0-minterms respectively). As the first step, we select the most frequent input literal from the given
on-set and use it as a term from which an implicant will be derived. This term describes an implicant,
if it does not cover any 0-minterm. If it is not an implicant, we add one literal and verify whether the
new term already corresponds to an implicant by comparing it with all 0-minterms. If we obtain an
implicant, we record the term and start searching for other implicants (see below). If not, some other
literal must be added. We divide the given on-set into two subsets. One subset contains those
minterms, which cannot be covered by any term containing the selected literal (minterms containing
the literal with the opposite polarity). This subset will not be considered any more. In the other subset
(containing the minterms, which can be covered by the selected literal) we again find the most frequent
literal and multiply it with the previous one, so we have a two-literal product term. Again we compare
this term with all 0-minterms and check if it is an implicant. We repeat this procedure until no
0-minterm is covered any more, i.e. until we get an implicant. We record this implicant and remove
from the original on-set those minterms, which are covered by this implicant. Thus we obtain a
reduced on-set containing only uncovered minterms. Now we repeat the procedure from the beginning
and apply it to uncovered minterms, selecting the next most frequently used literal, until the next
implicant is generated. In this way we generate new implicants, until the whole on-set is covered. The
output of this algorithm is a set of product terms, covering all 1-minterms and no 0-minterm.

When selecting the most frequent literal, it may happen that two or more literals have the same
frequency of occurrence. In these cases another heuristics can be applied. We construct terms as
candidates for implicants by multiplying all selected literals with the previously selected one(s). From
them we select those terms which are implicants. This will prevent a useless term prolongation. When
there are still more possibil ities to choose from, we select one at random.

A certain drawback of this algorithm is that it is greedy. Thus, once a literal is selected, it is kept till
the end of the term generation. Therefore the obtained implicants need not be prime. In other words,
we have to check whether some literals can be removed without losing any implicant. Here the second
part of the PI generation algorithm, namely the Sequential search, finds its application.

3.3 Sequential Search

To check the results of the previous search, we may try and systematically remove from each term
all lit erals one by one, starting from a randomly chosen position. If the hypercube obtained after
removal of one literal does not cover any 0-minterm, we make the removal permanent. If, on the
contrary, some 0-minterm is covered, we put the literal back and proceed to the next literal. After
removing all removable literals we obtain one prime implicant covering the original term. This
algorithm is also greedy, i.e. we stay with one PI even if there are more PIs that can be derived from
the original term.

The sequential search obviously cannot reduce the number of product terms. On the other hand, the
experimental results show that it reduces the number of literals by approximately 25%. After reducing
the number of literals in the terms (and therefore extending the range they cover) some implicants may
absorb others. Although this situation doesn’ t occur very often, solving the covering problem is
desirable in this case.

3.4 Solution of the Covering Problem

A usual heuristic algorithm was used for solution of the covering problem. First, we prefer
implicants covering minterms covered by the lowest number of other implicants. If there are more such
implicants, we select implicants covering the highest number of yet uncovered 1-minterms. From these
primes we select the “shortest” ones, i.e. terms constructed of the lowest number of literals. When still
more primes could be selected, we select one randomly.

3.5 I terative Minimization

The minimization process consists of the three above-mentioned phases (CD-search, Sequential
search and Covering problem solution). The results of all these phases depend to a certain extent
on random events, because whenever there are more possibiliti es to choose from and no selection
criterion is given, a random number generator is used. Thus there is a chance, that the repeated
application of the same procedure to the same problem will yield different solutions. We can improve
the quali ty of the solution by repeating the CD-search phase followed by the Sequential search several
times and recording all different PIs that were found. After the first pass we have a set of primes that is
sufficient for covering the function. After every new iteration, another sufficient set could be added to
the previous one (if the solutions are not equal). Finally, the covering problem is solved using all
obtained primes. The set of primes gradually grows until a maximal reachable set is obtained. A typical
growth of the size of the prime implicant set as a function of the number of iterations is shown in Fig. 1
(thin line). This curve plots the values obtained during the solution of a problem with 20 input
variables and 200 minterms. Theoretically, the more primes we have, the better solution could be
found. In most of problems the maximal set of primes is extremely large. In the reali ty, the quality of
the final solution improves rapidly during the first few passes and then remains unchanged, even
though the number of prime implicants grows further. This fact can be observed in Fig. 1 (thick line).
After reaching the minimal (or near-minimal) solution, its quality remains unchanged, even though the
number of prime implicants grows further.

From the curves in Fig. 1 it is obvious, that selecting a suitable criterion for the termination of the
iterative process has a key importance for the efficiency of the minimization. The most appropriate
moment to stop the computation is marked with T1 on the horizontal axis in Fig. 1. However,
determining its position is quite a difficult task. One possibility is to estimate the number of primes
needed to make a good solution. This number strongly depends on a nature of the input function.
Another possibil ity is to find the stopping point judging by the size of the temporary solution. In this
case the covering problem must be solved repetitively after every iteration (or after several iterations).
This means, that after every iteration there is known the best solution that could be obtained so far.
This comfort is paid for by the “useless” loss of time when solving the covering problem. The

approximate position of the stopping point can be found by observing the relative change of the
solution quali ty during several consecutive iterations. If the size of the solution does not change during
a certain number of iterations (e.g. twice as many iterations, as were needed for the last improvement),
the minimization is stopped. The stopping point can also be defined explicitly, like e.g. when the
current solution meets some criterion, (the maximum allowed number of product terms to fit into the
PLA chip). The criteria described above are more flexible than terminating the minimization by the
number of iterations or amount of elapsed time, although these last criteria may be used as an
emergency exit for the case of unexpected problem size and complexity.

Fig. 1. Growth of PI number and decrease of SOP length during iterative minimization

4 I llustrative Examples

4.1 CD-Search Example

Let us have an incompletely defined Boolean function F(x0 ..x9) of ten input variables with ten care
minterms given by a truth table shown below (the 1-minterms are shaded).

var: 0123456789.F
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

As the first step of the minimization we count the numbers of literals in the input table. The
“0” -line and “1” -line give counts of xn’ and xn literals respectively.

var: 0123456789
0: 3435322434
1: 3231344232

In this table we can locate x3’ as the most frequent literal with five occurrences (underlined). This
literal is our candidate for an implicant, but is not yet an implicant, because it covers a 0-minterm (the
6th minterm) in the original function. Hence another literal must be added. When searching for the next
literal, we can reduce the range of our search by suppressing all 1-minterms containing the selected
literal with the opposite polarity. In our case it is only the 5th minterm, which contains the x3 literal and

thus cannot be covered by an implicant containing the x3‘ literal (in the next table shaded dark). In the
remaining 1-minterms we look for the most frequent literal:

var: 0123456789 F
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

var: 0123456789
0: 343-211433
1: 212-344122

This time we find several lit erals with maximal frequency of occurrence (x1’ , x5, x6, x7’), hence the
second selection criterion must be applied. Multiplying the x3’ literal by all lit erals found so far, we
create four product terms: x3’ x1’ , x3’ x5, x3’ x6, x3’ x7’ . First we check whether some of them are already
implicants. The term x3’ x5 is not an implicant (it covers the 6th minterm), so it is discarded, whereas the
remaining three terms represent implicants. Now we must choose one of them. As they are all equal,
we may select at random – e.g. x3’ x6. This implicant is stored and the search continues. For further
search we discard the minterms covered by this implicant (minterms 1, 2, 8 and 9 – dark shading in the
next table) and the next most frequent literal can be selected:

var: 0123456789 F
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

var: 0123456789
0: 1111222112
1: 1111000110

Now we find four literals with equal frequency (2) and choose one at random – e.g. x9’ . This is not
an implicant, thus we must add more literals. The selected literal does not suppress any of the
remaining 1-minterms, therefore we need not reduce the range of our search. We construct three
product terms: x4’ x9’ , x5’ x9’ , x6’ x9’ . None of them is an implicant, we select e.g. x4’ x9’ . Now we have
two possibili ties to choose the next literal: x4’ x5’ x9 or x4’ x6’ x9’ . Again, none of these terms is an
implicant. Hence, we must add one more literal to create an implicant. The result of the CD-search is
thus x3’ x6+ x4’ x5’ x6’ x9’ .

4.2 Sequential Search Example

We will continue with our running example. The result of the CD-search, i.e. the function x3’ x6+
x4’ x5’ x6’ x9’ is now to be simpli fied by the Sequential Search algorithm. We must process both product
terms one by one, the order is not significant. We start with the term x3’ x6 and try to remove one literal.
If we remove x3’ and compare the remaining term (x6) with all the 0-minterms, we’ ll find that it
colli des with 3rd, 4th and 7th minterm and thus x3’ cannot be removed. We continue with the x6 literal. It
cannot be removed either, because the remaining term covers the 6th minterm. This term cannot be
reduced any more and thus it is a prime implicant. Now we try to reduce the second term (x4’ x5’ x6’ x9’).
We remove x4’ and find that the remaining term x5’ x6’ x9’ is an implicant. So we keep the removal
permanent. Now by removing x5’ we get x6’ x9’ . This is not an implicant (it covers the 6th minterm).
Similarly, when we remove x6’ , the term x5’ x9’ covers the 4th minterm, hence x6’cannot be removed
either. Finally, after removing x9’ , the term x5’ x6’ will be an implicant. As we exhausted all

possibiliti es of removal, this is a prime implicant. The minimal SOP form of the function is x3’ x6+
x5’ x6’ .

5 Experimental Results

The proposed algorithm was programmed in Borland C++ Builder and tested under
MS Windows NT. The processor used was a Celeron 433 MHz and 160 MB RAM, the runtime was
measured in seconds. The quali ty of the results was measured by two parameters: number of product
terms (implicants) and total number of literals. Although every implementation basis requires different
evaluation criteria, these two figures are good representatives of the overall complexity of the solution
obtained.

An extensive experimental work was done to evaluate the efficiency of the proposed algorithm,
especially for the problems of large dimensions. These experiments can be divided into three groups.

First a small example with 10 input variables and 20 care minterms, where also the true
minimization could be used, was solved by different methods. The results were compared with the
Quine-McCluskey minimization method [5], [6] (programmed by ourselves) and with ESPRESSO. All
methods gave the same results (minimal disjunctive form). The runtimes in seconds were the
following: CD-search 0.03, Espresso 0.03 Quine-McCluskey 438.32.

 In the second group of experiments the efficiency was compared with ESPRESSO 2.3 [8]. The
problems solved were at the beginning the standard Berkeley benchmarks [7]. As the size of these
benchmark problems is relatively small, the runtimes needed by the CD-search were longer than those
of ESPRESSO. Hence some larger problems had to be used to prove the capabiliti es of the method.
The truth tables of single-output functions were generated by a random number generator, for which
only the number of input variables and number of care minterms in the truth table were specified. The
on-set and off -set were kept approximately of the same size.

A third group of experiments aimed at establishing the limits of applicabili ty of the newly designed
method. Therefore a set of large problems was generated, where only the proposed algorithm was
tested (see paragraph 5.2).

Number of input variables

20 60 100 140 180 220 260 300

20
0.01/3/8
(1)
0.09/3/8

0.01/2/4
(2)
0.20/2/4

0.00/2/4
(1)
0.41/2/6

0.01/2/5
(1)
0.72/2/6

0.01/2/4
(1)
1.36/2/4

0.02/2/5
(1)
1.30/2/7

0.01/2/4
(1)
3.24/2/4

0.02/2/4
(2)
3.60/2/4

60
0.20/7/25
(19)
0.19/6/25

6.49/5/15
(254)
1.09/5/15

0.15/5/17
(4)
2.51/5/20

0.03/4/12
(1)
4.68/4/14

0.04/4/17
(1)
6.84/4/17

0.06/4/15
(1)
11.96/4/16

0.11/4/12
(2)
18.83/4/12

0.15/4/13
(2)
21.87/4/13

100
0.12/11/42
(4)
0.35/10/43

0.84/7/28
(14)
1.86/6/28

0.18/7/29
(2)
6.62/7/31

4.00/7/27
(29)
10.22/7/28

1.50/6/27
(10)
23.22/6/27

0.12/6/24
(1)
26.64/6/24

1.33/6/24
(6)
39.12/6/24

16.74/5/19
(78)
40.58/5/19

140
1.30/13/64
(19)
0.51/14/66

4.83/10/45
(37)
3.93/10/45

4.79/9/39
(26)
12.68/9/40

2.65/9/38
(11)
20.99/9/40

17.74/8/36
(63)
35.73/8/36

4.82/7/33
(14)
35.76/7/35

0.29/7/31
(1)
76.03/8/36

0.76/6/27
(2)
74.47/7/32

180
6.28/15/74
(49)
0.86/15/76

5.72/13/60
(24)
7.92/13/61

0.60/11/55
(2)
19.27/11/55

26.06/10/48
(63)
33.27/10/48

47.68/10/45
(90)
91.56/10/45

2.20/9/45
(4)
73.71/9/45

66.20/9/42
(92)
99.91/9/43

2.38/10/47
(3)
149.46/10/47

220
2.51/21/104
(14)
1.34/21/105

10.55/16/76
(28)
9.87/15/77

36.41/12/58
(71)
39.35/12/61

28.40/13/61
(40)
54.43/13/63

65.91/12/59
(75)
87.40/12/59

42.47/12/58
(43)
141.97/11/59

0.99/11/60
(1)
167.00/12/61

44.89/11/54
(37)
179.06/10/54

260
1.78/25/136
(6)
1.32/26/146

18.21/18/89
(34)
15.06/17/89

62.85/14/72
(81)
41.78/14/73

26.20/14/74
(26)
70.06/14/79

31.17/14/74
(26)
135.27/14/76

11.02/12/69
(8)
149.86/13/71

50.19/13/66
(33)
207.24/12/69

43.04/13/68
(25)
314.29/12/68

N
um

be
r

of
 c

ar
e

m
in

te
rm

s

300
1.88/28/153
(5)
1.41/29/163

11.28/20/114
(16)
15.77/20/118

21.38/16/93
(23)
42.18/16/94

56.51/17/86
(42)
99.59/16/86

253.29/14/71
(145)
201.60/14/76

257.16/14/75
(136)
294.64/13/75

81.32/16/81
(33)
334.32/15/85

11.57/13/77
(5)
347.02/14/83

Tab. 1. Comparison of CD-search and ESPRESSO

5.1 Compar ison of CD-Search and ESPRESSO

To compare the performance and result quality achieved by the two minimization programs, a set
of problems with up to 300 input variables and up to 300 minterms were used. Larger problems could
not be solved, because ESPRESSO would not reach a solution within acceptable computing time.

Every problem was at first solved by ESPRESSO and then by iterative CD-search. The
minimization was stopped when CD-search reached equal or better solution than ESPRESSO did.

The results of the comparison are shown in Tab.1. The first row of every cell contains the
CD-search results, the last row shows ESPRESSO results. The entry format is: “ time in seconds/ #of
implicants/ #of literals” . The number of iterations is indicated in parentheses. When the CD-search
reached the same or better solution than ESPRESSO in shorter time, the appropriate cell i s shaded
gray.

5.2 Solution of Very Large Problems

For problems with more than 300 input variables ESPRESSO cannot be used at all . Hence when
investigating the limits of applicabili ty of the CD-search, there was no possibili ty to verify the results
by any other method. The results of this test are listed in Tab. 2. The time in seconds needed to
complete one iteration for various sizes of the problem is shown here. We can see that a problem with
1000 variables and 1000 minterms was solved by the CD-search in less than 3 minutes.

#minterms/ #vars 200 400 600 800 1000

200 0.73 1.81 1.46 2.77 2.34

400 3.35 5.43 8.24 11.03 13.27

600 21.87 14.22 17.35 28.49 37.96

800 43.65 29.58 32.33 67.78 90.09

1000 71.87 55.83 56.90 122.03 155.55

Tab. 2. Time for one iteration on big problems

5.3 Time Complexity Evaluation

Like for most heuristic and iterative algorithms, it is impossible to evaluate the time complexity of
CD-search algorithm exactly. We have observed the average time needed to complete one pass of this
algorithm for various sizes of the input truth table. For every problem size ten different samples were
generated and solved and the average of runtimes was taken. Fig. 2 shows the growth of an average
runtime as a function of the number of care minterms (20-260) where the number of input variables is
changed as a parameter (20-300). The curves in Fig. 2 can be approximated with the square of the
number of care minterms. Fig. 3 on the other hand shows the runtime growth depending on the number
of input variables (20-300) for various numbers of care minterms (20-260). Here the time complexity
is almost linear.

Fig. 2. Time complexity (1) Fig. 3. Time complexity (2)

6 Conclusions

A new method for single-output Boolean function minimization method has been presented. It is
applicable above all to problems with large dimensions and large number of don't care states. The PI
generation method is quite straightforward and therefore very fast. Hence it can easily be used in an
iterative manner. The strength of the method consists in the possibil ity to choose between a very fast
solution, obtained in one iteration and minimal (or near-minimal) solution which is obtained during
several iterations. The same results as with ESPRESSO can be achieved, but the runtimes are much
shorter. For large problems with several hundreds of variables the program beats ESPRESSO both in
minimali ty of the result and in the runtime.

The future research will be oriented towards the possibili ty to process the care terms (not only
minterms) in the input file and towards the group minimization in order to minimize also the
multi -output functions.

Acknowledgment

The research was in part supported by the grant of the Czech Grant Agency GACR 102/99/1017.

References

[1] AREVALO, Z. - BREDESON, J. G.: "A method to simplify a Boolean function into a near
minimal sum-of-products for programmable logic arrays," IEEE Trans. on Computers, Vol. C-
27, No.11, Nov. 1978, pp. 1028-1039

[2] BRAYTON, R.K. et al.: Logic minimization algorithms for VLSI synthesis. Boston, MA,
Kluwer Academic Publishers, 1984

[3] COUDERT, O. - MADRE, J.C.: Implicit and incremental computation of primes and essential
primes of Boolean functions. In Proc. of the Design Automation Conf. (Anaheim, CA, June
1992), pp. 36-39

[4] HACHTEL, G.D. - SOMENZI, F.: Logic synthesis and verification algorithms. Boston, MA,
Kluwer Academic Publishers, 1996, 564 pp.

[5] McCLUSKEY, E.J.: Minimization of Boolean functions. The Bell System Technical Journal,
35, No. 5, Nov. 1956, pp. 1417-1444

[6] QUINE, W.V.: The problem of simplifying truth functions. Amer. Math. Monthly, 59, No. 8,
1952, pp. 521-531

[7] ftp://ftp.mcnc.org/pub/benchmark/Benchmark_dirs/LGSynth93/testcases/pla/
[8] http://eda.seodu.co.kr/~chang/download/espresso/

